首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytokines in skin lesions of psoriasis   总被引:12,自引:0,他引:12  
Cytokine levels were compared in aqueous extracts of stratum corneum from psoriatic lesions and normal heel. Samples from heel contained high levels of interleukin-1 alpha (IL-1 alpha) and beta measured in immunoassays, although only the IL-1 alpha was biologically active. No other cytokines could be detected in heel samples. Interleukin-1 (IL-1) levels were dramatically reduced in lesional samples. A neutrophil chemoattractant was found in all lesional extracts, and was demonstrated to be mainly interleukin-8 (IL-8) using a specific neutralizing antiserum. Tumor necrosis factor alpha (TNF-alpha) and beta (TNF-beta), and interferon alpha (IFN-alpha) and gamma (IFN-gamma) were detected in lesional extracts using immunoassays, however, no equivalent biological activities could be detected. Interleukins 2 (IL-2), 4 (IL-4), and 6 (IL-6), granulocyte and granulocyte/macrophage colony stimulating factor (GM-CSF), could not be detected in any samples. IL-8 is therefore the only biologically active cytokine shown in this study to be elevated in psoriatic lesional extracts, and may therefore play a role in the pathogenesis of the disease.  相似文献   

2.
Whole Body Hyperthermia (WBH) enhancement of chemotherapy and/or radiation without a concomitant increase in myelosuppression has been documented in clinical trials. We propose that the biological basis for this phenomena relates in part to the previously reported induction of peripheral cytokines by WBH, that is, granulocyte colony stimulating factor (G-CSF), interleukin (IL)-1 beta, IL-6, IL-8, tumor necrosis factor-alpha (TNF-alpha), and the regulatory cytokine IL-10. To further explain this myeloprotection and the additional clinical observation that WBH promotes early engraftment of bone marrow (when used as part of an allogenic bone marrow transplant preconditioning regimen) we developed a hypothesis: WBH increases peripheral IL-1 beta, IL-6, and TNF-alpha resulting in a secondary induction of IL-3 and granulocyte macrophage colony stimulating factor (GM-CSF) in the bone marrow, for which supportive data also exists. Taken collectively, these data provide an increased understanding of the biological sequelae of fever, as well as a testable unifying hypothesis, for future antineoplastic treatment strategies.  相似文献   

3.
Chaitidis P  Kuhn H 《FEBS letters》2005,579(17):3691-3694
The lipoxygenase pathway of immunocompetent cells has been related to HIV infection and interleukins-4 and -13 have been described as major regulators of this metabolic route. To explore whether 15-lipoxygenase1 expression might impact the responsiveness of monocytic cells for HIV we induced expression of this enzyme by two independent ways (stable transfection of U937 cells and culturing of blood monocytes in vitro in the presence of granulocyte/monocyte colony stimulating factor and interleukin 4) and assayed the cellular content of the two HIV-1 receptors CD4 and CXCR4 (CD184) by real time RT-PCR and fluorescence-activated cell sorting. Wild-type U937 cells express CD4 and CXCR4 at high levels and expression was not altered when the cells were transfected with control plasmids. In contrast, expression of these proteins was strongly reduced when the cells were stably transfected with 15-lipoxygenase1. Similar effects were observed when blood monocytes were cultured in the presence of granulocyte/monocyte colony stimulating factor and interleukin-4. Under these conditions strong overexpression of 15-lipoxygenase1 was paralleled by downregulation of CD4 and CXCR4. Since these surface proteins are essential for the binding of T-tropic HIV-1 strains expression of 15-lipoxygenase1 may confer resistance against HIV infection to monocytic cells.  相似文献   

4.
The amino acid sequences of human interleukin-6 and granulocyte colony stimulating factor are approximately 30% homologous in the N-terminal region. The relative positions of four half-cystines in human interleukin-6 (IL-6) match four of the five in human granulocyte colony stimulating factor. Labeling experiments of recombinant interleukin-6 with tritiated iodoacetate confirmed that the molecule forms two intramolecular disulfide bonds and contains no detectable level of free sulfhydryls. By isolation and characterization of tryptic and subtilytic peptides obtained from different proteolytic digestions, the disulfide bonds of the IL-6 molecule were assigned to Cys44-Cys50 and Cys73-Cys83. The two disulfide bridges form two small loops which are separated by 22 amino acids. These structures are similar to those of recombinant granulocyte colony stimulating factor.  相似文献   

5.
This report describes the morphology, surface markers, growth requirements, and functional activity of the M1-A5 cell line, which was established by the limiting dilution of spleen cells from a mouse bearing a large methylcholanthrene-induced fibrosarcoma. The M1-A5 cells share many of the morphological features of large granular lymphocytes and, in addition, express asialo GM1 and Ly-5 surface markers which are commonly found on natural killer cells (NK) cells. There is no expression of T-cell differentiation antigens, surface immunoglobulin, or the granulocyte/macrophage marker, MAC-1. M1-A5 cells are dependent on exogenous growth factor(s) for survival and will proliferate if cultured in interleukin 3 (IL-3), but not in interleukin 1 (IL-1), interleukin 2 (IL-2), or granulocyte/macrophage colony stimulating factor (GM-CSF). In addition, the M1-A5 cells do not absorb IL-2. Despite their morphology and surface characteristics, the M1-A5 cells do not lyse NK targets such as YAC-1 and RLM1 in 4- or 18-hr cytotoxic assays but do lyse the natural cytotoxic (NC) susceptible target, WEHI-164, and to a very small extent, the M-1 fibrosarcoma cells, in an 18-hr assay. Thus they exhibit NC-like cytotoxic activity. In addition, the M1-A5 cells secrete a small molecular weight factor which activates suppressor cells capable of inhibiting antibody synthesis by cocultured syngeneic spleen cells.  相似文献   

6.
In examining the effects of corticosteroids on hematopoiesis in vitro, we observed that results were highly dependent on the lot of commercial fetal calf serum (FCS) utilized. We hypothesized that this variability correlated with the picogram (pg) level of endotoxin contaminating the FCS. Randomly obtained commercial lots of FCS contained 0.39 to 187 pg/ml of lipopolysaccharide (LPS). Standard FCS concentrations in hematopoietic precursor proliferation assays (granulocyte-marcrophage colony forming units [CFU-GM]) resulted in final LPS levels as high as 40 pg/ml. LPS (2–5 pg/ml) added to essentially endotoxin-free cultures, induced human mononuclear cell release of interleukin (IL)-1, IL-6 and granulocyte colony stimulating factor (G-CSF). Lots of FCS induced the release of IL-1, IL-6, and G-CSF from human mononuclear cells and the release of these factors correlated with the level of contaminating LPS. Human bone marrow CFU-GM proliferation, in response to granulocyte-macrophage colony stimulating factor (GM-CSF), positively correlated with the level of LPS contaminating the FCS and the FCS-induced release of IL-6 from mononuclear cells. CFU-GM proliferation of human bone marrow cluster of differentiation (CD) 34+CD14-cells were not affected by the presence of endotoxin. These data suggest that LPS at 2–5 pg/ml may induce bone marrow accessory cell release of hematopoietic growth factors, thus altering proliferative response of hematopoietic precursors and confounding the study of exogenously added cytokines to culture systems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Type 1-diabetes is an autoimmune disease, where a chronic inflammatory process finally causes β-cell death and insulin deficiency. Extracts from gum resin of Boswellia serrata (BE) have been shown to posses anti-inflammatory properties especially by targeting factors/mediators related to autoimmune diseases. Multiple low dose-streptozotocin (MLD-STZ) treatment is a method to induce diabetes in animals similar to Type 1 diabetes in humans.It was aimed to study whether or not a BE could prevent hyperglycemia, inflammation of pancreatic islets and increase of proinflammatory cytokines in the blood in MLD-STZ treated mice.In BK+/+ wild type mice, 5 days of daily treatment with 40 mg/kg STZ i.p. produced permanent increase of blood glucose, infiltration of lymphocytes into pancreatic islets (CD3-stain), apoptosis of periinsular cells (staining for activated caspase 3) after 10 days as well as shrinking of islet tissue after 35 days (H&E staining). This was associated with an increase of granulocyte colony stimulating factor (G-CSF), granulocyte/macrophage colony stimulating factor (GM-CSF) and proinflammatory cytokines (IL-1A, IL-1B, IL-2, IL-6, IFN-γ, TNF-α) in the blood. Whereas BE alone did not affect blood glucose in non diabetic mice, in STZ treated mice simultaneous i.p. injection of 150 mg/kg of BE over 10 days prevented animals from increase of blood glucose levels. Histochemical studies showed, that i.p. injection of 150 mg/kg BE for 10 days starting with STZ treatment, avoided lymphocyte infiltration into islets, apoptosis of periinsular cells and shrinking of islet size 35 days after STZ. As far as the cytokines tested are concerned, there was a significant inhibition of the increase of G-CSF and GM-CSF. BE also significantly prevented the increase of IL-1A, IL-1B, IL-2, IL-6, IFN-γ and TNF-α. It is concluded that extracts from the gum resin of Boswellia serrata prevent islet destruction and consequent hyperglycemia in an animal model of type 1 diabetes probably by inhibition of the production/action of cytokines related to induction of islet inflammation in an autoimmune process.  相似文献   

8.
The effect of biosynthetic human insulin-like growth factor I (IGF-I) and IGF-II on the in vitro growth of human marrow myeloid progenitors in the presence of recombinant human granulocyte colony stimulating factor (rhG-CSF), granulocyte-macrophage CSF (rhGM-CSF), or interleukin-3 (rhIL-3), was investigated. IGF-I and IGF-II similarly enhanced the growth of myeloid progenitors in cultures stimulated with any of the above hemopoietic regulators. Analysis of colony composition showed an increase in the numbers of granulocyte colonies, but no alteration in the numbers of macrophage or granulocyte/macrophage colonies. IGF-I induced an increase of 62 ± 16%, 84 ± 13%, and 107 ± 18% in granulocyte colony numbers in the presence of G-CSF, GM-CSF, or IL-3, respectively. The values for IGF-II were 66 ± 13%, 96 ± 12%, and 91 ± 12%. Similar enhancement of myeloid colony formation by both peptides was also detected in G-CSF and GM-CSF-stimulated cultures of marrow cells that had been depleted of accessory cells, while neither peptide exerted any effect in the presence of IL-3 in such cultures. The growth-promoting effects of IGF-I and IGF-II were completely abrogated by monoclonal antibodies directed against the IGF-I (Type I) membrane receptor. IGF-I and IGF-II thus appear to exert their effects on human marrow myeloid progenitors via a direct mechanism involving the Type I receptor. © 1993 Wiley-Liss, Inc.  相似文献   

9.
A monoclonal antibody (mAb), named TE-4F 10, was produced by fusing P3X-Ag8 myeloma cells with splenocytes of BALB/c mice immunized with a rat medullary thymic epithelial cell (TEC) line, (TE-R 2.5), previously established in our Institute. Flow cytometry showed that 85-95% TE-R 2.5 cells expressed the TE-4F10 antigen. The mAb immunoprecipitated a 29 kDa molecule from the TE-R2.5 cell lysate. Immunohistochemical analysis using single and double staining of the thymus with anti-cytokeratin (CK) mAb, showed that TE- 4F10 mAb selectively stains a subpopulation of medullary TEC. Hematopoietic and lymphoid cells were negative. The expression of the TE-4F10 antigen on TE-R 2.5 cells in vitro was significantly upregulated by interleukin 1 (IL-1) and tumor necrosis factor (TNFalpha). Other cytokines IL-4, IL-6, IL-10 and granulocyte - macrophage colony stimulating factor (GM-CSF) showed lesser stimulation on its expression, whereas interferon gamma (IFN) and dexamethasone were without significant effect. The TE-R 2.5 cell line strongly bound and induced apoptosis of a rat / mouse thymocyte heterohybridoma (BWRT8), phenotypically alphabetaTCRhiCD4hiCD8lo. TE-4F10 mAb significantly inhibited binding (40-50%) of both BWRT8 cells and the BWRT8 - MDP.1 subclone to TE-R 2.5 cells. The inhibition was enhanced when TEC were stimulated with IL-1 + TNFalpha. The mAb also significantly blocked apoptosis of BWRT8 but did not modulate cell death of the BWRT8 - MDP.1 subclone, which was resistant to TEC-induced apoptosis. These findings indicate that the TE-4F10 antigen might be selectively involved in adhesion and selection processes in the medullary thymic microenvironment. The mAb of the same characteristics has not been described so far.  相似文献   

10.
Interleukin-4 (IL-4), which was originally identified as a B-cell growth factor, has been shown to produce diverse effects on hemopoietic progenitors. The present study investigated the effects of purified recombinant murine IL-4 on early hemopoetic progenitors in methylcellulose culture. IL-4 supported the formation of blast cell colonies and small granulocyte/macrophage (GM) colonies in cultures of marrow and spleen cells of normal mice as well as spleen cells of mice treated with 150 mg/kg 5-fluorouracil (5-FU) 4 days earlier. When the blast cell colonies were individually picked and replated in cultures containing WEHI-3 conditioned medium and erythropoietin (Ep), a variety of colonies were seen, including mixed erythroid colonies, indicating the multipotent nature of the blast cell colonies supported by IL-4. To test whether or not IL-4 affects multipotent progenitors directly, we replated pooled blast cells in cultures under varying conditions. In the presence of Ep, both IL-3 and IL-4 supported a similar number of granulocyte/erythrocyte/macrophage/megakaryocyte (GEMM) colonies. However, the number of GM colonies supported by IL-4 was significantly smaller than that supported by IL-3. When colony-supporting abilities of IL-4 and IL-3 were compared using day-4 post-5-FU spleen and day-2 post-5-FU marrow cells, IL-4 supported the formation of fewer blast cell colonies than did IL-3. IL-4 and IL-6 revealed synergy in support of colony formation from day 2 post-5-FU marrow cells. These results indicate that murine IL-4 is another direct-acting multilineage colony-stimulating factor (multi-CSF), similar to IL-3, that acts on primitive hemopoietic progenitors.  相似文献   

11.
Purified recombinant human B cell growth factor-1/IL-4 was evaluated, alone and in combination, with purified preparations of recombinant human (rhu) CSF or erythropoietin (Epo) for effects on colony formation by human bone marrow CFU-GM progenitor cells (GM) and burst forming unit-E progenitor cells. rhu IL-4 synergized with rhu G-CSF to enhance granulocyte colony formation, but had no effect on CFU-GM colony formation stimulated by rhu GM-CSF, rhu IL-3, or rhu CSF-1. Rhu IL-4 synergized with Epo to enhance BFU-E colony formation equal to that of Epo plus either rhu IL-3, rhu GM-CSF, or rhu G-CSF. Removal of adherent cells and T lymphocytes did not influence the synergistic activities of rhu IL-4. Rmu IL-4, synergized with rhu G-CSF, but not with rmu GM-CSF, rmu IL-3, or natural mu CSF-1, to enhance CFU-GM (mainly granulocyte) colony numbers by a greater than 90% pure preparation of murine CFU-GM. Also, rhu IL-4 at low concentrations enhanced release of CSF and at higher concentrations the release also of suppressor molecules from human monocytes and PHA-stimulated human T lymphocytes. Use of specific CSF antibodies suggested that rhu IL-4 was enhancing the release of G-CSF and CSF-1 from monocytes and the release of GM-CSF and possibly G-CSF from PHA-stimulated T lymphocytes. Use of antibodies for TNF-alpha, IFN-gamma, or TNF-beta as well as measurement of TNF and IFN titers suggested that the suppressor molecule(s) released from monocytes were acting with TNF-alpha and those released from PHA-stimulated T lymphocytes were acting with IFN-gamma. These results implicate B cell growth factor-1/IL-4 as a synergistic activity for hematopoietic progenitors and suggest that the actions can be on both progenitor and accessory cells.  相似文献   

12.
目的:通过Meta分析评价粒系或粒单系集落刺激因子(G-CSF或GM-CSF)对接受免疫抑制治疗(IST)的重型再生障碍性贫血(SAA)患者的疗效和安全性。方法:使用相关检索词检索MEDLINE、Cochrane Library、EMBASE、CNKI及CBM数据库,检索时间1990年1月~2011年12月。纳入G-CSF或GM-CSF治疗SAA的随机对照研究。用Review Manager4.2统计软件对数据进行Meta分析。结果:共纳入4篇文献,共466例SAA患者。Meta分析结果显示:①IST疗效:G-CSF/GM-CSF组与对照组的SAA患者对比,近远期疗效与生存率均无显著差异:总体生存率[OR=1.15,95%C(I0.73,1.82),P=0.54]、完全缓解率[OR=1.20,95%CI(0.71,2.02),P=0.50]、早期总体有效率[OR=1.61,95%CI(0.85,3.03),P=0.14]、远期总体有效率[OR=1.17,95%CI(0.78,1.74),P=0.45];②IST相关感染:IST治疗早期感染发生率、严重感染发生率、感染相关死亡率方面均未优于对照组;③G-CSF/GM-CSF组的复发率低于对照组,差异显著[OR=0.57,95%C(I0.35,0.93),P=0.02];④G-CSF/GM-CSF组远期随访发生克隆性病变的发生率与对照组无统计学差异,恶性肿瘤(MDS/AML)发生率[OR=0.90,95%CI(0.41,1.99),P=0.79]、PNH发生率[OR=1.48,95%CI(0.65,3.33),P=0.35]。结论:G-CSF/GM-CSF应用于接受IST治疗的SAA患者,尚不能证明具有提高总体生存率、完全缓解率、总体有效率、减少感染和感染相关死亡率等优势。虽然有可能降低复发率,也不增加远期克隆性病变发生率,但还需要更严格设计的大样本双盲随机对照试验,并进行更为长期的随访研究。  相似文献   

13.
The induction of granulocyte and macrophage colony formation by the granulocyte-macrophage colony stimulating factor (GM-CSF) on bone marrow cells (BMC) was evaluated as a function of time in agar cultures. We found that while macrophage cell clusters were very abundant on the first two days of culture, granulocytic cell clusters did not appear until the third day. We also found that macrophage colonies were present from the fourth day of culture, while granulocyte colonies did not appear until the fifth day. When two day cell clusters were transferred to cultures with GM-CSF we observed that only macrophage-colonies developed. On the other hand, when four day clusters were transferred, both granulocyte and macrophage colony formation was obtained in a similar way as the one obtained when using GM-CSF with fresh BMC. Two day clusters did not respond to granulocyte colony stimulating factor (G-CSF) while fourth day clusters generated granulocytic colonies in a similar way as when G-CSF was used with fresh BMC. In order to test the hypothesis that granulocyte colony formation in these assays could be a result of the secretion of G-CSF by the macrophages previously induced by GM-CSF, lysates from macrophage colonies were used to induce colony formation on BMC. We observed that colonies, mainly granulocytic, were induced in a similar way as when G-CSF was used. Finally, the possibility that GM-CSF is just a macrophage inducer with the property to produce cells that secrete G-CSF is discussed.  相似文献   

14.
Steel factor (SF) (also called stem cell factor, mast cell growth factor, or c-kit ligand) is a recently cloned hemopoietic growth factor that is produced by bone marrow stromal cells, fibroblasts, and hepatocytes. In both mouse and man it acts synergistically with several colony stimulating factors, including interleukin-3 (IL-3) and granulocyte macrophage-colony stimulating factor (GM-CSF), to induce the proliferation and differentiation of primitive hemopoietic precursor cells. In order to study its mechanism of action and to explore the molecular basis for its synergistic activity we have examined the proteins that become tyrosine phosphorylated in response to SF, IL-3, and GM-CSF. We report herein that SF, but not IL-3 or GM-CSF, dramatically stimulates the tyrosine phosphorylation of the product of the recently discovered proto-oncogene, vav, in two SF-responsive human cell lines, M07E and TF-1. Although phosphorylation is very rapid, reaching maximal levels within 2 min at 37 degrees C, co-immunoprecipitation studies suggest that c-kit may either not associate directly with p95vav or bind to it with very low affinity. Nonetheless, our data suggest that c-kit may utilize p95vav to mediate downstream signaling in hemopoietic cells.  相似文献   

15.
The susceptibility of mouse bone marrow colony forming cells (CFUc) to three different types of proliferation inhibitors in capillary semisolid agar gel was studied. GI-3, a target specific peptide containing granulocyte fraction, T4-1, an oligospecific thymic factor of proteid nature, and the alkylating cytostatics dianhydrogalactitol (DAD) inhibit myeloid colony formation as a function of concentration. The respective MED values amount to 8, 10, and 0.002 microgram/ml. When compared with this same parameter 3H-TdR incorporation into DNA of liquid bone marrow cultures showed a single fold charge for the endogenous inhibitors (GI-3, T4-1) for the cytostatic (DAD) a 3 to 4 fold lower difference. It was demonstrated, that in competitive antagonism of GI-3 and colony stimulating factor the inhibitor prevails over CSF.  相似文献   

16.
125I-Labeled recombinant human interleukin-3 (IL-3) was used to study the characteristics and distribution of receptors for IL-3 on human cells. Receptors were found on primary monocytes, on some strains of KG-1 cells, and on pre-B cell lines. Binding was rapid at 37 degrees C, while requiring several hours to reach equilibrium at 4 degrees C. Equilibrium binding studies indicated that IL-3 bound to a single class of high affinity receptor (less than 500 receptors/cell) with a Ka of approximately 1 x 10(10) M-1. Inhibition studies revealed that human granulocyte/macrophage colony stimulating factor partially inhibited the binding of 125I-IL-3 to human monocytes but not JM-1 cells. Additional analysis showed that on KG-1 cells, both IL-3 and GM-CSF partially competed specific binding of heterologous radiolabeled ligand, with approximately equivalent capacities. This competition occurred at both 37 and 4 degrees C. These results suggest heterogeneity in the binding sites for IL-3 and GM-CSF in which a subset of receptors binds only IL-3, a subset only GM-CSF, and another subset can bind both, all with high affinity. Additional heterogeneity was suggested by equilibrium binding of 125I-IL-3 to KG-1 cells which revealed a biphasic Scatchard plot containing a low affinity component not observed on monocytes and JM-1 cells.  相似文献   

17.
Detmer K  Walker AN 《Cytokine》2002,17(1):36-42
We examined the effects of bone morphogenetic protein-2 (BMP-2), -3, -4, -5, -6, and -7 on the proliferation and differentiation of bone marrow CD34+ haematopoietic progenitors in semi-solid medium. The BMPs had no effect on haematopoietic colony development when added to medium containing erythropoietin (Epo) or Interleukin-3 plus Epo. Synergistic effects with the haematopoietic cytokines stem cell factor (SCF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) were observed. In conjunction with GM-CSF and Epo, BMP-4 increased the number of both erythroid and granulocyte/monocyte colonies formed in semi-solid medium (P<0.01). No other BMP stimulated erythroid colony development under these conditions, while BMP-3, BMP-7 (P<0.01), BMP-5, and BMP-6 (P<0.05) stimulated granulocyte/monocyte colony formation. BMP-7 acted synergistically with stem cell factor to increase granulocyte/monocyte colony formation but not erythroid colony formation. The other BMPs did not affect either erythroid or granulocyte/monocyte colony development under these conditions. These results suggest that individual BMPs form part of the complement of cytokines regulating the development of haematopoietic progenitors, and in particular, point to a role for BMP-4 in the control of definitive, as well as embryonic erythropoiesis.  相似文献   

18.
Conditioned medium from P388 D1 cell line containing interleukin 1 (IL-1) and granulocyte macrophage colony stimulating factor (GM-CSF) can stimulate prostaglandin E2 (PGE2) production by murine bone marrow cells. In this work, we show that although GM-CSF (either purified from P388 D1 CM or murine recombinant GM-CSF) does not significantly alter bone marrow cell PGE2 production, its presence in P388 D1 CM is however necessary to induce this effect since the presence of anti GM-CSF antiserum completely abrogated the increase in PGE2 production in response to P388 D1 CM. In addition IL-1 tested alone does not not modify PGE2 release by bone marrow cells. However, the simultaneous addition of IL-1 and GM-CSF markedly increases PGE2 production. Thus, the ability of P388 D1 CM to stimulate PGE2 synthesis by bone marrow cells appears to result from a synergistic action between GM-CSF and IL-1.  相似文献   

19.
Cytokines govern uterine immunology and embryo receptivity and are increasingly recognized for their embryotrophic roles. While supplementing culture media with cytokines may improve embryo development/viability in vitro, little is known about their physiological profiles in vivo, and hence which are likely to be uterine immunoregulators and embryotrophins. Therefore, this study profiled 23 cytokines in uterine fluid and serum from individual naturally cycling estrous mice. Samples were analyzed by fluid-phase multiplex immunoassays for interleukin (IL)-1, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-17, eotaxin, granulocyte-colony stimulating factor (G-CSF), granulocyte macrophage-colony stimulating factor (GM-CSF), interferon (IFN)-γ, keratinocyte-derived chemokine (KC), monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)-1 MIP)-1β regulated upon activation, normal T-cell expressed and secreted (RANTES) and tumor necrosis factor (TNF)-. There was a marked divergence in cytokine concentrations between uterine fluid and serum. The former was dominated by G-CSF, eotaxin, KC and IL-1, and had significantly higher levels of IL-1β, IL-2, IL-3, IL-4, IL-6, IL-9, GM-CSF, MIP-1, MIP-1β and RANTES. Serum had significantly higher IL-12 (p40), IL-12 (p70), IL-17 and IFN-γ concentrations. No significant differences in IL-5, IL-10, IL-13, MCP-1 or TNF- profiles were noted. These data indicated a strict compartmentalization of uterine cytokines, with G-CSF as a major cytokine at estrous. Results are discussed with respect to immune cell function, post-coital paternal antigen processing, estrous cyclicity, and endometrial angiogenesis, cell turnover and differentiation.  相似文献   

20.
Recent evidence has implicated cytokines and growth factors in the initiation of parturition in women. In the present study, the amnion-derived cell line WISH was used to determine whether proinflammatory cytokines (interleukins 1 beta, 6, and 8, tumor necrosis factor-alpha, and granulocyte/macrophage colony stimulating factor) could amplify epidermal growth factor-induced prostaglandin E2 production. WISH cells were preincubated with cytokines (0.0001-10 ng/ml) for 60 min and then challenged with EGF (10 ng/ml) for 4 hrs after which PGE2 production was measured by radioimmunoassay. EGF, IL-1 beta and TNF-alpha alone caused a dose-dependent increase in PGE2 production, while IL-6, IL-8 and GM-CSF were ineffective over the dose range tested. When cells were preincubated with IL-1 beta or TNF-alpha, there was a dose-dependent potentiation of EGF-induced PGE2 production that was greater than the sum of EGF alone and IL-1 beta or TNF-alpha alone. In each case, the minimum dose of IL-1 beta or TNF-alpha which amplified EGF-induced PGE2 production was 0.1 ng/ml (p less than 0.05, Student's t-test). These data show that low concentrations of IL-1 beta or TNF-alpha may serve to amplify EGF-mediated PGE2 biosynthesis in amnion-derived cells and suggest that cytokines may modulate EGF function in responsive cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号