首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Peroxyacetyl nitrate was reactive with small molecular-weight sulfur-containing compounds The order of susceptibility was cysteine > reduced lipoic acid = reduced lipoamide > oxidized lipoic acid > oxidized lipoamide > methionine ? cystine. From thiols the predominant product was disulfide. In the early stages of oxidation methionine yielded methionine sulfoxide. Products of oxidation of oxidized lipoic acid and lipoamide were the respective sulfoxides. Cystine was resistant to oxidation, yielding cysteic acid when oxidation took place.Papain was readily inactivated by peroxyacetyl nitrate while lysozyme was resistant. The small amount of inactivation of lysozyme was correlated with methionine oxidation. Papain inactivation was correlated with thiol oxidation and could be reversed by thiol compounds. The oxidation product was judged to be a dimer by methods for determining molecular weight.  相似文献   

2.
Both metalloprotein and flavin-linked sulfhydryl oxidases catalyze the oxidation of thiols to disulfides with the reduction of oxygen to hydrogen peroxide. Despite earlier suggestions for a role in protein disulfide bond formation, these enzymes have received comparatively little general attention. Chicken egg white sulfhydryl oxidase utilizes an internal redox-active cystine bridge and a FAD moiety in the oxidation of a range of small molecular weight thiols such as glutathione, cysteine, and dithiothreitol. The oxidase is shown here to exhibit a high catalytic activity toward a range of reduced peptides and proteins including insulin A and B chains, lysozyme, ovalbumin, riboflavin-binding protein, and RNase. Catalytic efficiencies are up to 100-fold higher than for reduced glutathione, with typical K(m) values of about 110-330 microM/protein thiol, compared with 20 mM for glutathione. RNase activity is not significantly recovered when the cysteine residues are rapidly oxidized by sulfhydryl oxidase, but activity is efficiently restored when protein disulfide isomerase is also present. Sulfhydryl oxidase can also oxidize reduced protein disulfide isomerase directly. These data show that sulfhydryl oxidase and protein disulfide isomerase can cooperate in vitro in the generation and rearrangement of native disulfide pairings. A possible role for the oxidase in the protein secretory pathway in vivo is discussed.  相似文献   

3.
Studies on plasma and cells exposed to hydroxyl and peroxyl radicals have indicated that there are few inhibitors of protein hydroperoxide formation. We have, however, observed a small variable lag period during bovine serum albumin (BSA) oxidation by 2-2' azo-bis-(2-methyl-propionamidine) HCl (AAPH) generated peroxyl radicals, where no protein hydroperoxide was formed. The addition of free cysteine to BSA during AAPH oxidation also produced a lag phase suggesting protein thiols could inhibit protein hydroperoxide formation. The selective reduction of thiols on BSA by beta-mercaptoethanol treatment caused the appearance of a lag period where no protein hydroperoxide was formed during the AAPH mediated oxidation. Increasing free thiol concentration on the BSA increased the lag period. Protein hydroperoxide formation began when the protein thiol concentration dropped below one thiol per BSA molecule. It is unlikely that the lag period is due to gross structural alteration of the reduced protein since blocking the free thiols with N-ethyl maleimide eliminated the lag in protein hydroperoxide formation. Protein thiols were found to be ineffective in inhibiting hydroxyl radical-mediated protein hydroperoxide formation during X-ray radiolysis. Evidence is given for protein thiol oxidation occurring via a free radical mediated chain reaction with both free cysteine and protein bound thiol. The data suggest that reduced protein thiol groups can inhibit protein hydroperoxide formation by scavenging peroxyl radicals.  相似文献   

4.
Abstract

Studies on plasma and cells exposed to hydroxyl and peroxyl radicals have indicated that there are few inhibitors of protein hydroperoxide formation. We have, however, observed a small variable lag period during bovine serum albumin (BSA) oxidation by 2-2′ azo-bis-(2-methyl-propionamidine) HCl (AAPH) generated peroxyl radicals, where no protein hydroperoxide was formed. The addition of free cysteine to BSA during AAPH oxidation also produced a lag phase suggesting protein thiols could inhibit protein hydroperoxide formation. The selective reduction of thiols on BSA by β-mercaptoethanol treatment caused the appearance of a lag period where no protein hydroperoxide was formed during the AAPH mediated oxidation. Increasing free thiol concentration on the BSA increased the lag period. Protein hydroperoxide formation began when the protein thiol concentration dropped below one thiol per BSA molecule. It is unlikely that the lag period is due to gross structural alteration of the reduced protein since blocking the free thiols with N-ethyl maleimide eliminated the lag in protein hydroperoxide formation. Protein thiols were found to be ineffective in inhibiting hydroxyl radical-mediated protein hydroperoxide formation during X-ray radiolysis. Evidence is given for protein thiol oxidation occurring via a free radical mediated chain reaction with both free cysteine and protein bound thiol. The data suggest that reduced protein thiol groups can inhibit protein hydroperoxide formation by scavenging peroxyl radicals.  相似文献   

5.
Functional heterogeneity of ubiquitin carrier proteins   总被引:24,自引:0,他引:24  
In the formation of covalent ubiquitin-protein conjugates that occurs during ATP- and ubiquitin-dependent proteolysis in reticulocyte extracts, ubiquitin (Ub) is activated to a thiol ester of the activating enzyme E1 (via the Ub carboxyl terminus), transferred to low-molecular weight "carrier proteins" (E2s) to form E2-Ub thiol esters, and then transferred by a third enzyme (E3) to amino groups on target proteins (Hershko, A., Heller, H., Elias, S., and Ciechanover, A. (1983) J. Biol. Chem. 258, 8206-8214). We report here the fractionation of Ub carrier proteins by molecular weight, and their characterization with respect to several activities. The Ub thiol ester forms of at least four of the five E2s catalyze Ub transfer to a number of small amines, in a reaction that does not require E3; only primary amines on primary carbons can serve as Ub acceptors. E3-independent Ub transfer to the small, basic proteins histones H2A and H2B, and cytochrome c, is also observed. The Ub thiol ester forms of two of the E2s were found to catalyze Ub transfer to cytochrome c. Only a single E2 functions in E3-dependent conjugate formation (with the substrates creatine phosphokinase, reduced/carboxymethylated serum albumin, and oxidized RNase) and in E3-dependent protein breakdown (with the substrate serum albumin). This E2 has a subunit molecular weight of 14,000 and migrates as a dimer on Sephacryl 200.  相似文献   

6.
The plasma compartment has particular features regarding the nature and concentration of low and high molecular weight thiols and oxidized derivatives. Plasma is relatively poor in thiol-based antioxidants; thiols are in lower concentrations than in cells and mostly oxidized. The different thiol-disulfide pairs are not in equilibrium and the steady-state concentrations of total thiols as well as reduced versus oxidized ratios are maintained by kinetic barriers, including the rates of reactions and transport processes. The single thiol of human serum albumin (HSA-SH) is the most abundant plasma thiol. It is an important target for oxidants and electrophiles due to its reactivity with a wide variety of species and its relatively high concentration. A relatively stable sulfenic (HSA-SO3H) acid can be formed in albumin exposed to oxidants. Plasma increases in mixed disulfides (HSA-SSR) or in sulfinic (HSA-SO2H) and sulfonic (HSA-SO3H) acids are associated with different pathologies and may constitute biomarkers of the antioxidant role of the albumin thiol. In this work we provide a critical review of the plasma thiol pool with a focus on human serum albumin.  相似文献   

7.
Sulfhydryl oxidase isolated from bovine skim milk membrane vesicles catalyzes de novo formation of disulfide bonds with the substrates cysteine, cysteine-containing peptides, and reduced proteins using molecular oxygen as the electron acceptor. Initial rates for sulfhydryl oxidase-catalyzed oxidation of reduced ribonuclease exhibited typical Michaelis-Menten kinetics at low substrate concentrations. Substrate inhibition of the oxidative activity was observed at ribonuclease concentrations greater than 40 microM, similar to that observed with reduced glutathione or other small thiol substrates. The inhibition was more pronounced when ribonuclease activity was used to monitor the rates, presumably due to concentration-dependent formation of nonnative disulfide bonds. Thus, a maximum in the rate of regain of ribonuclease activity was observed at a 40 microM concentration, while optimum recovery was observed at 30 microM. The Michaelis constant obtained with reduced ribonuclease is 17.4 microM which corresponds to a sulfhydryl concentration of 0.14 mM, a value that compares favorably with the best small thiol substrate, reduced glutathione. Disulfide-containing intermediates in the oxidation pathway, as determined by ion-exchange chromatography of alkylated reaction mixtures, appeared to be similar for air oxidation and enzyme-catalyzed oxidation of the protein. The pH optimum, tissue location, and kinetic characteristics of sulfhydryl oxidase are compatible with a suggested physiological function of direct catalysis of disulfide bond formation in secretory proteins or indirect participation through provision of oxidized glutathione for protein disulfide-isomerase-catalyzed thiol/disulfide interchange.  相似文献   

8.
Oxidants can activate signaling pathways and modulate a variety of cellular activities. Their action at a molecular level involves the post-translational modification of protein thiols. We have developed a proteomic method to monitor the reduction and oxidation of protein thiols, and identify those thiol proteins most sensitive to oxidation. Cells were disrupted in the presence of N-ethylmaleimide to block the reduced thiol proteins and dithiothreitol was added to reduce the oxidized thiol proteins before labeling with 5-iodoacetamidofluorescein. Two-dimensional (2-D) electrophoresis was used to resolve the labeled samples. We applied the method to Jurkat T lymphocytes and examined the effect of diamide on the oxidized and reduced thiol protein profiles. A small percentage of protein thiols were already oxidized in untreated cells. Exposure of cells to 2 mM diamide for ten minutes led to a dramatic increase in thiol protein oxidation as seen in the oxidized thiol protein map. However, it was difficult to detect any change in the pattern of reduced thiol proteins. Separation of proteins by 2-D electrophoresis revealed approximately 200 thiol proteins that were oxidized by diamide treatment. This method will be valuable in elucidating redox signaling pathways.  相似文献   

9.
1. Thiol oxidation by a lipid peroxide or hydrogen peroxide was as efficient in denatured non-haem proteins as in small thiols. Both peroxides were relatively ineffective in oxidizing haemoprotein thiols, especially at low pH. Increased amounts of haematin decreased greatly the efficiency of GSH oxidation by peroxides especially at low pH. 2. Other than the haematin ring, the thiol group was found to be probably the group in proteins most sensitive to modification by peroxides. 3. At low concentrations, the fatty acid moiety of a lipid peroxide appeared to impede thiol oxidation in proteins, probably by hydrophobic bonding to the protein, rather than to stimulate thiol oxidation by denaturing the protein and thereby increasing the exposure and reactivity of the thiol group. 4. The relative rates of thiol oxidation by peroxides in the different thiols were: haemoprotein thiols>small thiols>other protein thiols. In all cases, thiol oxidation was much more rapid by the lipid peroxide than by hydrogen peroxide.  相似文献   

10.
Human serum albumin (HSA), the most abundant protein in plasma, has been proposed to have an antioxidant role. The main feature responsible for this property is its only thiol, Cys34, which comprises approximately 80% of the total free thiols in plasma and reacts preferentially with reactive oxygen and nitrogen species. Herein, we show that the thiol in HSA reacted with hydrogen peroxide with a second-order rate constant of 2.26 M(-1) s(-1) at pH 7.4 and 37 degrees C and a 1:1 stoichiometry. The formation of intermolecular disulfide dimers was not observed, suggesting that the thiol was being oxidized beyond the disulfide. With the reagent 7-chloro-4-nitrobenzo-2-oxa-1,3-diazol (NBD-Cl), we were able to detect the formation of sulfenic acid (HSA-SOH) from the UV-vis spectra of its adduct. The formation of sulfenic acid in Cys34 was confirmed by mass spectrometry using 5,5-dimethyl-1,3-cyclohexanedione (dimedone). Sulfenic acid was also formed from exposure of HSA to peroxynitrite, the product of the reaction between nitric oxide and superoxide radicals, in the absence or in the presence of carbon dioxide. The latter suggests that sulfenic acid can also be formed through free radical pathways since following reaction with carbon dioxide, peroxynitrite yields carbonate radical anion and nitrogen dioxide. Sulfenic acid in HSA was remarkably stable, with approximately 15% decaying after 2 h at 37 degrees C under aerobic conditions. The formation of glutathione disulfide and mixed HSA-glutathione disulfide was determined upon reaction of hydrogen peroxide-treated HSA with glutathione. Thus, HSA-SOH is proposed to serve as an intermediate in the formation of low molecular weight disulfides, which are the predominant plasma form of low molecular weight thiols, and in the formation of mixed HSA disulfides, which are present in approximately 25% of circulating HSA.  相似文献   

11.
Activated phagocytic cells generate hypochlorite (HOCl) via release of hydrogen peroxide and the enzyme myeloperoxidase. HOCl plays an important role in bacterial cell killing, but excessive or misplaced production of HOCl is also known to cause tissue damage. Studies have shown that low-molecular-weight thiols such as reduced glutathione (GSH), and sulfur-containing amino acids in proteins, are major targets for HOCl. Radicals have not generally been implicated as intermediates in thiol oxidation by HOCl, though there is considerable literature evidence for the involvement of radicals in the metal ion-, thermal- or UV light-catalysed decomposition of sulfenyl or sulfonyl chlorides which are postulated intermediates in thiol oxidation. In this study we show that thiyl radicals are generated on reaction of a number of low-molecular-weight thiols with HOCl. With sub-stoichiometric amounts of HOCl, relative to the thiol, thiyl radicals are the major species detected by EPR spin trapping. When the HOCl is present in excess over the thiol, additional radicals are detected with compounds which contain amine functions; these additional radicals are assigned to nitrogen-centered species. Evidence is presented for the involvement of sulfenyl chlorides (RSCl) in the formation of these radicals, and studies with an authentic sulfenyl chloride have demonstrated that this compound readily decomposes in thermal-, metal-ion- or light-catalysed reactions to give thiyl radicals. The formation of thiyl radicals on oxidation of thiols with HOCl appears to compete with non-radical reactions. The circumstances under which radical formation may be important are discussed.  相似文献   

12.
Hydrogen sulfide (H2S) is increasingly recognized to modulate physiological processes in mammals through mechanisms that are currently under scrutiny. H2S is not able to react with reduced thiols (RSH). However, H2S, more precisely HS, is able to react with oxidized thiol derivatives. We performed a systematic study of the reactivity of HS toward symmetric low molecular weight disulfides (RSSR) and mixed albumin (HSA) disulfides. Correlations with thiol acidity and computational modeling showed that the reaction occurs through a concerted mechanism. Comparison with analogous reactions of thiolates indicated that the intrinsic reactivity of HS is 1 order of magnitude lower than that of thiolates. In addition, H2S is able to react with sulfenic acids (RSOH). The rate constant of the reaction of H2S with the sulfenic acid formed in HSA was determined. Both reactions of H2S with disulfides and sulfenic acids yield persulfides (RSSH), recently identified post-translational modifications. The formation of this derivative in HSA was determined, and the rate constants of its reactions with a reporter disulfide and with peroxynitrite revealed that persulfides are better nucleophiles than thiols, which is consistent with the α effect. Experiments with cells in culture showed that treatment with hydrogen peroxide enhanced the formation of persulfides. Biological implications are discussed. Our results give light on the mechanisms of persulfide formation and provide quantitative evidence for the high nucleophilicity of these novel derivatives, setting the stage for understanding the contribution of the reactions of H2S with oxidized thiol derivatives to H2S effector processes.  相似文献   

13.
Plasma membrane vesicles of HeLa cells are characterized by a drug-responsive oxidation of NADH. The NADH oxidation takes place in an argon or nitrogen atmosphere and in samples purged of oxygen. Direct assay of protein thiols by reaction with 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB; Ellman's reagent), suggests that protein disulfides may be the natural electron acceptors for NADH oxidation by the plasma membrane vesicles. In the presence of NADH, protein disulfides of the membranes were reduced with a concomitant stoichiometric increase in protein thiols. The increase in protein thiols was inhibited in parallel to the inhibition of NADH oxidation by the antitumor sulfonylurea LY181984 with an EC50 of ca. 30 nM. LY181984, with an EC50 of 30 nM, also inhibited a protein disulfide–thiol interchange activity based on the restoration of activity to inactive (scrambled) RNase and thiol oxidation. The findings suggest that thiol oxidation, NADH-dependent disulfide reduction (NADH oxidation), and protein disulfide–thiol interchange in the absence of NADH all may be manifestations of the same sulfonylurea binding protein of the HeLa plasma membrane. A surface location of the thiols involved was demonstrated using detergents and the impermeant thiol reagent p-chloromercuriphenylsulfonic acid (PCMPS). The surface location precludes a physiological role of the protein in NADH oxidation. Rather, it may carry out some other role more closely related to a function in growth, such as protein disulfide–thiol interchange coupled to cell enlargement.  相似文献   

14.
Histamine is stored in granules of mast cells and basophils and released by inflammatory mediators. It has the potential to intercept some of the HOCl generated by the neutrophil enzyme, myeloperoxidase, to produce histamine chloramine. We have measured rate constants for reactions of histamine chloramine with methionine, ascorbate, and GSH at pH 7.4, of 91 M(-1)s(-1), 195 M(-1)s(-1), and 721 M(-1)s(-1), respectively. With low molecular weight thiols, the reaction was with the thiolate and rates increased exponentially with decreasing thiol group pK(a). Comparing rate constants for different chloramines reacting with ascorbate or a particular thiol anion, these were higher when there was less negative charge in the vicinity of the chloramine group. Histamine chloramine was the most reactive among biologically relevant chloramines. Consumption of histamine chloramine and oxidation of intracellular GSH were examined for human fibroblasts. At nontoxic doses, GSH loss over 10 min was slightly greater than that with HOCl, but the cellular uptake of histamine chloramine was 5-10-fold less. With histamine chloramine, GSSG was a minor product and most of the GSH was converted to mixed disulfides with proteins. HOCl gave a different profile of GSH oxidation products, with significantly less GSSG and mixed disulfide formation. There was irreversible oxidation and losses to the medium, as observed with HOCl and other cell types. Thus, histamine chloramine shows high preference for thiols both in isolation and in cells, and in this respect is more selective than HOCl.  相似文献   

15.
Acute treatment of mice with Na-o-phenylphenol or phenylbenzoquinone, an electrophilic metabolite of o-phenylphenol, resulted in differential depletion of contents of protein and nonprotein thiols in bladder, kidney and liver. Maximum decrease in the levels of protein and nonprotein reduced thiols was observed in bladder (by both agents) and was followed by kidney (by both agents) and liver (phenylbenzoquinone only). The reason for this differential changes in reduced thiol contents remains to be understood. The content of protein and nonprotein disulfides was higher in bladder of mice treated with Na-o-phenylphenol compared to that observed in untreated mice bladder. Phenyl 2,5'-p-benzoquinone mediated in vivo depletion of nonprotein and protein thiols suggests that Na-o-phenylphenol treatment may decrease in vivo thiols via the formation of phenylbenzoquinone. Increased disulfide formation is considered to represent an index of oxidative stress produced by chemical. Increases in the level of protein and nonprotein disulfides in bladder suggest as observed in this study that administration of Na-o-phenylphenol to mice produced oxidative stress in bladder. Products of redox cycling of xenobiotics are known to cause cellular toxicity via altering the homeostasis of thiol status. Therefore, it is concluded that decreases in protein thiol contents either via alkylation and/or oxidation of sulfhydryl groups of proteins and increases in disulfide contents presumably by products of redox cycling of Na-o-phenylphenol may play a role in Na-o-phenylphenol-induced cellular toxicity.  相似文献   

16.
Activated phagocytic cells generate hypochlorite (HOCl) via release of hydrogen peroxide and the enzyme myeloperoxidase. HOCl plays an important role in bacterial cell killing, but excessive or misplaced production of HOCl is also known to cause tissue damage. Studies have shown that low-molecular-weight thiols such as reduced glutathione (GSH), and sulfur-containing amino acids in proteins, are major targets for HOCl. Radicals have not generally been implicated as intermediates in thiol oxidation by HOCl, though there is considerable literature evidence for the involvement of radicals in the metal ion-, thermal- or UV light-catalysed decomposition of sulfenyl or sulfonyl chlorides which are postulated intermediates in thiol oxidation. In this study we show that thiyl radicals are generated on reaction of a number of low-molecular-weight thiols with HOCl. With sub-stoichiometric amounts of HOCl, relative to the thiol, thiyl radicals are the major species detected by EPR spin trapping. When the HOCl is present in excess over the thiol, additional radicals are detected with compounds which contain amine functions; these additional radicals are assigned to nitrogen-centered species. Evidence is presented for the involvement of sulfenyl chlorides (RSCl) in the formation of these radicals, and studies with an authentic sulfenyl chloride have demonstrated that this compound readily decomposes in thermal-, metal-ion- or light-catalysed reactions to give thiyl radicals. The formation of thiyl radicals on oxidation of thiols with HOCl appears to compete with non-radical reactions. The circumstances under which radical formation may be important are discussed.  相似文献   

17.
BackgroundDiallylpolysulfanes are the key constituents of garlic oils, known to exhibit broad spectrum anticancer and antimicrobial activity. Studies in vitro, and in mammalian cells, have shown they react, via thiol-polysulfane exchange, with their major low molecular weight thiol, glutathione. However, there are no detailed reports of diallylpolysulfane effects on other common thiol metabolites (cysteine and coenzyme A) or major thiol cofactors (e.g. bacillithiol) that many Gram positive bacteria produce instead of glutathione.MethodsDiallylpolysulfanes were individually purified then screened for antimicrobial activity against Bacillus subtilis. Their impact on thiol metabolites (bacillithiol, cysteine, coenzyme A, protein thiols allyl thiols//persulfides) in B. subtilis cultures were analysed, by HPLC.ResultsDiallylpolysulfane bioactivity increased with increasing chain length up to diallyltetrasulfane, but then plateaued. Within two minutes of treating B. subtilis with diallyltrisulfane or diallyltetrasulfane intracellular bacillithiol levels decreased by ~90%. Cysteine and CoA were also affected but to a lesser degree. This was accompanied by the accumulation of allyl thiol and allyl persulfide. A significant level of protein-S-allylation was also detected.ConclusionsIn addition to the major low molecular weight thiol, diallylpolysulfanes can also have an impact on other thiol metabolites and protein thiols.General significanceThis study shows the rapid parallel impact of polysulfanes on different biological thiols inside Bacillus subtilis alongside the concomitant generation of allyl thiols and persulfides.  相似文献   

18.
1-p-Chlorophenyl-4,4-dimethyl-5-diethylamino-1-penten-3-one hydrobromide (CDDP) has been shown to react selectively with small molecular weight and protein thiols. The reaction of this compound with thiols can be monitored directly owing to the large decrease (approximately 21,000 M-1 cm-1 at 310 nm) in extinction coefficient subsequent to thiol addition. CDDP reacted stoichiometrically with large molecular weight (greater than 11,000) protein thiols. However, with small molecular weight thiols (less than 500) the reaction was less than stoichiometric, indicating a significant degree of back-reaction. The forward and reverse rate constants have been estimated. The fact that the reaction is reversible enables CDDP to be used for the direct monitoring of the oxidation of small molecular weight thiols.  相似文献   

19.
Previously, in vitro formation of thioether bonds between Hydrogenobacter thermophilus apocytochrome c(552) and Fe-protoporphyrin IX has been demonstrated. Now we report studies on the reaction between the metalloderivatives Zn-, Co-, and Mn-protoporphyrin IX and the cysteine thiols of H. thermophilus apocytochrome c(552). All of these metalloporphyrins were capable of forming a "b-type cytochrome" state in which the hydrophobic prosthetic group is bound non-covalently. Zn(II)-protoporphyrin IX attached to the polypeptide covalently in the presence of either dithiothreitol or tri(2-carboxyethyl)phosphine to keep the thiol moieties reduced. These data show that the chemical nature of the thiol-reducing agent does not interfere with the thioether bond-forming mechanism. Mn-porphyrin could only react with the protein in the divalent state of the metal ion. Co-porphyrin did not react with the cysteine thiols of the apocytochrome in either oxidation state of the metal. In the absence of a metal (i.e. protoporphyrin IX itself), no reactivity toward apocytochrome is observed. These results have significant implications for the chemical requirements for thioether bond formation of heme vinyl groups to cysteine thiols and also have potential applications in de novo design of metalloproteins.  相似文献   

20.
In a previous study of T338C CFTR (cystic fibrosis transmembrane conductance regulator) we found that protons and thiol-directed reagents modified channel properties in a manner consistent with the hypothesis that this residue lies within the conduction path, but the observed reactivity was not consistent with the presence of a single thiolate species in the pore. Here we report results consistent with the notion that the thiol moiety can exist in at least three chemical states, the simple thiol, and two altered states. One of the altered states displays reactivity toward thiols like dithiothreitol and 2-mercaptoethanol as well as reagents: mixed disulfides (methanethiosulfonate reagents: MTSET+, MTSES-) and an alkylating agent (iodoacetamide). The other altered state is unreactive. The phenotype associated with the reactive, altered state could be replicated by exposing oocytes expressing T338C CFTR to CuCl2, but not by glutathionylation or nitrosylation of the thiol or by oxidation with hydrogen peroxide. The results are consistent with the hypothesis that substituting a cysteine at 338 can create an adventitious metal binding site. Metal liganding alters thiol reactivity and may, in some cases, catalyze oxidation of the thiol to an unreactive form such as a sulfinic or sulfonic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号