首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Among alpha 3-fucosyltransferases (alpha3-FucTs) from most species, four cysteine residues appear to be highly conserved. Two of these cysteines are located at the N-terminus and two at the C-terminus of the catalytic domain. FucT VII possesses two additional cysteines in close proximity to each other located in the middle of the catalytic domain. We identified the disulfide bridges in a recombinant, soluble form of human FucT VII. Potential free cysteines were modified with a biotinylated alkylating reagent, disulfide bonds were reduced and alkylated with iodoacetamide, and the protein was digested with either trypsin or chymotrypsin, before characterization by high-performance liquid chromatography/electrospray ionization mass spectrometry. More than 98% of the amino acid sequence for the truncated enzyme (beginning at amino acid 53) was verified. Mass spectrometry analysis also demonstrated that both potential N-linked sites are occupied. All six cysteines in the FucT VII sequence were shown to be disulfide-linked. The pairing of the cysteines was determined by proteolytic cleavage of nonreduced protein and subsequent analysis by mass spectrometry. The results demonstrated that Cys(68)-Cys(76), Cys(211)-Cys(214), and Cys(318)-Cys(321) are disulfide-linked. We have used this information, together with a method of fold recognition and homology modeling, using the (alpha/beta)(8)-barrel fold of Escherichia coli dihydrodipicolinate synthase as a template to propose a model for FucT VII.  相似文献   

2.
The disulfide bond structure of the extracellular domain of rat atrial natriuretic peptide (ANP) receptor (NPR-ECD) has been determined by mass spectrometry (MS) and Edman sequencing. Recombinant NPR-ECD expressed in COS-1 cells and purified from the culture medium binds ANP with as high affinity as the natural ANP receptor. Reaction with iodoacetic acid yielded no S-carboxymethylcysteine, indicating that all six Cys residues in NPR-ECD are involved in disulfide bonds. Electrospray ionization MS of NPR-ECD deglycosylated by peptide-N-glycosidase F gave a molecular mass of 48377.5+/-1.6 Da, which was consistent with the presence of three disulfide bonds. Liquid chromatography MS analysis of a lysylendopeptidase digest yielded three cystine-containing fragments with disulfide bonds Cys(60)-Cys(86), Cys(164)-Cys(213) and Cys(423)-Cys(432) based on their observed masses. These bonds were confirmed by Edman sequencing of each of the three fragments. No evidence for an inter-molecular disulfide bond was found. The six Cys residues in NPR-ECD, forming a 1-2, 3-4, 5-6 disulfide pairing pattern, are strictly conserved among A-type natriuretic peptide receptors and are similar in B-type receptors. We found that in other families of guanylate cyclase-coupled receptors, the Cys residues involved in 1-2 and 5-6 disulfide pairs are conserved in nearly all, suggesting an important contribution of these disulfide bonds to the receptor's structure and function.  相似文献   

3.
The alpha1,3/4 fucosyltransferase (FucT) enzyme from Helicobacter pylori catalyzes fucose transfer from donor GDP-beta-l-fucose to the GlcNAc group of two series of acceptor substrates in H. pylori lipopolysaccharide: betaGal1,3betaGlcNAc (Type I) or betaGal1,4betaGlcNAc (Type II). Fucose is added either in alpha1,3 linkage of Type II acceptor to produce Lewis X or in alpha1,4 linkage of Type I acceptor to produce Lewis A, respectively. H. pylori FucTs from different strains have distinct Type I or Type II substrate specificities. FucT in H. pylori strain NCTC11639 has an exclusive alpha1,3 activity because it recognizes only Type II substrates, whereas FucT in H. pylori strain UA948 can utilize both Type II and Type I acceptors; thus it has both alpha1,3 and alpha1,4 activity, respectively. To identify elements conferring substrate specificity, 12 chimeric FucTs were constructed by domain swapping between 11639FucT and UA948FucT and characterized for their ability to transfer fucose to Type I and Type II acceptors. Our results indicate that the C-terminal region of H. pylori FucTs controls Type I and Type II acceptor specificity. In particular, the highly divergent C-terminal portion, seven amino acids DNPFIFC at positions 347-353 in 11639FucT, and the corresponding 10 amino acids CNDAHYSALH at positions 345-354 in UA948FucT, controls the Type I and Type II acceptor recognition. This is the opposite of mammalian FucTs where acceptor preference is determined primarily by the N-terminal residues in the hypervariable stem domain.  相似文献   

4.
Dengue virus (DENV) nonstructural protein 1 (NS1) is a highly conserved 46-kDa protein that contains 2 glycosylation sites (Asn-130 and Asn-207) and 12 conserved cysteine (Cys) residues. Here, we performed site-directed mutagenesis to generate systematic mutants of viral strain TSV01. The results of the subsequent analysis showed that an alanine substitution at the second N-linked glycan Asn-207 in NS1 delayed viral RNA synthesis, reduced virus plaque size, and weakened the cytopathic effect. Three mutants at Cys sites (Cys-4, Cys-55, Cys-291) and a C-terminal deletion (ΔC) mutant significantly impaired RNA synthesis, and consequently abolished viral growth, whereas alanine mutations at Asn-130 and Glu-173 resulted in phenotypes that were similar to the wild-type (WT) virus. Further analysis showed that the Asn-207 mutation slightly delayed viral replication. These results suggest that the three conserved disulfide bonds and the second N-linked glycan in NS1 are required for DENV-2 replication.  相似文献   

5.
Neuroligins (NLs) are a family of transmembrane proteins that function in synapse formation and/or remodeling by interacting with beta-neurexins (beta-NXs) to form heterophilic cell adhesions. The large N-terminal extracellular domain of NLs, required for beta-NX interactions, has sequence homology to the alpha/beta hydrolase fold superfamily of proteins. By peptide mapping and mass spectrometric analysis of a soluble recombinant form of NL1, several structural features of the extracellular domain have been established. Of the nine cysteine residues in NL1, eight are shown to form intramolecular disulfide bonds. Disulfide pairings of Cys 117 to Cys 153 and Cys 342 to Cys 353 are consistent with disulfide linkages that are conserved among the family of alpha/beta hydrolase proteins. The disulfide bond between Cys 172 and Cys 181 occurs within a region of the protein encoded by an alternatively spliced exon. The disulfide pairing of Cys 512 and Cys 546 in NL1 yields a structural motif unique to the NLs, since these residues are highly conserved. The potential N-glycosylation sequons in NL1 at Asn 109, Asn 303, Asn 343, and Asn 547 are shown occupied by carbohydrate. An additional consensus sequence for N-glycosylation at Asn 662 is likely occupied. Analysis of N-linked oligosaccharide content by mass matching paradigms reveals significant microheterogeneous populations of complex glycosyl moieties. In addition, O-linked glycosylation is observed in the predicted stalk region of NL1, prior to the transmembrane spanning domain. From predictions based on sequence homology of NL1 to acetylcholinesterase and the molecular features of NL1 established from mass spectrometric analysis, a novel topology model for NL three-dimensional structure has been constructed.  相似文献   

6.
Yang YS  Mitta G  Chavanieu A  Calas B  Sanchez JF  Roch P  Aumelas A 《Biochemistry》2000,39(47):14436-14447
MGD-1 is a 39-residue defensin-like peptide isolated from the edible Mediterranean mussel, Mytilus galloprovincialis. This peptide is characterized by the presence of four disulfide bonds. We report here its solid-phase synthesis and an easy way to improve the yield of the four native disulfide bonds. Synthetic and native MGD-1 display similar antibacterial activity, suggesting that the hydroxylation of Trp28 observed in native MGD-1 is not involved in the antimicrobial effect. The three-dimensional solution structure of MGD-1 has been established using (1)H NMR and mainly consists of a helical part (Asn7-Ser16) and two antiparallel beta-strands (Arg20-Cys25 and Cys33-Arg37), together giving rise to the common cystine-stabilized alpha-beta motif frequently observed in scorpion toxins. In MGD-1, the cystine-stabilized alpha-beta motif is stabilized by four disulfide bonds (Cys4-Cys25, Cys10-Cys33, Cys14-Cys35, and Cys21-Cys38), instead of by the three disulfide bonds commonly found in arthropod defensins. Except for the Cys21-Cys38 disulfide bond which is solvent-exposed, the three others belong to the particularly hydrophobic core of the highly constrained structure. Moreover, the C4-P5 amide bond in the cis conformation characterizes the MGD-1 structure. MGD-1 and insect defensin A possess similar bactericidal anti-Gram-positive activity, suggesting that the fourth disulfide bond of MGD-1 is not essential for the biological activity. In agreement with the general features of antibacterial peptides, the MGD-1 and defensin A structures display a typical distribution of positively charged and hydrophobic side chains. The positively charged residues of MGD-1 are located in three clusters. For these two defensin peptides isolated from insects and mollusks, it appears that the rather well conserved location of certain positively charged residues and of the large hydrophobic cluster are enough to generate the bactericidal potency and the Gram-positive specificity.  相似文献   

7.
The identification of Helicobacter pylori isolates that expresses exclusively type I Lewis antigens is necessary to determine the biosynthetic pathway of these antigens. Fast-atom bombardment MS provides evidence that the H. pylori isolate UA1111 expresses predominantly Leb, with H type I and Lea in lesser amounts. Cloning and expression of the H. pylori fucosyltransferases (FucTs) allow comparisons with previously identified H. pylori enzymes and determination of the enzyme specificities. Although all FucTs, one alpha(1,2) FucT and two alpha(1,3/4) FucTs, appear to be functional in this isolate, their activities are lower and enzyme specificities are different to other H. pylori FucTs previously characterized. Studies of the cloned enzyme activities and mutational analysis indicate that Lea acts as the substrate for the synthesis of Leb. This is different from the human Leb biosynthetic pathway, but analogous to the biosynthetic pathway utilized by H. pylori for the production of Ley.  相似文献   

8.
The zona pellucida is an extracellular matrix that mediates taxon-specific fertilization in which human sperm will not bind to mouse eggs. The mouse zona pellucida is composed of three glycoproteins (ZP1, ZP2, ZP3). The primary structure of each has been deduced from the cDNA nucleic acid sequence, and each has been analyzed by mass spectrometry. However, determination of the secondary structure and processing of the human zona proteins have been hampered by the paucity of biological material. To investigate if taxon-specific sperm-egg recognition was ascribable to structural differences in a zona protein required for matrix formation, recombinant human ZP3 was expressed in CHO-Lec3.2.8.1 cells and compared to mouse ZP3. With nearly complete coverage, LC-QTOF mass spectrometry was used to determine the cleavage of an N-terminal signal peptide (amino acids 1-22) and the release of secreted ZP3 from a C-terminal transmembrane domain (amino acids 379-424). The resultant N-terminal glutamine was cyclized to pyroglutamate (pyrGln(23)), and several C-terminal peptides were detected, including one ending at Asn(350). The disulfide bond linkages of eight cysteine residues in the conserved zona domain were ascertained (Cys(46)/Cys(140), Cys(78)/Cys(99), Cys(217)/Cys(282), Cys(239)/Cys(300)), but the precise linkage of two additional disulfide bonds was indeterminate due to clustering of the remaining four cysteine residues (Cys(319), Cys(321), Cys(322), Cys(327)). Three of the four potential N-linked oligosaccharide binding sites (Asn(125), Asn(147), Asn(272)) were occupied, and clusters of O-glycans were observed within two regions, amino acids 156-173 and 260-281. Taken together, these data indicate that human and mouse ZP3 proteins are quite similar, and alternative explanations of taxon-specific sperm binding warrant exploration.  相似文献   

9.
Yen TY  Pal S  de la Maza LM 《Biochemistry》2005,44(16):6250-6256
Members of the genus Chlamydia lack a peptidoglycan layer. As a substitute for peptidoglycan, it has been proposed that several cysteine rich proteins, including the major outer membrane protein (MOMP), form disulfide bonds to provide rigidity to the cell wall. Alignment of the amino acids sequences of the MOMP from various serovars of Chlamydia showed that they have from 7 to 10 cysteine residues and seven of them are highly conserved. Which of these are free cysteine residues and which are involved in disulfide bonds is unknown. The complexity of the outer membrane of Chlamydia precludes at this point the characterization of the structure of the cysteines directly in the bacteria. Therefore, mass spectrometric analysis of a purified and refolded MOMP was used in this study. Characterization of the structure of this preparation of the MOMP is critical because it has been shown, in an animal model, to be a very effective vaccine against respiratory and genital infections. Here, we demonstrated that in this MOMP preparation four cysteines are involved in disulfide bonds, with intramolecular pairs formed between Cys(48) and Cys(55) and between Cys(201) and Cys(203). A stepwise alkylation, reduction, alkylation process using two different alkylating reagents was required to establish the Cys(48)-Cys(55) disulfide pair. The other residues in MOMP, Cys(51), Cys(136), Cys(226), and Cys(351), are free cysteines and could potentially form disulfide-linked complexes with other MOMP or other membrane proteins.  相似文献   

10.
Expression of extracellular dermal glycoprotein (EDGP) is induced by biotic or abiotic stress. The amino acid sequence alignment showed that EDGP shared significant homology with proteins from legumes, tomato, Arabidopsis, wheat, and cotton. These proteins are involved in signal transduction or stress response systems. Most of the Cys residues in these proteins are conserved, suggesting that they share similar tertiary structures. Surface plasmon resonance (SPR) analysis shows that EDGP binds a soybean 4-kDa hormone-like peptide (4-kDa peptide) in vitro and reduction of EDGP decreased significantly the binding activity, implying that posttranslational modifications are important for its function. Therefore, we investigated the posttranslational modifications in EDGP using mass spectrometry. As the result, six disulfide bonds in EDGP were identified: Cys(70)-Cys(158), Cys(84)-Cys(89), Cys(97)-Cys(113), Cys(100)-Cys(108), Cys(201)-Cys(426), and Cys(332)-Cys(378). In addition, the N-terminal glutamine was cyclized into pyroglutamic acid. All four putative glycosylation sites were occupied by N-linked glycans, which have similar masses of m/z 1171. Finally, measuring the mass of the native protein showed that the posttranslational modifications of EDGP (pI 9.5) involved only disulfide bonds, N-terminal modification, and glycosylation.  相似文献   

11.
The attachment protein or G protein of the A2 strain of human respiratory syncytial virus (RSV) was digested with trypsin and the resultant peptides separated by reverse-phase high-performance liquid chromatography (HPLC). One tryptic peptide produced a mass by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) corresponding to residues 152-187 with the four Cys residues of the ectodomain (residues 173, 176, 182, and 186) in disulfide linkage and absence of glycosylation. Sub-digestion of this tryptic peptide with pepsin and thermolysin produced peptides consistent with disulfide bonds between Cys173 and Cys186 and between Cys176 and Cys182. Analysis of ions produced by post-source decay of a peptic peptide during MALDI-TOF-MS revealed fragmentation of peptide bonds with minimal fission of an inter-chain disulfide bond. Ions produced by this unprecedented MALDI-induced post-source fragmentation corroborated the existence of the disulfide arrangement deduced from mass analysis of proteolysis products. These findings indicate that the ectodomain of the G protein has a non-glycosylated subdomain containing a "cystine noose."  相似文献   

12.
von Willebrand factor (VWF) is a multimeric glycoprotein that is required for normal hemostasis. After translocation into the endoplasmic reticulum, proVWF subunits dimerize through disulfide bonds between their C-terminal cystine knot-like (CK) domains. CK domains are characterized by six conserved cysteines. Disulfide bonds between cysteines 2 and 5 and between cysteines 3 and 6 define a ring that is penetrated by a disulfide bond between cysteines 1 and 4. Dimerization often is mediated by additional cysteines that differ among CK domain subfamilies. When expressed in a baculovirus system, recombinant VWF CK domains (residues 1957-2050) were secreted as dimers that were converted to monomers by selective reduction and alkylation of three unconserved cysteine residues: Cys(2008), Cys(2010), and Cys(2048). By partial reduction and alkylation, chemical and proteolytic digestion, mass spectrometry, and amino acid sequencing, the remaining intrachain disulfide bonds were characterized: Cys(1961)-Cys(2011) (), Cys(1987)-Cys(2041) (), Cys(1991)-Cys(2043) (), and Cys(1976)-Cys(2025). The mutation C2008A or C2010A prevented dimerization, whereas the mutation C2048A did not. Symmetry considerations and molecular modeling based on the structure of transforming growth factor-beta suggest that one or three of residues Cys(2008), Cys(2010), and Cys(2048) in each subunit mediate the covalent dimerization of proVWF.  相似文献   

13.
Ma B  Simala-Grant JL  Taylor DE 《Glycobiology》2006,16(12):158R-184R
Fucosylated carbohydrate structures are involved in a variety of biological and pathological processes in eukaryotic organisms including tissue development, angiogenesis, fertilization, cell adhesion, inflammation, and tumor metastasis. In contrast, fucosylation appears less common in prokaryotic organisms and has been suggested to be involved in molecular mimicry, adhesion, colonization, and modulating the host immune response. Fucosyltransferases (FucTs), present in both eukaryotic and prokaryotic organisms, are the enzymes responsible for the catalysis of fucose transfer from donor guanosine-diphosphate fucose to various acceptor molecules including oligosaccharides, glycoproteins, and glycolipids. To date, several subfamilies of mammalian FucTs have been well characterized; these enzymes are therefore delineated and used as models. Non-mammalian FucTs that possess different domain construction or display distinctive acceptor substrate specificity are highlighted. It is noteworthy that the glycoconjugates from plants and schistosomes contain some unusual fucose linkages, suggesting the presence of novel FucT subfamilies as yet to be characterized. Despite the very low sequence homology, striking functional similarity is exhibited between mammalian and Helicobacter pylori alpha1,3/4 FucTs, implying that these enzymes likely share a conserved mechanistic and structural basis for fucose transfer; such conserved functional features might also exist when comparing other FucT subfamilies from different origins. Fucosyltranferases are promising tools used in synthesis of fucosylated oligosaccharides and glycoconjugates, which show great potential in the treatment of infectious and inflammatory diseases and tumor metastasis.  相似文献   

14.
Storjohann L  Holst B  Schwartz TW 《Biochemistry》2008,47(35):9198-9207
A highly conserved feature across all families of 7TM receptors is a disulfide bridge between a Cys residue located at the extracellular end of transmembrane segment III (TM-III) and one in extracellular loop 2 (ECL-2). The zinc sensor GPR39 contains four Cys residues in the extracellular domains. By using mutagenesis, treatment with the reducing agent TCEP, and a labeling procedure for free sulfhydryl groups, we identify the pairing of these Cys residues in two disulfide bridges: the prototypical bridge between Cys (108) in TM-III and Cys (210) in ECL-2 and a second disulfide bridge connecting Cys (11) in the N-terminal domain with Cys (191) in ECL-2. Disruption of the conserved disulfide bond by mutagenesis greatly reduced the level of cell surface expression and eliminated agonist-induced increases in inositol phosphate production but surprisingly enhanced constitutive signaling. Disruption of the nonconserved disulfide bridge by mutagenesis led to an increase in the Zn (2+) potency. This phenotype, with an approximate 10-fold increase in agonist potency and a slight increase in E max, was mimicked by treatment of the wild-type receptor with TCEP at low concentrations, which had no effect on the receptor already lacking the second disulfide bridge and already displaying a high Zn (2+) potency. We conclude that the second disulfide bridge, which according to the beta2-adrenergic structure will form a covalent link across the entrance to the main ligand binding pocket, serves to dampen GPR39 activation. We suggest that formation of extra disulfide bridges may be an important general mechanism for regulating the activity of 7TM receptors.  相似文献   

15.
S K Nayak  D Rathore  J K Batra 《Biochemistry》1999,38(31):10052-10058
Restrictocin, produced by the fungus Aspergillus restrictus, belongs to the group of ribonucleolytic toxins called ribotoxins. It specifically cleaves a single phosphodiester bond in a conserved stem and loop structure in the 28S rRNA of large ribosomal subunit and potently inhibits eukaryotic protein synthesis. Restrictocin contains 149 amino acid residues and includes four cysteines at positions 5, 75, 131, and 147. These cysteine residues are involved in the formation of two disulfide bonds, one between Cys 5 and Cys 147 and another between Cys 75 and Cys 131. In the current study, all four cysteine residues were changed to alanine individually and in different combinations by site-directed mutagenesis so as to remove one or both the disulfides. The mutants were expressed and purified from Escherichia coli. Removal of any cysteine or any one of the disulfide bonds individually did not affect the ability of the toxin to specifically cleave the 28S rRNA or to inhibit protein synthesis in vitro. However, the toxin without both disulfide bonds completely lost both ribonucleolytic and protein synthesis inhibition activities. The active mutants, containing only one disulfide bond, exhibited relatively high susceptibility to trypsin digestion. Thus, none of the four cysteine residues is directly involved in restrictocin catalysis; however, the presence of any one of the two disulfide bonds is absolutely essential and sufficient to maintain the enzymatically active conformation of restrictocin. For maintenance of the unique stability displayed by the native toxin, both disulfide bonds are required.  相似文献   

16.
alpha1,6-Fucosyltransferase (alpha6FucT) of human platelets was subjected to the action of phenylglyoxal (PLG), pyridoxal-5'-phosphate/NaBH(4) (PLP), and diethyl pyrocarbonate (DEPC) the reagents that selectively modify the structure of amino acids arginine, lysine and histidine, respectively, as well as to N-ethylmaleimide (NEM), mersalyl, p-chloromercuribenzoate (pCMB), iodoacetate, iodoacetamide, and methyl iodide that react with sulfhydryl group of cysteine. In addition, we treated the enzyme with beta-mercaptoethanol, a reagent that disrupts disulfide bonds. All reagents except NEM significantly inactivated alpha6FucT. Protection against the action of PLG, PLP and sulfhydryl modifying reagents was offered by GDP-fucose, GDP, and the acceptor substrate, a transferrin-derived biantennary glycopeptide with terminal GlcNAc residues. Neither donor nor acceptor substrate offered, however, any protection against inactivation by DEPC or beta-mercaptoethanol. We conclude that arginine, cysteine and probably lysine residues are present in, or closely by, the donor and acceptor substrate binding domains of the enzyme, whereas histidine may be a part of its catalytic domain. However, the primary structure of alpha6FucT does not show cysteine residues in proximity to the postulated GDP-fucose-binding site and acceptor substrate binding site of the enzyme that contains two neighboring arginine residues and one lysine residue (Glycobiol. 10 (2000) 503). To rationalize our results we postulate that platelet alpha6FucT is folded through disulfide bonds that bring together donor/acceptor-binding- and cysteine- and lysine-rich, presumably acceptor substrate binding sites, thus creating a catalytic center of the enzyme.  相似文献   

17.
Helicobacter pylori produces a heat shock protein A (HspA) that is unique to this bacteria. While the first 91 residues (domain A) of the protein are similar to GroES, the last 26 (domain B) are unique to HspA. Domain B contains eight histidines and four cysteines and was suggested to bind nickel. We have produced HspA and two mutants: Cys94Ala and Cys94Ala/Cys111Ala and identified the disulfide bridge pattern of the protein. We found that the cysteines are engaged in three disulfide bonds: Cys51/Cys53, Cys94/Cys111 and Cys95/Cys112 that result in a unique closed loop structure for the domain B.  相似文献   

18.
19.
Echistatin is a 49-amino-acid protein fromEchis carinatus venom. It contains four disulfide bonds. Since the disulfide bonding is critical for biological activity, it is very important to assign the disulfide linkage in this protein. Echistatin was incubated in 250 mM oxalic acid at 100°C for 4 hr under nitrogen. Under these conditions, many overlapping disulfide-containing peptides were identified by ionspray mass spectrometry. Ionspray MS/MS data indicate that the four disulfide bonds are Cys 2–Cys 11, Cys 7–Cys 32, Cys 8–Cys 37, and Cys 20–Cys 39. To our knowledge, this is the first time all four disulfide bonds in echistatin have been assigned in one experiment without disulfide bond exchange. This approach, which combines oxalic acid hydrolysis and ionspray MS/MS, may be very useful for assigning disulfide bridges in other proteins from the disintegrin family.  相似文献   

20.
Hyaluronan (HA) synthase (HAS) is a membrane-bound enzyme that utilizes UDP-glucuronic acid (GlcUA) and UDP-GlcNAc to synthesize HA. The HAS from Streptococcus pyogenes (spHAS, 419 amino acids) contains six Cys residues, whereas the enzyme from Streptococcus equisimilis (seHAS, 417 amino acids) contains four Cys residues. These Cys residues of seHAS are highly conserved in all Class I HAS family members. Here we investigated the structural and functional roles of these conserved cysteines in seHAS by using site-directed mutagenesis and sensitivity to sulfhydryl modifying reagents. Both seHAS and spHAS were inhibited by sulfhydryl reagents such as N-ethylmaleimide (NEM) and iodoacetamide in a dose-dependent and time-dependent manner. These inhibition curves were biphasic, indicating the presence of sensitive and insensitive components. After treatment of seHAS with NEM, the V(max) value was decreased approximately 50%, and the K(m) values changed only slightly. All the Cys-to-Ala mutants of seHAS were partially active. The least active single (C226A), double (C226A,C262A), or triple (C226A,C262A,C367A) Cys mutants retained 24, 3.2, and 1.4% activity, respectively, compared with wild-type enzyme. Surprisingly, the V(max) value of the seHAS(cys-null) mutant was approximately 17% of wild-type, although the K(m) values for both substrates were increased 3-6-fold. Cys residues, therefore, are not involved in a critical interaction necessary for either substrate binding or catalysis. However, the distribution of HA products was shifted to a smaller size in approximately 25% of the seHAS Cys mutants, particularly the triple mutants. Mass spectroscopic analysis of wild-type and Cys-null seHAS as well as the labeling of all double Cys-to-Ala mutants with [(14)C]NEM demonstrated that seHAS contains no disulfide bonds. We conclude that the four Cys residues in seHAS are not directly involved in catalysis, but that one or more of these Cys residues are located in or near substrate binding or glycosyltransferase active sites, so that their modification hinders the functions of HAS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号