首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Doll C  Bell AF  Power N  Tonge PJ  Tipton PA 《Biochemistry》2005,44(34):11440-11446
The binding of the inhibitor 8-nitroxanthine to urate oxidase has been investigated by Raman and UV-visible absorption spectroscopy. The absorption maximum of 8-nitroxanthine shifts from 380 to 400 nm upon binding to the enzyme, demonstrating that the electronic structure of the ligand is perturbed. It has been proposed that oxidation of the substrate urate by urate oxidase is facilitated by formation of the substrate dianion at the enzyme active site, and Raman spectra of urate oxidase-bound 8-nitroxanthine suggest that both the dianionic and monoanionic forms of the ligand are bound to the enzyme under conditions where in solution the monoanion is present exclusively. The C4-C5 stretching frequency appears as a relatively isolated vibrational mode in 8-nitroxanthine whose frequency shifts according to the protonation state of the purine ring. Identification of the C4-C5 stretching mode was confirmed using [4-(13)C]-8-nitroxanthine and ab initio calculation of the vibrational modes. Two peaks corresponding to the C4-C5 stretching mode were evident in spectra of enzyme-bound 8-nitroxanthine, at 1541 and 1486 cm(-)(1). The higher frequency peak was assigned to monoanionic 8-nitroxanthine, and the low-frequency peak was assigned to dianionic 8-nitroxanthine. The C4-C5 stretching frequency for free monoanionic 8-nitroxanthine was at 1545 cm(-)(1), indicating that the enzyme polarizes that bond when the ligand is bound. The C4-C5 stretching frequency in dianionic 8-nitroxanthine is also shifted by 4 cm(-)(1) to lower frequency upon binding. For 8-nitroxanthine free in solution, the C4-C5 stretching frequency shifts to lower frequency upon deprotonation, and the absorption maximum in the UV-visible spectrum shifts to higher wavelength. The spectral shifts observed upon binding of 8-nitroxanthine to urate oxidase are consistent with increased anionic character of the ligand, which is expected to promote catalysis in the reaction with the natural substrate urate. In the Raman spectra of 8-nitroxanthine bound to the F179A, F179Y, and K9M mutant proteins, the C4-C5 stretching frequency was not perturbed from its position for the unbound ligand. Both V(max) and V/K were decreased in the mutant enzymes, demonstrating a correlation between the interaction that perturbs the C4-C5 stretching frequency and the catalytic activity of the enzyme. It is suggested that hydrogen-bonding interactions that lead to precise positioning and deprotonation of the substrate are perturbed by the mutations.  相似文献   

2.
Phosphoenolpyruvate (PEP) carboxykinases harbor two divalent metal-binding sites. One cation interacts with the enzyme (metal binding site 1) to elicit activation, while a second cation (metal binding site 2) interacts with the nucleotide to serve as the metal nucleotide substrate. Mutants of Anaerobiospirillum succiniciproducens PEP carboxykinase have been constructed where Thr249 and Asp262, two residues of metal binding site 2 of the enzyme, were altered. Binding of the 3'(2')-O-(N-methylantraniloyl) derivative of ADP provides a test of the structural integrity of these mutants. The conservative mutation (Asp262Glu) retains a significant proportion of the wild type enzymatic activity. Meanwhile, removal of the OH group of Thr249 in the Thr249Ala mutant causes a decrease in V(max) by a factor of 1.1 x 10(4). Molecular modeling of wild type and mutant enzymes suggests that the lower catalytic efficiency of the Thr249Ala enzyme could be explained by a movement of the lateral chain of Lys248, a critical catalytic residue, away from the reaction center.  相似文献   

3.
Cytochrome c oxidase (CytcO) is a redox-driven, membrane-bound proton pump. One of the proton transfer pathways of the enzyme, the D pathway, used for the transfer of both substrate and pumped protons, accommodates a network of hydrogen-bonded water molecules that span the distance between an aspartate (Asp(132)), near the protein surface, and glutamate Glu(286), which is an internal proton donor to the catalytic site. To investigate how changes in the environment around Glu(286) affect the mechanism of proton transfer through the pathway, we introduced a non-hydrogen-bonding (Ala) or an acidic residue (Asp) at position Ser(197) (S197A or S197D), located approximately 7 A from Glu(286). Although Ser(197) is hydrogen-bonded to a water molecule that is part of the D pathway "proton wire," replacement of the Ser by an Ala did not affect the proton transfer rate. In contrast, the S197D mutant CytcO displayed a turnover activity of approximately 35% of that of the wild-type CytcO, and the O(2) reduction reaction was not linked to proton pumping. Instead, a fraction of the substrate protons was taken from the positive ("incorrect") side of the membrane. Furthermore, the pH dependence of the proton transfer rate was altered in the mutant CytcO. The results indicate that there is plasticity in the water coordination of the proton pathway, but alteration of the electrostatic potential within the pathway results in uncoupling of the proton translocation machinery.  相似文献   

4.
The formation of water chains in cytochrome c oxidase (CcO) is studied by molecular dynamics (MD). Focus is on water chains in the K channel that can supply a proton to the binuclear center (the heme a3 Fe/CuB region), the site of O2 reduction. By assessing the presence of chains of any length on a short time scale (0.1 ps), a view of the kinds of chains and their persistence is obtained. Chains from the entry of the channel on the inner membrane to Thr359 (Rhodobacter sphaeroides numbering) are often present but are blocked at that point until a rotation of the Thr359 side chain occurs, permitting formation of chains from Thr359 towards the binuclear center. No continuous hydrogen-bonded water chains are found connecting Thr359 and the binuclear center. Instead, waters hydrogen bond from Thr359 to the hydroxyl of the heme a3 farnesyl and then continue to the binuclear center via Tyr288, which has been identified as a source of a proton for O2 reduction. Three hydrogen-bonded waters are found to be present in the binuclear center after a sufficiently long simulation time. One is ligated to the CuB and could be associated with a water (or hydroxyl) identified in the crystal structure as the fourth ligand of CuB. The water hydrogen-bonded to the hydroxyl of Tyr288 is extremely persistent and well positioned to participate in O2 reduction. The third water is located where O2 is often suggested to reside in mechanistic studies of O2 reduction.  相似文献   

5.
Urate oxidase catalyzes the transformation of uric acid in 5-hydroxyisourate, an unstable compound which is latter decomposed into allantoïn. Crystallographic data have shown that urate oxidase binds a dianion urate species deprotonated in N3 and N7, while kinetics experiments have highlighted the existence of several intermediates during catalysis. We have employed a quantum mechanical approach to analyze why urate oxidase is selective for one particular dianion and to explore all possible reaction pathways for the oxidation of one uric acid species by molecular dioxygen in presence of water. Our results indicate the urate dianion deprotonated in N3 and N7 is among all urate species that can coexist in solution it is the compound which will lose the most easiestly one electron in presence of molecular dioxygen. In addition, the transformation of this dianion in 5-hydroxyisourate is thermodynamically the most favorable reaction. Finally, several reaction pathways can be drawn, each starting with the spontaneous transfer of one electron from the urate dianion to molecular dioxygen. During that period, the existence of a 5-hydroperoxyisourate intermediate, which has been proposed elsewhere, does not seem mandatory.  相似文献   

6.
Cytochrome c oxidase is a membrane-bound enzyme, which catalyses the one-electron oxidation of four molecules of cytochrome c and the four-electron reduction of O(2) to water. Electron transfer through the enzyme is coupled to proton pumping across the membrane. Protons that are pumped as well as those that are used for O(2) reduction are transferred though a specific intraprotein (D) pathway. Results from earlier studies have shown that replacement of residue Asn139 by an Asp, at the beginning of the D pathway, results in blocking proton pumping without slowing uptake of substrate protons used for O(2) reduction. Furthermore, introduction of the acidic residue results in an increase of the apparent pK(a) of E286, an internal proton donor to the catalytic site, from 9.4 to ~11. In this study we have investigated intramolecular electron and proton transfer in a mutant cytochrome c oxidase in which a neutral residue, Thr, was introduced at the 139 site. The mutation results in uncoupling of proton pumping from O(2) reduction, but a decrease in the apparent pK(a) of E286 from 9.4 to 7.6. The data provide insights into the mechanism by which cytochrome c oxidase pumps protons and the structural elements involved in this process.  相似文献   

7.
The tissue-specific enzyme urate oxidase is confined exclusively to the Malpighian tubules of Drosophila melanogaster and expressed only in the third-instar larva and the adult. Shortly before pupariation urate oxidase activity declines precipitously and is not detectable 24 hours later. That 20-hydroxyecdysone is the factor that triggers the disappearance of urate oxidase activity in late third-instar larvae is demonstrated using the temperature sensitive mutant ecd1 which at the nonpermissive temperature of 29°C fails to accumulate a sufficient concentration of 20-hydroxyecdysone necessary for puparium formation and thus remains a third-instar larva for 1 to 2 weeks before death. Both the life cycle and the temporal profile of urate oxidase activity in ecd1 larvae at 19°C is identical to that of the wild type. However, at 29°C ecd1 third-instar larvae retain high urate oxidase activity. A precipitous decline in urate oxidase activity is observed when ecd1 larvae at 29°C are fed 20-hydroxyecdysone. These data implicate 20-hydroxyecdysone in the process that controls the rapid decline of urate oxidase activity at the time of puparium formation. In whole homogenates of Malpighian tubules, the urate oxidase polypeptide was identified in SDS-polyacrylamide gels by its Rf with respect to homogeneously pure Drosophila urate oxidase and also by immunoprecipitation with rabbit anti-Drosophila urate oxidase IgG. Throughout development the amount of the urate oxidase polypeptide is correlated with the magnitude of urate oxidase activity.  相似文献   

8.
Site-specific mutagenesis has been used to probe amino acid residues proposed to be critical in catalysis by Escherichia coli asparaginase II. Thr12 is conserved in all known asparaginases. The catalytic constant of a T12A mutant towards L-aspartic acid beta-hydroxamate was reduced to 0.04% of wild type activity, while its Km and stability against urea denaturation were unchanged. The mutant enzyme T12S exhibited almost normal activity but altered substrate specificity. Replacement of Thr119 with Ala led to a 90% decrease of activity without markedly affecting substrate binding. The mutant enzyme S122A showed normal catalytic function but impaired stability in urea solutions. These data indicate that the hydroxyl group of Thr12 is directly involved in catalysis, probably by favorably interacting with a transition state or intermediate. By contrast, Thr119 and Ser122, both putative target sites of the inactivator DONV, are functionally less important.  相似文献   

9.
Urate oxidase transforms uric acid to 5-hydroxyisourate without the help of cofactors, but the catalytic mechanism has remained enigmatic, as the protonation state of the substrate could not be reliably deduced. We have determined the neutron structure of urate oxidase, providing unique information on the proton positions. A neutron crystal structure inhibited by a chloride anion at 2.3 Å resolution shows that the substrate is in fact 8-hydroxyxanthine, the enol tautomer of urate. We have also determined the neutron structure of the complex with the inhibitor 8-azaxanthine at 1.9 Å resolution, showing the protonation states of the K10–T57–H256 catalytic triad. Together with X-ray data and quantum chemical calculations, these structures allow us to identify the site of the initial substrate protonation and elucidate why the enzyme is inhibited by a chloride anion.  相似文献   

10.
Aldose-ketose isomerization by xylose isomerase requires bivalent cations such as Mg2+, Mn2+, or Co2+. The active site of the enzyme from Actinoplanes missouriensis contains two metal ions that are involved in substrate binding and in catalyzing a hydride shift between the C1 and C2 substrate atoms. Glu 186 is a conserved residue located near the active site but not in contact with the substrate and not with a metal ligand. The E186D and E186Q mutant enzymes were prepared. Both are active, and their metal specificity is different from that of the wild type. The E186Q enzyme is most active with Mn2+ and has a drastically shifted pH optimum. The X-ray analysis of E186Q was performed in the presence of xylose and either Mn2+ or Mg2+. The Mn2+ structure is essentially identical to that of the wild type. In the presence of Mg2+, the carboxylate group of residue Asp 255, which is part of metal site 2 and a metal ligand, turns toward Gln 186 and hydrogen bonds to its side-chain amide. Mg2+ is not bound at metal site 2, explaining the low activity of the mutant with this cation. Movements of Asp 255 also occur in the wild-type enzyme. We propose that they play a role in the O1 to O2 proton relay accompanying the hydride shift.  相似文献   

11.
Lys212 and Tyr140 are close to the enzyme-bound isocitrate in the recently determined crystal structure of porcine NADP-specific isocitrate dehydrogenase (Ceccarelli, C., Grodsky, N. B., Ariyaratne, N., Colman, R. F., and Bahnson, B. J. (2002) J. Biol. Chem. 277, 43454-43462). We have constructed mutant enzymes in which Lys212 is replaced by Gln, Tyr, and Arg, and Tyr140 is replaced by Phe, Thr, Glu, and Lys. Wild type and mutant enzymes were each expressed in Escherichia coli and purified to homogeneity. At pH 7.4, the specific activity is decreased in K212Q, K212Y, and K212R, respectively, to 0.01-9% of wild type. The most striking change is in the pH-V(max) curves. Wild type depends on the deprotonated form of a group of pKaes 5.7, whereas this pKaes is increased to 7.4 in neutral K212Q and to 8.3 in K212Y. In contrast, the positive K212R has a pKaes of 5.9. These results indicate that (by electrostatic repulsion) a positively charged residue at position 212 lowers the pK of the nearby ionizable group in the enzyme-substrate complex. Lys212 may also stabilize the carbanion formed initially on substrate decarboxylation. The Tyr140 mutants have specific activities at pH 7.4 that are reduced to 0.2-0.5% of those of wild type, whereas their Km values for isocitrate and NADP are not increased. Most notable are the altered pH-V(max) profiles. V(max) is constant from pH 5.3 to 8 for Y140F and Y140T and increases as pH is decreased for Y140E and Y140K. These results suggest that in wild type enzyme, Tyr140 is the general acid that protonates the substrate after decarboxylation and that the carboxyl and ammonium forms of Y140E and Y140K provide partial substitutes. Relative to wild type, the Y140T enzyme is specifically activated 106-fold by exogenous addition of acetic acid and 88-fold by added phenol; and the K212Q enzyme is activated 4-fold by added ethylamine. These chemical rescue experiments support the conclusion that Tyr140 and Lys212 are required for the catalytic activity of porcine NADP-dependent isocitrate dehydrogenase.  相似文献   

12.
Cytochrome c oxidase (CcO) converts the energy from redox and oxygen chemistry to support proton translocation and create a transmembrane DeltamuH(+) used for ATP production. Molecular dynamics (MD) simulations were carried out to probe for the formation water chains capable of participating in proton translocation. Attention was focused on the region between and above the a and a(3) hemes where well-defined water chains have not been identified in crystallographic studies. An arginine (R481) (Rhodobacter sphaeroides numbering), positioned between the D-propionates of the hemes, had been mutated in vivo to lysine and showed to have altered activity consistent with an altered proton conductance [Qian, J., Mills, D. A., Geren, L., Wang, K. F., Hoganson, C. W., Schmidt, B., Hiser, C., Babcock, G. T., Durham, B., Millett, F., and Ferguson-Miller, S. (2004) Role of the conserved arginine pair in proton and electron transfer in cytochrome c oxidase, Biochemistry 43, 5748-5756; also see the accompanying paper by Mills et al.]. This mutant was created in silico, and the MD results for the mutant and wild type were compared to explore the effects on the formation of hydrogen-bonded water chains by this mutation. The simulations reveal the presence of hydrogen-bonded water chains that lead from E286 through the region above the hemes to the Mg(2+), and from E286 to the heme a(3) D-propionate and the binuclear center. The R481K mutant does not form as many, or as extensive, water chains as wild-type CcO, due to a new conformation of residues in a large loop between helices III and IV in subunit I, indicating a reduction in the level of water chain formation in the mutant. This loop appears to play a role in controlling the formation of hydrogen-bonded water chains above the hemes. The results suggest a possible gating mechanism for proton movement that includes key residues W172 and Y175 on the loop and F282 on helix VI.  相似文献   

13.
Mutation of Thr90 to Ala has a profound effect on bacteriorhodopsin properties. T90A shows about 20% of the proton pumping efficiency of wild type, once reconstituted into liposomes. Mutation of Thr90 influences greatly the Schiff base/Asp85 environment, as demonstrated by altered lambda(max) of 555 nm and pK(a) of Asp85 (about 1.3 pH units higher than wild type). Hydroxylamine accessibility is increased in both dark and light and differential scanning calorimetry and visible spectrophotometry show decreased thermal stability. These results suggest that Thr90 has an important structural role in both the unphotolysed bacteriorhodopsin and in the proton pumping mechanism.  相似文献   

14.
Catalysis of the thermostable alcohol dehydrogenase from Bacillus stearothermophilus is performed by a proton release system involving a zinc-bound water molecule, a hydroxyl group of Thr40 (threonine position at 40), and an imidazole ring of His43. Amino acid residues (Thr40 and His43) at the active center were substituted by Ser and Arg, respectively. Thr40Ser had a tendency toward lower activity for primary alcohols than the wild type enzyme. However, the mutant enzyme became more active for substrates with a larger side chain, such as 2-methyl-1-propanol and cyclohexanol. This phenomena might be explained by the fact that the methyl group of Thr40 was eliminated in Ser. His43Arg exhibited higher activity to primary alcohols (except 2-methyl-1-propanol) and acetaldehyde (as a reverse reaction) than the wild type, but little activity for secondary alcohols and ketones. The Km value for ethanol (Km-e) of His43Arg was fifty-fold larger than that of the wild type. The characteristics of these mutant enzymes are also discussed.  相似文献   

15.
Buckman J  Miller SM 《Biochemistry》2000,39(34):10532-10541
EBP1-catalyzed reduction of alpha,beta-unsaturated ketones and aldehydes is proposed to proceed via transfer of hydride from the flavin to the beta-position of the olefinic bond, concomitant with or followed by uptake of a proton at the alpha-position. Structural analysis suggests that this proton is donated from Tyr206, and, hence, a protein was constructed in which it was replaced by phenylalanine. The mutation results in a slightly less stable protein than the wild type that nevertheless retains the fundamental flavin and phenol binding properties of EBP1 characterized previously. The pH profile for binding of phenol was characterized over the pH range 6.5-9.5 and was found to be simpler than that for the wild-type enzyme. Most importantly, a pK(a) of 8.7 that is perturbed to 9.4 upon binding of phenol to the wild-type enzyme is missing in the mutant, allowing assignment of this pK(a) to the Y206 hydroxyl group. Additionally, the pK(a) of phenol is further lowered from its value of 10.0 in solution to approximately 6.4 in the active site of the mutant, as compared to 7.1 in the wild type. Together, these perturbations lead to an increase of approximately 35-fold in the binding affinity of the mutant for phenol at high pH relative to the affinity of the wild-type enzyme. As expected, the mutation has little effect on the reductive half-reaction, in which a hydride equivalent is transferred from NADPH to the flavin. In contrast, the reduction of trans-2-hexenal by the reduced enzyme is significantly affected. The results indicate formation of a previously unobserved charge-transfer (CT) complex following formation of the Michaelis complex between substrate and reduced enzyme and preceding reduction of the substrate, which occurs at a greatly reduced rate (>/=440-fold) relative to wild type. Thus, while the oxidative half-reaction with wild-type enzyme is limited by the rate of formation of the CT complex, it is the chemical step that is rate-limiting in the reaction with EBP1:Y206F, consistent with the role of this residue as a general acid.  相似文献   

16.
The N139D mutant of cytochrome c oxidase from Rhodobacter sphaeroides retains full steady state oxidase activity but completely lacks proton translocation coupled to turnover in reconstituted liposomes (Pawate, A. S., Morgan, J., Namslauer, A., Mills, D., Brzezinski, P., Ferguson-Miller, S., and Gennis, R. B. (2002) Biochemistry 41, 13417-13423). Here, time-resolved electron transfer and vectorial charge translocation in the ferryl-oxo --> oxidized transition (transfer of the 4th electron in the catalytic cycle) have been studied with the N139D mutant using ruthenium(II)-tris-bipyridyl complex as a photoactive single-electron donor. With the wild type oxidase, the flash-induced generation of Deltaphi in the ferryl-oxo --> oxidized transition begins with rapid vectorial electron transfer from CuA to heme a (tau approximately 15 micros), followed by two protonic phases, referred to as the intermediate (0.4 ms) and slow electrogenic phases (1.5 ms). In the N139D mutant, only a single protonic phase (tau approximately 0.6 ms) is observed, which was associated with electron transfer from heme a to the heme a3/CuB site and decelerates approximately 4-fold in D2O. With the wild type oxidase, such a high H2O/D2O solvent isotope effect is characteristic of only the slow (1.5 ms) phase. Presumably, the 0.6-ms electrogenic phase in the N139D mutant reports proton transfer from the inner aqueous phase to Glu-286, replacing the "chemical" proton transferred from Glu-286 to the heme a3/CuB site. The transfer occurs through the D-channel, because it is observed also in the N139D/K362M double mutant in which the K-channel is blocked. It is concluded that the intermediate electrogenic phase observed in the wild type enzyme is missing in the N139D mutant and is because of translocation of the "pumped" proton from Glu-286 to the D-ring propionate of heme a3 or to release of this proton to the outer aqueous phase. Significantly, with the wild type oxidase, the protonic electrogenic phase associated with proton pumping (approximately 0.4 ms) precedes the electrogenic phase associated with the oxygen chemistry (approximately 1.5 ms).  相似文献   

17.
Raychaudhuri A  Tipton PA 《Biochemistry》2003,42(22):6848-6852
Hydroxyisourate hydrolase is a recently discovered enzyme that participates in the ureide pathway in soybeans. Its role is to catalyze the hydrolysis of 5-hydroxyisourate, the product of the urate oxidase reaction. There is extensive sequence homology between hydroxyisourate hydrolase and retaining glycosidases; in particular, the conserved active site glutamate residues found in retaining glycosidases are present in hydroxyisourate hydrolase as Glu 199 and Glu 408. However, experimental investigation of their roles, as well as the catalytic mechanism of the enzyme, have been precluded by the instability of 5-hydroxyisourate. Here, we report that diaminouracil serves as a slow, alternative substrate and can be used to investigate catalysis by hydroxyisourate hydrolase. The activity of the E199A protein was reduced 400-fold relative to wild-type, and no activity could be detected with the E408A mutant. Steady-state kinetic studies of the wild-type protein revealed that the pH-dependence of V(max) and V/K describe bell-shaped curves, consistent with the hypothesis that catalysis requires two ionizable groups in opposite protonation states. Addition of 100 mM azide accelerated the reaction catalyzed by the wild-type enzyme 8-fold and the E199A mutant 20-fold but had no effect on the E408A mutant. These data suggest that Glu 408 acts as a nucleophile toward the substrate forming a covalent anhydride intermediate, and Glu 199 facilitates formation of the intermediate by serving as a general acid and then activates water for hydrolysis of the intermediate. Thus, the mechanism of hydroxyisourate hydrolase is strikingly similar to that of retaining glycosidases, even though it catalyzes hydrolysis of an amide bond.  相似文献   

18.
Galactose oxidase is a radical copper oxidase, an enzyme making use of a covalently modified tyrosine residue as a free radical redox cofactor in alcohol oxidation catalysis. We report here a combination of spectroscopic and magnetochemical studies developing insight into the interactions between the active site Cu(II) and two distinct tyrosine ligands in the biological complex. One of the tyrosine ligands (Y495) is coordinated to the Cu(II) metal center as a phenolate in the resting enzyme and serves as a general base to abstract a proton from the coordinated substrate, thus activating it for oxidation. The structure of the resting enzyme is temperature-dependent as a consequence of an internal proton equilibrium associated with this tyrosine that mimics this catalytic proton transfer step. The other tyrosine ligand (Y272) is covalently crosslinked to a cysteine residue forming a tyrosine–cysteine dimer free radical redox site that is required for hydrogen atom abstraction from the activated substrate alkoxide. The presence of the free radical in the oxidized active enzyme results in formation of an EPR-silent Cu(II) complex shown by multifield magnetic saturation experiments to be a diamagnetic singlet arising from antiferromagnetic exchange coupling between the metal and radical spins. A paramagnetic contribution observed at higher temperature may be associated with thermal population of the triplet state, thus permitting an estimate of the magnitude of the isotropic exchange coupling (J>200 cm−1, JS1·S2) in this complex. Structural correlations and the possible mechanistic significance of metal–radical coupling in the active enzyme are discussed.  相似文献   

19.
The mammalian mitochondrial NADP-dependent isocitrate dehydrogenase is a citric acid cycle enzyme and an important contributor to cellular defense against oxidative stress. The Mn(2+)-isocitrate complex of the porcine enzyme was recently crystallized; its structure indicates that Ser(95), Asn(97), and Thr(78) are within hydrogen-bonding distance of the gamma-carboxylate of enzyme-bound isocitrate. We used site-directed mutagenesis to replace each of these residues by Ala and Asp. The wild-type and mutant enzymes were expressed in Escherichia coli and purified to homogeneity. All the enzymes retain their native dimeric structures and secondary structures as monitored by native gel electrophoresis and circular dichroism, respectively. V(max) of the three alanine mutants is decreased to 24%-38% that of wild-type enzyme, with further decreases in the aspartate mutants. For T78A and S95A mutants, the major changes are the 10- to 100-fold increase in the K(m) values for isocitrate and Mn(2+). The results suggest that Thr(78) and Ser(95) function to strengthen the enzyme's affinity for Mn(2+)-isocitrate by hydrogen bonding to the gamma-carboxylate of isocitrate. For the Asn(97) mutants, the K(m) values are much less affected. The major change in the N97A mutant is the increase in pK(a) of the ionizable metal-liganded hydroxyl of enzyme-bound isocitrate from 5.23 in wild type to 6.23 in the mutant enzyme. The hydrogen bond between Asn(97) and the gamma-carboxylate of isocitrate may position the substrate to promote a favorable lowering of the pK of the enzyme-isocitrate complex. Thus, Thr(78), Ser(95), and Asn(97) perform important but distinguishable roles in catalysis by porcine NADP-specific isocitrate dehydrogenase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号