首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the roles of cytokines in the modulation of human immunodeficiency virus (HIV) production in chronically infected U937 cells upon in vitro differentiation by hydroxyvitamin D3. HIV-infected U937 cells exhibited markedly lower levels of CD4 and HLA-DR antigens than uninfected cells did. Vitamin D3 induced a time-dependent macrophagelike differentiation, as determined by monitoring the expression of some surface antigens by means of the monoclonal antibodies OKM1, OKM5, OKM13, OKM14, OKT4, anti-HLA-DR, TecMG2, TecMG3, LeuM3, LeuM1, anti-HLA-DP, and anti-HLA-DQ. Treatment with hydroxyvitamin D3 resulted in a marked increase in HIV production compared with control cultures. Interleukin 1 beta (IL-1 beta) and tumor necrosis factor alpha (TNF-alpha) were detected in the culture media, whereas interferon (IFN) was not generally found. Using the polymerase chain reaction technique, we found HIV-infected U937 cells to express detectable levels of mRNAs for alpha interferon (IFN-alpha), IFN-beta, TNF-alpha, and IL-1 beta. The addition of TNF resulted in a marked increase of HIV production, whereas IL-1 beta was ineffective. In contrast, both IFN-alpha and IFN-beta exerted some inhibitory effect on HIV production, which was more marked in vitamin D3-treated cultures than in untreated cultures. HIV production was significantly increased by antibodies to IFN-alpha in both untreated and vitamin D3-treated cultures. Anti-IFN-beta antibody increased HIV production only in vitamin D3-treated cells. In contrast, anti-TNF-alpha antibodies markedly decreased HIV production in both control and differentiating U937 cells. Vitamin D3 treatment resulted in a higher expression of TNF receptors in differentiating cells than in control HIV-infected cells. These data demonstrate a strong correlation between HIV production and macrophagelike differentiation in chronically infected U937 cells and suggest that endogenous IFN and TNF exert opposite effects in the regulation of virus production in both undifferentiated and vitamin D3-treated cell cultures.  相似文献   

2.
Treatment of cells with tumor necrosis factor-alpha and interferon-gamma greatly reduces their susceptibility to infection with human immunodeficiency virus and suppresses the production of human immunodeficiency virus (HIV) mRNA, core protein p24, and infectious HIV. The combination treatment is cytotoxic for HIV-infected cells and reduces HIV RNA levels in chronically infected cells.  相似文献   

3.
B F Fernie  G Poli    A S Fauci 《Journal of virology》1991,65(7):3968-3971
Alpha interferon (IFN-alpha) is effective in preventing the release of human immunodeficiency virus (HIV) from chronically infected T-lymphocytic (ACH-2) and promonocytic (U1) cell lines stimulated with the phorbol ester phorbol-12-myristate-13 acetate (PMA). In the present study, we observed that together with particle production, shedding of HIV antigen (p24gag) occurs in the T-cell line ACH-2 both constitutively and after stimulation with PMA. IFN-alpha, although effective in suppressing the release of HIV particles, did not inhibit shedding of p24gag into the culture supernatants of either unstimulated or PMA-stimulated cells. These observations may be of relevance in the evaluation of the in vivo efficacy of IFN-alpha treatment of HIV-infected individuals as determined by levels of p24 antigen in plasma.  相似文献   

4.
5.
A novel strategy for anti-HIV therapy is the clearance of the residual infected cells from the body. Here, we show that 6-aminopurine, adenine, induced selective apoptosis toward HIV-1 producing chronically infected MOLT4 cells (MOLT4/HIV) without augmentation of virus production, whereas the growth of uninfected MOLT4 was stimulated. This selective apoptosis did not occur with other adenine nucleotides or with other bases. The purine ring and the amino residue of adenine were responsible for the apoptosis induction and selectivity, respectively. In addition, adenine slightly but consistently reduced viable cell numbers and the production of virus in a fraction of HIV-1 chronically infected human peripheral blood mononuclear cells (PBMCs/HIV) at day 7. On the other hand, blastogenic response of normal PBMCs to PHA, PWM and Candida albicans were potentiated in the presence of adenine. These results indicated that the effect of adenine may be attributable to activation-induced selective apoptosis toward virus-infected cells.  相似文献   

6.
7.
8.
BACKGROUND: IgE/anti-IgE immune complexes (IgE-IC) induce the release of multiple mediators from monocytes/macrophages and the monocytic cell line U937 following the ligation of the low-affinity Fc epsilon receptors (Fc epsilon RII/CD23). These effects are mediated through an accumulation of cAMP and the generation of L-arginine-dependent nitric oxide (NO). Since high IgE levels predict more rapid progression to acquired immunodeficiency syndrome, we attempted to define the effects of IgE-IC on human immunodeficiency virus (HIV) production in monocytes. MATERIALS AND METHODS: Two variants of HIV-1 chronically infected monocytic U1 cells were stimulated with IgE-IC and virus replication was quantified. NO and cAMP involvement was tested through the use of agonistic and antagonistic chemicals of these two pathways. RESULTS: IgE-IC induced p24 production by U1 cells with low-level constitutive expression of HIV-1 mRNAs and extracellular HIV capsid protein p24 levels (U1low), upon their pretreatment with interleukin 4 (IL-4) or IL-13. This effect was due to the crosslinking of CD23, as it was reversed by blocking the IgE binding site on CD23. The IgE-IC effect could also be mimicked by crosslinking of CD23 by a specific monoclonal antibody. p24 induction by IgE-IC was then shown to be due to CD23-mediated stimulation of cAMP, NO, and tumor necrosis factor alpha (TNF alpha) generation. In another variant of U1 cells with > 1 log higher constitutive production of p24 levels (U1high), IgE-IC addition dramatically decreased all cell functions tested and accelerated cell death. This phenomenon was reversed by blocking the nitric oxide generation. CONCLUSIONS: These data point out a regulatory role of IgE-IC on HIV-1 production in monocytic cells, through CD23-mediated stimulation of cAMP and NO pathways. IgE-IC can also stimulate increased cell death in high HIV producing cells through the NO pathway.  相似文献   

9.
A chimeric toxin made by a genetic fusion between the DNA encoding the 389 N-terminal amino acids of diphtheria toxin and that coding for the V1 and V2 domains of human CD4 (amino acids 1-178) was produced, purified and examined for ADP ribosylation activity, gp120 binding and effects on acutely and chronically HIV infected cells. The fusion toxin DAB389CD4 possesses enzymatic activity and binds to gp120. DAB389CD4 was found to kill CEM and U937 cells infected by HIV selectively and efficiently in a dose dependent manner, however, fusion toxin treatment did not eliminate the virus from acutely infected cell cultures. In addition, treatment of chronically infected cells with DAB389CD4 rapidly led to the appearance of HIV infected cells which were resistant to the chimeric toxin. The experimental results reported here suggest that the potential use of gp120 targeted cytotoxic agents for the treatment of HIV infection should be viewed with caution.  相似文献   

10.
11.
Immune control of human immunodeficiency virus (HIV) is not restored by highly active antiretroviral therapies (HAART) during chronic infection. We examined the capacity of repeated structured therapeutic interruptions (STI) to restore HIV-specific CD4 and CD8 T-cell responses that controlled virus production. Eleven STI (median duration, 7 days; ranges, 4 to 24 days) were performed in three chronically HIV-infected patients with CD4 counts above 400/mm(3) and less than 200 HIV RNA copies/ml after 18 to 21 months of HAART; treatment resumed after 1 week or when virus became detectable. HIV-specific T-cell responses were analyzed by proliferation, gamma interferon (IFN-gamma) production, and enzyme-linked immunospot assays. Seven virus rebounds were observed (median, 4,712 HIV-1 RNA copies/ml) with a median of 7 days during which CD4 and CD8 counts did not significantly change. After treatment resumed, the viral load returned below 200 copies/ml within 3 weeks. Significant CD4 T-cell proliferation and IFN-gamma production against HIV p24 appeared simultaneously with or even before the virus rebounds in all patients. These CD4 responses lasted for less than 3 weeks and disappeared before therapeutic control of the virus had occurred. Increases in the numbers of HIV-specific CD8 T cells were delayed compared to changes in HIV-specific CD4 T-cell responses. No delay or increase in virus doubling time was observed after repeated STI. Iterative reexposure to HIV during short STI in chronically infected patients only transiently mobilized HIV-specific CD4 T1-helper cells, which might be rapidly altered by virus replication. Such kinetics might explain the failure at delaying subsequent virus rebounds and raises concerns about strategies based on STI to restore durable HIV-specific T-cell responses in chronic HIV infection.  相似文献   

12.
13.
Nef is a multifunctional gene of HIV which can increase virus replication either directly or by modulating the target cell's metabolism. Nevertheless the role of the exogenous Nef protein is not yet well understood. To investigate it, we studied the effects of the recombinant Nef protein on the expression of some antigens of lymphoid T‐cells permissive to HIV‐1 replication, and on their proliferation and on apoptosis induction. For this purpose, we utilised MT‐4 and H9 T‐cell lines. We evaluated FN (fibronectin), CD4 and CD71 expression in uninfected and acutely or chronically infected cells, both untreated and treated with Nef. Our studies showed a significant up‐regulation of FN especially in uninfected cells, with a dose of 2·5 μg ml−1; in contrast, a significant down‐modulation of CD4 and CD71 both in uninfected and in acutely or chronically infected cells, was detected. The proliferation of H9 uninfected cells was significantly reduced 24 h after treatment with Nef protein in a dose‐dependent manner (ranging from 0·02 to 2·5 μg ml−1); likewise a significant inhibition of proliferation of acutely and chronically infected cells was evident with 2·5 μg ml−1. Moreover, we demonstrated a dose‐dependent activity of Nef on inducing apoptosis in H9 uninfected cells and no effects of this protein on modulation of INF α and γ production in peripheral blood mononucleated cells of health donors. Nef appeared to be able to increase the effect of apoptotic stimuli. In conclusion, our data suggest that in our experimental system, the exogenous Nef protein can inhibit cellular synthesis facilitating the metabolic pathway involved in virus replication. In addition it modulates the susceptibility to the HIV‐1 infection and finally, that apoptosis induction or enhancement can facilitate the release of neoformed virions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
15.
BACKGROUND: Cytokines and cytokine antagonists modulate human immunodeficiency virus (HIV) replication in vitro and may be involved in HIV disease pathogenesis. An understanding of these cytokine networks may suggest novel treatment strategies for HIV-seropositive persons. MATERIALS AND METHODS: U1 cells, a chronically infected promonocytic cell line, were stimulated with interleukin 1 alpha (IL-1 alpha), IL-1 beta or tumor necrosis factor (TNF) for 24 hr. The effects of these cytokines, and of anti-IL-1 receptor type 1 and type 2 (IL-1RI and II) antibody, IL-1 receptor antagonist (IL-1Ra), and recombinant human TNF binding protein type 1 (rhTBP-1, a form of TNF receptor p55), on HIV-1 replication, as measured by ELISA for HIV-1 p24 antigen, were determined. The effects of IL-1 and IL-1Ra on nuclear factor-kappa B (NF-kappa B) DNA binding activity, as measured by electrophoretic mobility shift assays, were also determined. RESULTS: IL-1 alpha and IL-1 beta increased p24 antigen production in a concentration-dependent manner. IL-1Ra completely, and rhTBP-1 partially, suppressed IL-1-induced p24 antigen production. IL-1 increased NF-kappa B DNA binding activity and IL-1Ra blocked this effect. Since IL-1Ra blocks IL-1 from binding to both the IL-1RI and Il-1RII, monoclonal antibodies directed against each receptor were used to ascertain which IL-1R mediates IL-1-induced HIV-1 expression. Antibody to the IL-1RI reduced IL-1-induced p24 antigen production. Although anti-IL-1RII antibody blocked the binding of 125IL-1-1 alpha to U1 cells by 99%, this antibody did not affect IL-1-induced p24 antigen production. IL-1 beta enhanced TNF alpha-induced HIV expression when added before or simultaneously with TNF alpha. CONCLUSIONS: IL-1 induces HIV-1 expression (via the IL-1RI) and NF-kappa B activity in U1 cells. These effects are blocked by IL-1Ra and partially mediated by TNF. IL-1 enhances TNF alpha-induced HIV replication in U1 cells.  相似文献   

16.
17.
18.
Spleen cells from mice with chronic Trypanosoma cruzi infection generate a minimal plaque-forming response to SRBC in vitro. Addition of granulocyte-macrophage (GM)-CSF to cultures of spleen cells from chronically infected mice restored the plaque-forming cells (PFC) response to normal levels. Splenic adherent cells from chronically infected mice were deficient in their ability to reconstitute the PFC response of accessory cell-depleted normal spleen cells. Preincubation of splenic adherent cells from infected mice with GM-CSF restored their ability to reconstitute the PFC response of adherent cell depleted cultures. Ia Ag expression by splenic adherent cells from chronically infected mice was significantly lower compared to Ia Ag expression of cells from normal mice. Incubation of splenic adherent cells from chronically infected mice for 48 h with GM-CSF increased levels of Ia Ag expression to approximately those of uninfected mice. Peritoneal macrophages from infected mice produced IL-1 after incubation with GM-CSF at levels equivalent to those produced by similarly treated control macrophages. Spleen cells from chronically infected mice showed significant induction of IL-2 mRNA after GM-CSF treatment, and the addition of the anti-IL-2 mAb to GM-CSF supplemented cultures of spleen cells from infected mice blocked the restoration of the anti-SRBC PFC response. Thus, the ability of GM-CSF to restore the anti-PFC response to SRBC appears to involve the up-regulation of accessory cell function that includes increased Ia Ag expression and the induction of IL-1 production. These events also involve increased IL-2 production with resultant up-regulation of the response to SRBC by spleen cells from infected mice. Finally, it was shown that treatment of infected mice with rGM-CSF completely restored their depressed PFC production in vivo.  相似文献   

19.
The effect of recombinant protein from the envelope (gp120) of the HIV on B lymphocytes purified from either HIV-infected individuals or healthy seronegative controls was examined. B cells from peripheral blood and lymph nodes of HIV-infected individuals spontaneously secreted TNF-alpha; this secretion was augmented by the presence of gp120, whereas B cells from healthy seronegative donors failed to secrete significant levels of TNF-alpha in the presence or absence of gp120. In a coculture system of B cells and chronically HIV-infected T cells (ACH-2), where viral expression is largely mediated by TNF-alpha, gp120 increased virus expression only if the B cells were obtained from HIV-infected individuals. The effects of gp120 on viral expression in this system were not mediated via CD4 receptor binding or FcR binding of anti gp120-gp120 immune complexes. Besides its effect on cytokine production, gp120 also stimulated Ig secretion in B cells from HIV-infected individuals, but not from normal donors. Finally, it was demonstrated by in situ hybridization that germinal centers of lymph nodes from HIV-infected individuals contain large amounts of HIV RNA that is in close proximity to germinal center B cells. These findings suggest that the hyperplastic germinal centers of lymph nodes provide an unique environment for virus expression and accumulation where gp120 stimulates B cells to secrete HIV inductive cytokines, such as IL-6 and TNF-alpha, and thereby further enhances virus expression in infected cells in a paracrine manner.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号