首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Individuals can compete either through direct interference or uptake of limiting resources. If competing individuals are able to recognize their relatives, relatedness of competitors may evoke kin selection, which favours relatively even resource share among relatives. Resource competition is often size-symmetric, i.e. proportional to an individual's biomass, while interference competition is asymmetric giving large individuals a disproportionate advantage over small individuals. Kin-selection is predicted to reduce the intensity of direct interference and competitive asymmetry, leading to increased mean and decreased variation in individual size. We tested these predictions by investigating the effects of relatedness on age and size at metamorphosis in the common frog Rana temporaria tadpoles in a laboratory experiment. We reared related (full- and half-sibs) and unrelated tadpoles of different sizes (small, large, small and large together) at two densities until metamorphosis. Relatedness had little effect on mean growth, but it reduced size variation, as measured with coefficient of variation. Furthermore, there was a significant interaction between relatedness and density in size at metamorphosis, so that relatives always grew better in lower density, but growth was less affected by density among unrelated individuals. This indicates that the effects of relatedness on tadpole performance may be context dependent. Initial size differences in the mixed size treatment evened out during the course of the experiment, and initially small tadpoles were able to compensate the early growth losses, although it took longer for them to reach metamorphosis. We conclude that although relatedness may have rather small effects on the growth and development of R. temporaria tadpoles, it increases the symmetry of resource share decreasing between-individual variation in size at metamorphosis.  相似文献   

2.
Sami Aikio 《Oikos》2004,104(1):51-58
Individuals allocate resources to the expansion of their foraging area and those resources are no longer available for the traits that determine how well those individuals are able to protect their foraging area against competitors. The resulting trade‐off between foraging area size and the traits associated with the ability to compete for the resources within the foraging area applies to ecological scenarios as different as territorial defence by individuals and colonies, and light competition in plants. Whether the trade‐off affects species performance in competition for resources at the area of overlap between foraging areas depends on the symmetry of resource division. In symmetric competition resources are divided equally between the competitors, while in asymmetric competition the individual with the smallest foraging area, and consequently the greatest competitive ability, gains all the resources. Competition may also be a combination of the symmetric and asymmetric processes. I studied the effects of competitive asymmetry on population dynamics and coexistence of two annual species with different sized foraging areas using an individual‐based spatially explicit simulation model. Symmetric competition favoured the species with the larger foraging area and did not allow coexistence. Competitive asymmetry favoured the species with smaller foraging area and allowed coexistence, which was due to the consequences of losing an asymmetric competition being more severe than losing a symmetric competition. The mechanism of coexistence is the larger foraging area's superiority in low population densities (little competition) and the smaller foraging area's ability to win a large foraging area when competition was intense. Competitive asymmetry and small size of both foraging areas led to population dynamics dominated by long‐term fluctuations of small intensity. Symmetric competition and large size of the foraging areas led to large short‐term fluctuations, which often resulted in the extinction of one or both of the species due to demographic stochasticity.  相似文献   

3.
In this study morphological variation and the potential for competition to affect biomass and seedling selection of the families of five populations of Rumex acetosella L. sampled along a successional old-field gradient have been investigated. Seeds from 25 families were submitted to four competitive regimes: no competition (one plant per pot), medium competition (two plants/ pot taking plants from the same population), high within-population competition (four individuals from the same population in a pot) and high between-population competition (four individuals from two different populations in a pot). Eight traits were analysed after 3 months of growth for variation among families within populations. A significant difference among families within the two older populations was recorded for sexual biomass and related components. High sensitivity of these traits to density was observed in all populations except the youngest, suggesting specialization to particular environmental conditions in late successional populations, and a good adaptive capacity to buffer environmental variation in the pioneer population. Little significant interaction between competitive regimes and families within populations was found, i.e. genotypes within each population showed little variation in their response to environmental variation. Genotypic variance decreased with increasing competitive conditions for the majority of the traits. However, the percentage of variance in sexual reproduction explained by family was stable among treatments. Tradeoffs between vegetative reproduction and sexual reproduction were recorded at the population level along the successional gradient, with increasing competitive conditions. As succession proceeds, we observed a decrease in sexual reproduction and an increase in vegetative reproduction. At the family level, correlation among traits were similar when plants were grown in the absence of competition and at high density, with a significant negative correlation between sexual reproduction and vegetative reproduction. For both sprout number and sexual biomass, the performance of families grown under all the treatments was positively correlated. Together these results indicate allocational constraints on the reproductive biology of R. acetosella that may be favoured by natural selection and have influenced population differentiation along the successional gradient. However, they also revealed that the potential exists for evolutionary specialization through plasticity, in response to variation in environmental conditions.  相似文献   

4.
Size-asymmetric competition among plants is usually defined as resource pre-emption by larger individuals, but it is usually observed and measured as a disproportionate size advantage in the growth of larger individuals in crowded populations (“size-asymmetric growth”). We investigated the relationship between size-asymmetric competition and size-asymmetric growth in a spatially explicit, individual-based plant competition model based on overlapping zones of influence (ZOI). The ZOI of each plant is modeled as a circle, growing in two dimensions. The size asymmetry of competition is reflected in the rules for dividing up the overlapping areas. We grew simulated populations with different degrees of size-asymmetric competition and at different densities and analyzed the size dependency of individual growth by fitting coupled growth functions to individuals. The relationship between size and growth within the populations was summarized with a parameter that measures the size asymmetry of growth. Complete competitive symmetry (equal division of contested resources) at the local level results in a very slight size asymmetry in growth. This slight size asymmetry of growth did not increase with increasing density. Increased density resulted in increased growth asymmetry when resource competition at the local level was size asymmetric to any degree. Size-asymmetric growth can be strong evidence that competitive mechanisms are at least partially size asymmetric, but the degree of size-asymmetric growth is influenced by the intensity as well as the mode of competition. Intuitive concepts of size-asymmetric competition among individuals in spatial and nonspatial contexts are very different.  相似文献   

5.
UMEKI  KIYOSHI 《Annals of botany》1997,79(6):631-641
The effect of crown asymmetry on the size–structure dynamicsof populations was evaluated using a spatial competition modelincorporating crown asymmetry. Computer simulations were carriedout with various combinations of density levels, spatial patterns,and degrees of asymmetry in competition to assess how they modifythe effect of crown asymmetry on size–structure dynamics. In the model, crown asymmetry is expressed by the crown-vector,or the vector linking the stem base and the centre of the projectedarea of the crown on the horizontal plane. Crown-vectors areassumed to develop in the manner by which crowns repel eachother. As crown-vectors develop, the positions of the crown-centresmove. Competition between individuals is expressed by a neighbourhoodmodel, in which individual growth is determined by the distancefrom, and size of, the neighbours' crown-centres. Generally, populations of individuals which developed asymmetriccrowns had larger survivorship, larger mean size, smaller coefficientsof variation and skewness, and a more regular spatial patternthan populations of individuals which developed symmetric crowns.The effect of crown symmetry is generally stronger in populationswith high density and a clumped spatial pattern. The effectof mortality caused by one-sided competition on size-structuredynamics was similar to that of crown asymmetry; mortality increasedmean size, reduced size hierarchy, and made the spatial patternmore regular. Because mortality was heavier in populations withoutcrown asymmetry, its effect on size-structure dynamics cancelledout, or overwhelmed, the effect of crown asymmetry in latergrowth stages. If crown asymmetry is associated with a reductionin growth, the effect of crown asymmetry is reduced. Nevertheless,the resultant population structure is different from that ofpopulations without crown asymmetry. Competition; crown asymmetry; morphological plasticity; neighbourhood interference model; size-structure dynamics  相似文献   

6.
Genetic differentiation in the competitive and reproductive ability of invading populations can result from genetic Allee effects or r/K selection at the local or range-wide scale. However, the neutral relatedness of populations may either mask or falsely suggest adaptation and genetic Allee effects. In a common-garden experiment, we investigated the competitive and reproductive ability of invasive Senecio inaequidens populations that vary in neutral genetic diversity, population age and field vegetation cover. To account for population relatedness, we analysed the experimental results with 'animal models' adopted from quantitative genetics. Consistent with adaptive r/K differentiation at local scales, we found that genotypes from low-competition environments invest more in reproduction and are more sensitive to competition. By contrast, apparent effects of large-scale r/K differentiation and apparent genetic Allee effects can largely be explained by neutral population relatedness. Invading populations should not be treated as homogeneous groups, as they may adapt quickly to small-scale environmental variation in the invaded range. Furthermore, neutral population differentiation may strongly influence invasion dynamics and should be accounted for in analyses of common-garden experiments.  相似文献   

7.
Seed dormancy increases population size via bet-hedging and by limiting negative interactions (e.g., competition) among individuals. On the other hand, individuals also interact positively (e.g., facilitation), and in some systems, facilitation among juveniles precedes competition among adults in the same generation. Nevertheless, studies of the benefits of seed dormancy typically ignore facilitation. Using a population growth model, we ask how the facilitation–competition balance interacts with seed dormancy rate to affect population dynamics in constant and variable environments. Facilitation increases the growth rate and equilibrium size (in both constant and variable environments) and reduces the extinction rate of populations (in a variable environment), and a higher rate of seed dormancy allows populations with facilitation to reach larger sizes. However, the combined benefits of facilitation and a high dormancy rate only occur in large populations. In small populations, weak facilitation does not affect the growth rate, but does induce a weak demographic Allee effect (where population growth decreases with decreasing population size). Our results suggest that facilitation within populations can interact with bet-hedging traits (such as dormancy) or other traits that mediate density to affect population dynamics. Further, by ensuring survival but limiting reproduction, ontogenetic switches from facilitation to competition may enable populations to persist but limit their maximum size in variable environments. Such intrinsic regulation of populations could then contribute to the maintenance of similar species within communities.  相似文献   

8.
Patterns of size inequality in crowded plant populations are often taken to be indicative of the degree of size asymmetry of competition, but recent research suggests that some of the patterns attributed to size-asymmetric competition could be due to spatial structure. To investigate the theoretical relationships between plant density, spatial pattern, and competitive size asymmetry in determining size variation in crowded plant populations, we developed a spatially explicit, individual-based plant competition model based on overlapping zones of influence. The zone of influence of each plant is modeled as a circle, growing in two dimensions, and is allometrically related to plant biomass. The area of the circle represents resources potentially available to the plant, and plants compete for resources in areas in which they overlap. The size asymmetry of competition is reflected in the rules for dividing up the overlapping areas. Theoretical plant populations were grown in random and in perfectly uniform spatial patterns at four densities under size-asymmetric and size-symmetric competition. Both spatial pattern and size asymmetry contributed to size variation, but their relative importance varied greatly over density and over time. Early in stand development, spatial pattern was more important than the symmetry of competition in determining the degree of size variation within the population, but after plants grew and competition intensified, the size asymmetry of competition became a much more important source of size variation. Size variability was slightly higher at higher densities when competition was symmetric and plants were distributed nonuniformly in space. In a uniform spatial pattern, size variation increased with density only when competition was size asymmetric. Our results suggest that when competition is size asymmetric and intense, it will be more important in generating size variation than is local variation in density. Our results and the available data are consistent with the hypothesis that high levels of size inequality commonly observed within crowded plant populations are largely due to size-asymmetric competition, not to variation in local density.  相似文献   

9.
Individual size, rate of growth, and mode and frequency of asexual reproduction are life-history traits of primary importance for sea anemones. These traits determine sexual reproductive output, affect an individual's probability of survival, and are crucial in adapting an individual to its environmental surroundings. The sea anemone Metridium senile (L.) is highly variable in ecological distribution and life history, including rate of growth, individual size, and rate of asexual reproduction. Gonad size (measured as cross-sectional area of gonadal tissue) increases with body weight, so individuals should grow as large and as rapidly as possible to maximize individual sexual reproductive output. Cessation of growth and small body size in intertidal populations suggest that growth is constrained by genetic or environmental conditions. The growth of intertidal individuals transplanted to harbor-float panels demonstrated that growth limits are imposed by environmental factors, most probably limited food and feeding time and damage from wave exposure (which stimulates fragmentation). Individuals in harbor-float populations, which are continuously immersed, grow much larger, and large individuals comprise a greater proportion of the population than in the intertidal zone. The highest rate of fragmentation observed was on harbor-float panels. Patterns of growth and asexual reproduction provide adaptive advantages for M. senile. For harborfloat individuals, large individual size increases gamete production and may increase feeding efficiency. For intertidal individuals, asexual reproduction allows growth despite individual size constraints and rapid population growth, with specific advantages resulting from clone formation.  相似文献   

10.
The ontogenetic scaling of foraging capacity strongly influences the competitive ability of differently sized individuals within a species. We develop a physiologically structured model to investigate the effect of different ontogenetic size scalings of the attack rate on the population dynamics of a consumer-resource system. The resource is assumed to reproduce continuously whereas the consumer only reproduces at discrete time instants. Depending on the ontogenetic size scaling, the model exhibited recruit-driven cycles, stable fixed point dynamics, non-recruit juvenile-driven cycles, quasiperiodic orbits, or chaotic dynamics. The kind of dynamics observed was related to the maintenance resource levels required of differently sized individuals. Stable fixed point dynamics was, besides at the persistence boundary, only observed when the minimum resource levels were similar for newborns and mature individuals. The tendency for large population fluctuations over a wide range of the parameter space was due to the consumer's pulsed reproduction. Background mortality and length of season were major determinants of cycle length. Model dynamics strongly resembled empirically observed dynamics from fish and Daphnia populations with respect to both patterns and mechanisms. The non-recruit juvenile-driven dynamics is suggested to occur in populations with size-dependent interference or preemptive competition like cicada populations.  相似文献   

11.
Aims We present an improved model for the growth of individuals in plant populations experiencing competition.Methods Individuals grow sigmoidally according to the Birch model, which is similar to the more commonly used Richards model, but has the advantage that initial plant growth is always exponential. The individual plant growth models are coupled so that there is a maximum total biomass for the population. The effects of size-asymmetric competition are modeled with a parameter that reflects the size advantage that larger individual have over smaller individuals. We fit the model to data on individual growth in crowded populations of Chenopodium album .Important findings When individual plant growth curves were not coupled, there was a negative or no correlation between initial growth rate and final size, suggesting that competitive interactions were more important in determining final plant size than were plants' initial growth rates. The coupled growth equations fit the data better than individual, uncoupled growth models, even though the number of estimated parameters in the coupled competitive growth model was far fewer, indicating the importance of modeling competition and the degree of size-asymmetric growth explicitly. A quantitative understanding of stand development in terms of the growth of individuals, as altered by competition, is within reach.  相似文献   

12.
Seed and stolon production and spatial distribution were studied in two populations of Viola blanda and two populations of Viola rostrata in West Virginia. Mean individual plant biomass and the proportion of the population producing seeds and/or stolons both decreased with density. Both species possessed a characteristic “threshold” weight required before the onset of seed production; a similar minimum threshold weight was also reached before stolons were produced. It is suggested that competition at higher densities results in fewer individuals reaching the threshold weight for seed or stolon production. Thus, the density response appears as a reduction in the proportion of plants producing seeds or stolons.  相似文献   

13.
《Acta Oecologica》2001,22(1):9-20
The relationship between flooding and changes in the size distribution of fish populations in the Palancar stream confirms observations in other rivers. On average, density decreased by 36.2 % and biomass increased by 14.5 %, passing from a period of severe drought to one of heavier than normal rains. Precipitation is the most important of the many factors affecting the populations of the Palancar stream; the most evident changes all occurred after the drought. During the drought period, the marked seasonal fluctuation in flow was the most important factor regulating the population dynamics. Fish density and biomass varied in proportion to the water volume. During the rainy period, the studied section of the river was found to be an important reproduction and nursery area, with juveniles and individuals of reproduction age dominating. The presence of Micropterus salmoides, an introduced piscivorous species, is another factor affecting the population dynamics in the Palancar stream. The observed absence of age 0+ individuals of the dominant populations is considered a direct effect of predation.  相似文献   

14.
It is well documented that pathogens can affect the survival, reproduction, and growth of individual plants. Drawing together insights from diverse studies in ecology and agriculture, we evaluate the evidence for pathogens affecting competitive interactions between plants of both the same and different species. Our objective is to explore the potential ecological and evolutionary consequences of such interactions. First, we address how disease interacts with intraspecific competition and present a simple graphical model suggesting that diverse outcomes should be expected. We conclude that the presence of pathogens may have either large or minimal effects on population dynamics depending on many factors including the density-dependent compensatory ability of healthy plants and spatial patterns of infection. Second, we consider how disease can alter competitive abilities of genotypes, and thus may affect the genetic composition of populations. These genetic processes feed back on population dynamics given trade-offs between disease resistance and other fitness components. Third, we examine how the effect of disease on interspecific plant interactions may have potentially far-reaching effects on community composition. A host-specific pathogen, for example, may alter a competitive hierarchy that exists between host and non-host species. Generalist pathogens can also induce indirect competitive interactions between host species. We conclude by highlighting lacunae in our current understanding and suggest that future studies should (1) examine a broader taxonomic range of pathogens since work to date has largely focused on fungal pathogens; (2) increase the use of field competition studies; (3) follow interactions for multiple generations; (4) characterize density-dependent processes; and (5) quantify pathogen, as well as plant, population and community dynamics.  相似文献   

15.

Background and Aims

Competition drives self-thinning (density-dependent mortality) in crowded plant populations. Facilitative interactions have been shown to affect many processes in plant populations and communities, but their effects on self-thinning trajectories have not been investigated.

Methods

Using an individual-based ‘zone-of-influence’ model, we studied the potential effects of the size symmetry of competition, abiotic stress and facilitation on self-thinning trajectories in plant monocultures. In the model, abiotic stress reduced the growth of all individuals and facilitation ameliorated the effects of stress on interacting individuals.

Key Results

Abiotic stress made the log biomass – log density relationship during self-thinning steeper, but this effect was reduced by positive interactions among individuals. Size-asymmetric competition also influenced the self-thinning slope.

Conclusions

Although competition drives self-thinning, its course can be affected by abiotic stress, facilitation and competitive symmetry.  相似文献   

16.
(1) The effects of facilitation on the structure and dynamics of plant populations have not been studied so widely as competition. The UV-B radiation, as a typical environmental factor causing stress, may result in direct stress and facilitation. (2) The effects of UV-B radiation on intraspecific competition and facilitation were investigated based on the following three predictions on self-thinning, size inequality, and phenotypic plasticity: i) Self-thinning is the reduction in density that results from the increase in the mean biomass of individuals in crowded populations, and is driven by competition. In this study, the mortality rate of the population is predicted to decrease from UV-B irradiance. ii) The size inequality of a population increases with competition intensity because larger individuals receive a disproportionate share of resources, thereby leaving limited resources for smaller individuals. The second hypothesis assumes that direct stress decreases the size inequality of the population. iii) Phenotypic plasticity is the ability to alter one’s morphology in response to environmental changes. The third hypothesis assumes that certain morphological indices can change among the trade-offs between competition, facilitation, and stress. These predictions were tested by conducting a field pot experiment using mung beans, and were supported by the following results: (3) UV-B radiation increased the survival rate of the population at the end of self-thinning. However, this result was mainly due to direct stress rather than facilitation. (4) Just as competitor, facilitation was also asymmetric. It increased the size inequality of populations during self-thinning, whereas stress decreased the size inequality. (5) Direct stress and facilitation influence plants differently on various scales. Stress inhibited plant growth, whereas facilitation showed the opposite on an individual scale. Stress increased survival rate, whereas facilitation increased individual variability on the population scale. (6) Trade-offs between competitions, facilitation, and direct stress varied in different growing stages.  相似文献   

17.
The evolution of traits that determine ability in competitive contests   总被引:1,自引:1,他引:0  
Summary We analyse mathematical models of the evolution of a trait that determines ability in contest competition. We assume that the value of the competitive trait affects two different components of fitness, one measuring the benefit of winning contests and the other measuring the cost of developing the competitive trait. Unlike previous analyses, we include the population dynamical consequences of larger competitive trait values. Exaggeration of the competitive trait reduces the mean probability of survival during the non-competitive stage of the life cycle. The resulting lower population density reduces competition and, therefore, reduces the advantages of greater competitive ability. Models without population dynamics often predict dimorphism in the competitive trait when resource possession is decided by interactions with many other individuals. If the competition involves a contest with a single other individual, models without population dynamics often predict cycles of increase and collapse in the trait or a continual increase, possibly resulting in extinction. When population dynamics are included, both of these results become less likely and a single stable trait value becomes more likely. Population dynamics also make it possible to have dimorphism when individuals have a single pairwise contest and alternative stable trait values when an individual has many contests. Increases in the value of the resource being contested may increase or decrease the evolutionarily stable size of the trait. Competition between very differently sized species will often decrease size in the larger species (character convergence).  相似文献   

18.
The growth of each individual in plant populations was simulatedby a spatial competition model for five density levels and fourdifferent spatial distribution patterns of individuals, varyingfrom highly clumped to regular. The simulation results wereanalysed using the diffusion model for evaluating the effectsof density and distribution pattern on the size-structure dynamicsin relation to the degree of competitive asymmetry. At low densities,changes in statistics of plant weight over time such as mean,coefficient of variation, skewness, and Box-Cox-transformedkurtosis differed greatly among spatial patterns, irrespectiveof the degree of competitive asymmetry. In completely symmetriccompetition, the spatial effect on size-structure dynamics remainedrelatively large irrespective of densities, although mean plantweight became similar among the spatial patterns with increasingdensity. However, the spatial effect diminished with increaseddensity in strongly asymmetric competition, when similar sizedistributions were realized irrespective of the spatial patterns.Therefore, it was concluded that: (1) irrespective of the degreeof competitive asymmetry, spatial pattern is important for size-structuredynamics at low densities; (2) spatial pattern is nearly immaterialunder strongly asymmetric competition at high densities; and(3) under crowded conditions, neighbourhood effects are muchmore apparent at the population level in less asymmetric competition.These processes and outcomes are linked to the forms of thefunctions of mean growth rate of individuals [G(t,x) function]and variance in growth rate [D(t,x) function]. These functionsare variable depending on the spatial pattern under symmetriccompetition, but are rather stable under strongly asymmetriccompetition at high densities irrespective of the spatial patterns.Therefore, size structure under strongly asymmetric competitioncan be regarded as a stable system, whereas that under symmetriccompetition is regarded as a variable system in relation tothe spatial pattern and process. From this, it was inferredthat: (1) the goodness-of-fit of spatial competition modelsfor crowded plant populations is higher in less asymmetric competition;and (2) higher species diversity in plant communities is associatedwith the lower degree of competitive asymmetry.Copyright 1994,1999 Academic Press Asymmetric competition, diffusion model, neighbourhood effect, size-structure stability, spatial competition model, spatial distribution pattern, species diversity, symmetric competition  相似文献   

19.
Both habitat heterogeneity and species’ life-history traits play important roles in driving population dynamics, yet there is little scientific consensus around the combined effect of these two factors on populations in complex landscapes. Using a spatially explicit agent-based model, we explored how interactions between habitat spatial structure (defined here as the scale of spatial autocorrelation in habitat quality) and species life-history strategies (defined here by species environmental tolerance and movement capacity) affect population dynamics in spatially heterogeneous landscapes. We compared the responses of four hypothetical species with different life-history traits to four landscape scenarios differing in the scale of spatial autocorrelation in habitat quality. The results showed that the population size of all hypothetical species exhibited a substantial increase as the scale of spatial autocorrelation in habitat quality increased, yet the pattern of population increase was shaped by species’ movement capacity. The increasing scale of spatial autocorrelation in habitat quality promoted the resource share of individuals, but had little effect on the mean mortality rate of individuals. Species’ movement capacity also determined the proportion of individuals in high-quality cells as well as the proportion of individuals experiencing competition in response to increased spatial autocorrelation in habitat quality. Positive correlations between the resource share of individuals and the proportion of individuals experiencing competition indicate that large-scale spatial autocorrelation in habitat quality may mask the density-dependent effect on populations through increasing the resource share of individuals, especially for species with low mobility. These findings suggest that low-mobility species may be more sensitive to habitat spatial heterogeneity in spatially structured landscapes. In addition, localized movement in combination with spatial autocorrelation may increase the population size, despite increased density effects.  相似文献   

20.
1. We studied male yearly reproductive success (YRS) and its determinants (phenotypic characteristics, age, population density) in two Scandinavian brown bear populations, using molecular techniques to determine paternity. 2. We found a significant difference in male YRS between the study areas, with lower YRS in the south than in the north. 3. In general, older and larger males had higher YRS. Older males may be more experienced in competition for reproduction (male dominance). Large body size is of direct benefit in male-male competition and of advantage in endurance competition for the access to females. 4. Age was relatively more important for YRS in the north and body size was more important in the south, due perhaps to differences in male age structure due to illegal killing. A single old male dominated the reproduction in the north during the study, which resulted most probably in the relatively higher importance of age in the north. In the south, with a more even male age structure, no single male was able to dominate, probably resulting in a more intense competition among males, with body size as the deciding factor. 5. Male YRS was correlated positively with population density. This may be related to the structure of the expanding bear population, with female densities declining towards the population edge. 6. Internal relatedness, a measure of genetic heterozygosity, was correlated negatively with YRS, suggesting that outbred individuals have a higher YRS. Individual heterozygosity at key or many loci may reflect male physical qualities and condition-sensitive traits, which may benefit males directly in contest or in sperm competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号