首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A set of 58 nuclearly encoded thylakoid-integral membrane proteins from four plant species was identified, and their amino termini were assigned unequivocally based upon mass spectrometry of intact proteins and peptide fragments. The dataset was used to challenge the Web tools ChloroP, TargetP, SignalP, PSORT, Predotar, and MitoProt II for predicting organelle targeting and transit peptide proteolysis sites. ChloroP and TargetP reliably predicted chloroplast targeting but only reliably predicted transit peptide cleavage sites for soluble proteins targeted to the stroma. SignalP (eukaryote settings) accurately predicted the transit peptide cleavage site for soluble proteins targeted to the lumen. SignalP (Gram-negative bacteria settings) reliably predicted peptide cleavage of integral thylakoid proteins inserted into the membrane via the "spontaneous" pathway. The processing sites of more common thylakoid-integral proteins inserted by the signal recognition peptide-dependent pathway were not well predicted by any of the programs. The results suggest the presence of a second thylakoid processing protease that recognizes the transit peptide of integral proteins inserted via the spontaneous mechanism and that this mechanism may be related to the secretory mechanism of Gram-negative bacteria.  相似文献   

2.
E A Bayer  J J Grootjans  R Alon  M Wilchek 《Biochemistry》1990,29(51):11274-11279
The avidin-biotin system was used in order to target enzymes to their substrates in complex mixtures of proteins in solution. The approach described here thus mimics natural systems in which enzymes usually act in selective fashion, due, perhaps, to proximity effects. For affinity cleavage studies, biotinyl transferrin was used as a model target substrate. Avidin or streptavidin was then employed to bridge between the biotinylated target protein and a biotinyl protease. Bovine serum albumin was included in the reaction mixtures to assess the level of nonspecific cleavage. In the case of an unbiotinylated target protein, avidin could be used to inhibit the hydrolytic action of the biotinyl protease. In some systems, a biotinyl antibody could be used to direct the avidin-bridged biotinyl protease to an unbiotinylated target antigen. The data support the contention that preferential cleavage reflects two separate phenomena: (i) avidin confers a conformational alteration of the biotinylated target protein, and (ii) the biotinyl protease is targeted (via the avidin bridge) to the proximity of the biotinylated target protein, thereby promoting cleavage of the conformationally altered molecule. This is the first report in which a proteolytic enzyme could be selectively targeted to specifically hydrolyze a defined protein substrate in solutions containing a complex mixture of other proteins. The approach appears to be a general phenomenon for "targeted catalysis", appropriate for other applications, particularly for affinity cleavage and targeted catalysis of cell-based macromolecules.  相似文献   

3.
Struhl G  Adachi A 《Molecular cell》2000,6(3):625-636
Ligand binding to receptors of the LIN-12/Notch family causes at least two proteolytic cleavages: one between the extracellular and transmembrane domains, and the other within the transmembrane domain. The transmembrane cleavage depends on Presenilin, a protein also required for transmembrane cleavage of beta-APP. Here, we have assayed the substrate requirements for Presenilin-dependent processing of Notch and other type I transmembrane proteins in vivo. We find that the Presenilin-dependent cleavage does not depend critically on the recognition of particular sequences in these proteins but rather on the size of the extracellular domain: the smaller the size, the greater the efficiency of cleavage. Hence, Notch, beta-APP, and perhaps other proteins may be targeted for Presenilin-mediated transmembrane cleavage by upstream processing events that sever the extracellular domain from the rest of the protein.  相似文献   

4.
The fact that substrate-anchored Dictyostelium cells undergo cytokinesis in the absence of myosin II underscores the importance of other proteins in enabling the cleavage furrow to constrict. Cortexillins, a pair of actin-bundling proteins, are required for normal cleavage. They are targeted to the incipient furrow in wild-type and, more prominently, in myosin II-null cells. No other F-actin bundling or cross-linking protein tested is co-localized. Green fluorescent protein fusions show that the N-terminal actin-binding domain of cortexillin I is dispensable and the C-terminal region is sufficient for translocation to the furrow and the rescue of cytokinesis. Cortexillins are suggested to have a targeting signal for coupling to a myosin II-independent system that directs transport of membrane proteins to the cleavage furrow.  相似文献   

5.
Caspases, cysteine proteases with aspartate specificity, are key players in programmed cell death across the metazoan lineage. Hundreds of apoptotic caspase substrates have been identified in human cells. Some have been extensively characterized, revealing key functional nodes for apoptosis signaling and important drug targets in cancer. But the functional significance of most cuts remains mysterious. We set out to better understand the importance of caspase cleavage specificity in apoptosis by asking which cleavage events are conserved across metazoan model species. Using N-terminal labeling followed by mass spectrometry, we identified 257 caspase cleavage sites in mouse, 130 in Drosophila, and 50 in Caenorhabditis elegans. The large majority of the caspase cut sites identified in mouse proteins were found conserved in human orthologs. However, while many of the same proteins targeted in the more distantly related species were cleaved in human orthologs, the exact sites were often different. Furthermore, similar functional pathways are targeted by caspases in all four species. Our data suggest a model for the evolution of apoptotic caspase specificity that highlights the hierarchical importance of functional pathways over specific proteins, and proteins over their specific cleavage site motifs.  相似文献   

6.
The cleavage properties of a trans-acting hammerhead ribozyme targeted 51 bases upstream of the putative splicing branch point in the hamster prion pre-mRNA intron were investigated in cell-free model systems in vitro. The specificity of cleavage was demonstrated by the inability of this ribozyme to cleave a non-homologous synthetic message encoding part of the beta amyloid peptide precursor, beta APP, and by the inability of the prion pre-mRNA to be cleaved by a ribozyme targeted to beta amyloid peptide precursor mRNA. Also, the addition of total RNA isolated from rat brain had only a minimal effect on the cleavage of the prion substrate pre-mRNA by the ribozyme. Finally neither the presence of 100 ng of nuclear or cytoplasmic proteins were found to affect the rate of cleavage in vitro.  相似文献   

7.
Antisense oligonucleotides (ASOs) are most commonly designed to reduce targeted RNA via RNase H1-dependent degradation. In this paper we demonstrate that cellular proteins can compete for sites targeted by RNase H1-dependent ASOs. We further show that some ASOs designed to mediate RNase H1 cleavage can, in certain instances, promote target reduction both by RNase H1-mediated cleavage and by steric inhibition of binding of splicing factors at a site required for efficient processing of the pre-mRNA. In the latter case, RNase H cleavage was prevented by binding of a second protein, HSPA8, to the ASO/pre-mRNA heteroduplex. In addition, using a precisely controlled minigene system, we directly demonstrated that activity of ASOs targeting sites in introns is strongly influenced by splicing efficiency.  相似文献   

8.
It is thought that complete cleavage of retroviral envelope protein into mature surface protein (SU) and transmembrane protein (TM) is critical for its assembly into virions and the formation of infectious virus particles. Here we report the identification of highly infectious, cleavage-deficient envelope mutant proteins. Substitution of aspartate for lysine 104, arginines 124 and 126, or arginines 223 and 225 strongly suppressed cleavage of the envelope precursor and yet allowed efficient incorporation of precursor molecules as the predominant species in virions that were almost as infectious as the wild-type virus. These results indicate that cleavage of the envelope precursor into mature SU and TM is not necessary for assembly into virions. Moreover, they call into question how many mature envelope protein subunits are required to complete virus entry, suggesting that a very few molecules suffice. The failure of host cell proteases to cleave these mutant proteins, whose substitutions are distal to the actual site of cleavage, suggests that the envelope precursor is misfolded, sequestering the cleavage site. In agreement with this, all cleavage mutant proteins exhibited significant losses of receptor binding, suggesting that these residues play roles in proper envelope protein folding. We also identified a charged residue, arginine 102, whose substitution suppressed envelope cleavage and allowed precursor incorporation but resulted in virions that were virtually noninfectious and that exhibited the greatest reduction in receptor binding. Placement of these cleavage mutations into envelope proteins of targeted retroviral vectors for human gene therapy may prevent loss of the modified surface proteins from virions, improving their infectivity and storage hardiness.  相似文献   

9.
In Escherichia coli, three different types of proteins engage the SecY translocon of the inner bacterial membrane for translocation or insertion: 1) polytopic membrane proteins that prior to their insertion into the membrane are targeted to the translocon using the bacterial signal recognition particle (SRP) and its receptor; 2) secretory proteins that are targeted to and translocated across the SecY translocon in a SecA- and SecB-dependent reaction; and 3) membrane proteins with large periplasmic domains, requiring SRP for targeting and SecA for the translocation of the periplasmic moiety. In addition to its role as a targeting device for membrane proteins, a function of the bacterial SRP in the export of SecB-independent secretory proteins has also been postulated. In particular, beta-lactamase, a hydrolytic enzyme responsible for cleavage of the beta-lactam ring containing antibiotics, is considered to be recognized and targeted by SRP. To examine the role of the SRP pathway in beta-lactamase targeting and export, we performed a detailed in vitro analysis. Chemical cross-linking and membrane binding assays did not reveal any significant interaction between SRP and beta-lactamase nascent chains. More importantly, membrane vesicles prepared from mutants lacking a functional SRP pathway did block the integration of SRP-dependent membrane proteins but supported the export of beta-lactamase in the same way as that of the SRP-independent protein OmpA. These data demonstrate that in contrast to previous results, the bacterial SRP is not involved in the export of beta-lactamase and further suggest that secretory proteins of Gram-negative bacteria in general are not substrates of SRP.  相似文献   

10.
Signal peptidase can cleave inside a polytopic membrane protein   总被引:3,自引:0,他引:3  
The signal peptides of most proteins targeted to the endoplasmic reticulum are specifically cleaved by signal peptidase. Although potential cleavage sites occur frequently in polytopic proteins after membrane-spanning segments, processing is restricted to the first hydrophobic domain, suggesting that signal peptidase might not have access to subsequently translocated, internal domains. To test this hypothesis, we replaced the third transmembrane segment of an artificial threefold membrane-spanning protein by a sequence which is normally an amino-terminal signal. Upon in vitro translation and insertion into microsomes, efficient cleavage at this sequence was observed, thus demonstrating the ability of signal peptidase to cleave within polytopic membrane proteins.  相似文献   

11.
Poliovirus disrupts nucleocytoplasmic trafficking and results in the cleavage of two nuclear pore complex (NPC) proteins, Nup153 and Nup62. The NPC is a 125-MDa complex composed of multiple copies of 30 different proteins. Here we have extended the analysis of the NPC in infected cells by examining the status of Nup98, an interferon-induced NPC protein with a major role in mRNA export. Our results indicate that Nup98 is targeted for cleavage after infection but that this occurs much more rapidly than it does for Nup153 and Nup62. In addition, we find that cleavage of these NPC proteins displays differential sensitivity to the viral RNA synthesis inhibitor guanidine hydrochloride. Inhibition of nuclear import and relocalization of host nuclear proteins to the cytoplasm were only apparent at later times after infection when all three nucleoporins (Nups) were cleaved. Surprisingly, analysis of the distribution of mRNA in infected cells revealed that proteolysis of Nup98 did not result in an inhibition of mRNA export. Cleavage of Nup98 could be reconstituted by the addition of purified rhinovirus type 2 2Apro to whole-cell lysates prepared from uninfected cells, suggesting that the 2A protease has a role in this process in vivo. These results indicate that poliovirus differentially targets subsets of NPC proteins at early and late times postinfection. In addition, targeting of interferon-inducible NPC proteins, such as Nup98, may be an additional weapon in the arsenal of poliovirus and perhaps other picornaviruses to overcome host defense mechanisms.  相似文献   

12.
Golgin-160 is a member of the golgin family of Golgi-localized membrane proteins. The COOH-terminal two-thirds of golgin-160 is predicted to form a coiled-coil, with an NH(2)-terminal "head" domain. To identify the Golgi targeting information in golgin-160, full-length and deletion constructs tagged with green fluorescent protein were generated. The head domain alone was targeted to the Golgi complex in the absence of assembly with endogenous golgin-160. Further truncations from both ends of the head domain narrowed the Golgi targeting information to 85 amino acids between residues 172 and 257. Surprisingly, certain truncations of the head domain also specifically accumulated in the nucleus. Both a nuclear localization signal (masked in the full-length protein) and information for nuclear retention contributed to the nuclear localization of these truncations. Because the golgin-160 head is cleaved by caspases during apoptosis, we examined the localization of epitope-tagged proteins corresponding to all potential caspase cleavage fragments. Our data suggest that three of six fragments could be targeted to the nucleus, provided that they are released from Golgi membranes after cleavage. The finding that both Golgi and nuclear targeting information is present in the same region of golgin-160 suggests that this protein may have more than one function.  相似文献   

13.
PAZ PIWI domain (PPD) proteins, together with the RNA cleavage products of Dicer, form ribonucleoprotein complexes called RNA-induced silencing complexes (RISCs). RISCs mediate gene silencing through targeted messenger RNA cleavage and translational suppression. The PAZ domains of PPD and Dicer proteins were originally thought to mediate binding between PPD proteins and Dicer, although no evidence exists to support this theory. Here we show that PAZ domains are not required for PPD protein–Dicer interactions. Rather, a subregion of the PIWI domain in PPD proteins, the PIWI-box, binds directly to the Dicer RNase III domain. Stable binding between PPD proteins and Dicer was dependent on the activity of Hsp90. Unexpectedly, binding of PPD proteins to Dicer inhibits the RNase activity of this enzyme in vitro. Lastly, we show that PPD proteins and Dicer are present in soluble and membrane-associated fractions, indicating that interactions between these two types of proteins may occur in multiple compartments.  相似文献   

14.
Ribozyme-mediated RNA degradation in nuclei suspension.   总被引:4,自引:4,他引:0       下载免费PDF全文
Ribozymes containing 2'-fluoro- and 2'-amino-modified pyrimidine nucleosides in combination with terminal phosphorothioate linkages were targeted against HTLV-I tax RNA. In order to examine the activity of such chemically modified ribozymes in the nuclear environment, they were incubated with nuclei of a Tax-transformed mouse fibroblast cell line. Ribozyme cleavage of tax RNA was analyzed by the RNase protection assay. Comparison of the cleavage of tax RNA isolated nuclei with that of tax RNA present in nuclei suspension revealed a 30 times more efficient cleavage of the latter one. Pre-treatment with proteinase K and SDS abolished the enhancement of the ribozyme-mediated RNA cleavage. Catalytically inactive ribozymes did not yield any cleavage products. These results demonstrate an augmenting effect of nuclear proteins on the ribozyme-mediated RNA cleavage.  相似文献   

15.
We report the development of LumenP, a new neural network-based predictor for the identification of proteins targeted to the thylakoid lumen of plant chloroplasts and prediction of their cleavage sites. When used together with the previously developed TargetP predictor, LumenP reaches a significantly better performance than what has been recorded for previous attempts at predicting thylakoid lumen location, mostly due to a lower false positive rate. The combination of TargetP and LumenP predicts around 1.5%-3% of all proteins encoded in the genomes of Arabidopsis thaliana and Oryza sativa to be located in the lumen of the thylakoid.  相似文献   

16.
The described methods can be used to investigate the effect of proteases on ion channels, receptors, and other plasma membrane proteins heterologously expressed in Xenopus laevis oocytes. In combination with site-directed mutagenesis, this approach provides a powerful tool to identify functionally relevant cleavage sites. Proteolytic activation is a characteristic feature of the amiloride-sensitive epithelial sodium channel (ENaC). The final activating step involves cleavage of the channel’s γ-subunit in a critical region potentially targeted by several proteases including chymotrypsin and plasmin. To determine the stimulatory effect of these serine proteases on ENaC, the amiloride-sensitive whole-cell current (ΔIami) was measured twice in the same oocyte before and after exposure to the protease using the two-electrode voltage-clamp technique. In parallel to the electrophysiological experiments, a biotinylation approach was used to monitor the appearance of γENaC cleavage fragments at the cell surface. Using the methods described, it was demonstrated that the time course of proteolytic activation of ENaC-mediated whole-cell currents correlates with the appearance of a γENaC cleavage product at the cell surface. These results suggest a causal link between channel cleavage and channel activation. Moreover, they confirm the concept that a cleavage event in γENaC is required as a final step in proteolytic channel activation. The methods described here may well be applicable to address similar questions for other types of ion channels or membrane proteins.  相似文献   

17.
Extracellular secretion of recombinant proteins from plant cell suspension culture will simplify the protein purification procedure and greatly reduce the production cost. Our early work indicated that presence of hydroxyproline-O-glycosylation at the C- or N-terminus of the target protein boosted the secreted yields in the culture medium. Inspired by early successes, we tested the possibility of introducing an N-glycosylation site to facilitate the secretion of human growth hormone (hGH) from cultured tobacco cells. Three N-glycosylated hGH fusion proteins, designated NAS-EK-hGH, NAS-Kex2-hGH and hGH-NAS, were expressed in tobacco BY-2 cells. Where NAS denotes the “Asn-Ala-Ser” consensus sequence for N-glycosylation; EK denotes an enterokinase cleavage site and Kex2 a sequence to be cleaved by a Golgi-localized Kex2p-like protease. Our results indicated that a single N-glycan attached either at the N-terminus or C-terminus of hGH correlated with enhanced extracellular accumulation of the transgenic proteins; the secreted yield of NAS-EK-hGH and hGH-NAS was 70-90 fold greater than the control targeted, non-glycosylated hGH. NAS-Kex2-hGH was subject to partial cleavage of the N-glycan tag at the Kex2 site in Golgi apparatus, and therefore gave lower yields than the other two constructs.  相似文献   

18.
The N-terminus of any protein may be used as a destabilization signal for targeted protein degradation. In the eukaryotic cytosol, the signal - the so-called N-degron--is recognized for degradation by (i) the N-end rule, a well-described degradation process involving epsilon-ubiquitination; or (ii) N-terminal ubiquitination, a more recently described pathway. Dedicated E3 ubiquitin ligases known as N-recognins then act on the protein. The proteolytic pathways involve ATP-dependent chambered proteases, such as the 26S proteasome in the cytosol, which generate short oligopeptides. The N-terminus of the polypeptide chain is also important for post-proteasome degradation by specific aminopeptidases, which complete peptide cleavage to generate free amino acids. Finally, in each compartment of the eukaryotic cell, N-terminal methionine excision creates a variety of N-termini for mature proteins. It has recently been shown that the N-terminal methionine excision pathway has a major impact early in targeted protein degradation.  相似文献   

19.
The transmissible gastroenteritis coronavirus (TGEV), like many other viruses, exerts much of its cytopathic effect through the induction of apoptosis of its host cell. Apoptosis is coordinated by a family of cysteine proteases, called caspases, that are activated during apoptosis and participate in dismantling the cell by cleaving key structural and regulatory proteins. We have explored the caspase activation events that are initiated upon infection of the human rectal tumor cell line HRT18 with TGEV. We show that TGEV infection results in the activation of caspase-3, -6, -7, -8, and -9 and cleavage of the caspase substrates eIF4GI, gelsolin, and alpha-fodrin. Surprisingly, the TGEV nucleoprotein (N) underwent proteolysis in parallel with the activation of caspases within the host cell. Cleavage of the N protein was inhibited by cell-permeative caspase inhibitors, suggesting that this viral structural protein is a target for host cell caspases. We show that the TGEV nucleoprotein is a substrate for both caspase-6 and -7, and using site-directed mutagenesis, we have mapped the cleavage site to VVPD(359) downward arrow. These data demonstrate that viral proteins can be targeted for destruction by the host cell death machinery.  相似文献   

20.
Activation of caspases results in the disruption of structural and signaling networks in apoptotic cells. Recent biochemical and cell biological studies have shown that components of the cadherin-catenin adhesion complex in epithelial adherens junctions are targeted by caspases during apoptosis. In epithelial cells, desmosomes represent a second type of anchoring junctions mediating strong cell-cell contacts. Using antibodies directed against a set of desmosomal proteins, we show that desmosomes are proteolytically targeted during apoptosis. Desmogleins and desmocollins, representing desmosome-specific members of the cadherin superfamily of cell adhesion molecules, are specifically cleaved after onset of apoptosis. Similar to E-cadherin, the desmoglein-3 cytoplasmic tail is cleaved by caspases. In addition the extracellular domains of desmoglein-3 and desmocollin-3 are released from the cell surface by a metalloproteinase activity. In the presence of caspase and/or metalloproteinase inhibitors, both cleavage reactions are almost completely inhibited. As reported previously, the desmosomal plaque protein plakoglobin is cleaved by caspase-3 during apoptosis. Our studies now show that plakophilin-1 and two other major plaque proteins, desmoplakin-1 and -2, are also cleaved by caspases. Immunofluorescence analysis confirmed that this cleavage results in the disruption of the desmosome structure and thus contributes to cell rounding and disintegration of the intermediate filament system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号