首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In coronary resistance vessels, endothelium-derived hyperpolarizing factor (EDHF) plays an important role in endothelium-dependent vasodilation. EDHF has been proposed to be formed through cytochrome P-450 monooxygenase metabolism of arachidonic acid (AA). Our hypothesis was that AA-induced coronary microvascular dilation is mediated in part through a cytochrome P-450 pathway. The canine coronary microcirculation was studied in vivo (beating heart preparation) and in vitro (isolated microvessels). Nitric oxide synthase (NOS) (N(omega)-nitro-L-arginine, 100 microM) and cyclooxygenase (indomethacin, 10 microM) or cytochrome P-450 (clotrimazole, 2 microM) inhibition did not alter AA-induced dilation. However, when a Ca(2+)-activated K(+) channel channel or cytochrome P-450 antagonist was used in combination with NOS and cyclooxygenase inhibitors, AA-induced dilation was attenuated. We also show a negative feedback by NO on NOS-cyclooxygenase-resistant AA-induced dilation. We conclude that AA-induced dilation is attenuated by cytochrome P-450 inhibitors, but only when combined with inhibitors of cyclooxygenase and NOS. Therefore, redundant pathways appear to mediate the AA response in the canine coronary microcirculation.  相似文献   

2.
The role of nitric oxide (NO), K(+) channels, and arachidonic acid metabolism, via cytochrome P450 and cyclooxygenase pathways, in the renal vasodilatory effect of bradykinin was examined in the isolated rat kidney perfused ex situ with a blood-free solution. Bradykinin (BK, 0.25-1.0 microM) induced a dose-dependent reduction of 10-35% in the relative renal vascular resistance (rRVR) of isolated kidneys preconstricted with phenylephrine (PHE, 0.17-0.35 microM). The vasodilating effect of 0.5 microM bradykinin was significantly inhibited by the nitric oxide synthase inhibitors, N(G)-nitro-L-arginine (95% inhibition) and N(G)-nitro-L-arginine methyl ester (45-75% inhibition). Clotrimazole, an inhibitor of cytochrome P450 pathway but not indomethacin, a cyclooxygenase inhibitor, reduced the renal vasodilator response to bradykinin by 84%. The nonspecific K(+) channel inhibitor, tetraethylammonium ion (TEA) and the selective inhibitor of Ca(2+)-activated K(+) channels, charybdotoxin (ChTX) greatly attenuated the vasodilator response to bradykinin by approximately 84% and 79%, respectively. These two K(+) channel inhibitors showed similar effects on vasodilatation induced by S-nitroso-acetyl-D,L-penicillamine (1 microM), a nitric oxide donor. The results suggest that bradykinin releases nitric oxide which, by opening potassium channels specifically the Ca(+)-dependent type, mediates the renal vasodilator response to bradykinin in the isolated kidney perfused ex situ.  相似文献   

3.
Myocardial infarction (MI) is associated with endothelial dysfunction resulting in an imbalance in endothelium-derived vasodilators and vasoconstrictors. We have previously shown that despite increased endothelin (ET) plasma levels, the coronary vasoconstrictor effect of endogenous ET is abolished after MI. In normal swine, nitric oxide (NO) and prostanoids modulate the vasoconstrictor effect of ET. In light of the interaction among NO, prostanoids, and ET combined with endothelial dysfunction present after MI, we investigated this interaction in control of coronary vasomotor tone in the remote noninfarcted myocardium after MI. Studies were performed in chronically instrumented swine (18 normal swine; 13 swine with MI) at rest and during treadmill exercise. Furthermore, endothelial nitric oxide synthase (eNOS) and cyclooxygenase protein levels were measured in the anterior (noninfarcted) wall of six normal and six swine with MI. eNOS inhibition with N(ω)-nitro-L-arginine (L-NNA) and cyclooxygenase inhibition with indomethacin each resulted in coronary vasoconstriction at rest and during exercise, as evidenced by a decrease in coronary venous oxygen levels. The effect of l-NNA was slightly decreased in swine with MI, although eNOS expression was not altered. Conversely, in accordance with the unaltered expression of cyclooxygenase-1 after MI, the effect of indomethacin was similar in normal and MI swine. L-NNA enhanced the vasodilator effect of the ET(A/B) receptor blocker tezosentan but exclusively during exercise in both normal and MI swine. Interestingly, this effect of L-NNA was blunted in MI compared with normal swine. In contrast, whereas indomethacin increased the vasodilator effect of tezosentan only during exercise in normal swine, indomethacin unmasked a coronary vasodilator effect of tezosentan in MI swine both at rest and during exercise. In conclusion, the present study shows that endothelial control of the coronary vasculature is altered in post-MI remodeled myocardium. Thus the overall vasodilator influences of NO as well as its inhibition of the vasoconstrictor influence of ET on the coronary resistance vessels were reduced after MI. In contrast, while the overall prostanoid vasodilator influence was maintained, its inhibition of ET vasoconstrictor influences was enhanced in post-MI remote myocardium.  相似文献   

4.
A significant endothelium-dependent vasodilation persists after inhibition of nitric oxide synthase (NOS) and cyclooxygenase (COX) in the coronary vasculature, which has been linked to the activation of cytochrome P-450 (CYP) epoxygenases expressed in endothelial cells and subsequent generation of vasodilator epoxyeicosatrienoic acids. Here, we investigated the contribution of CYP 2C9 metabolites to regulation of porcine coronary vasomotor tone in vivo and in vitro. Twenty-six swine were chronically instrumented. Inhibition of CYP 2C9 with sulfaphenazole (5 mg/kg iv) alone had no effect on bradykinin-induced endothelium-dependent coronary vasodilation in vivo but slightly attenuated bradykinin-induced vasodilation in the presence of combined NOS/COX blockade with N(ω)-nitro-L-arginine (20 mg/kg iv) and indomethacin (10 mg/kg iv). Sulfaphenazole had minimal effects on coronary resistance vessel tone at rest or during exercise. Surprisingly, in the presence of combined NOS/COX blockade, a significant coronary vasodilator response to sulfaphenzole became apparent, both at rest and during exercise. Subsequently, we investigated in isolated porcine coronary small arteries (~250 μm) the possible involvement of reactive oxygen species (ROS) in the paradoxical vasoconstrictor influence of CYP 2C9 activity. The vasodilation by bradykinin in vitro in the presence of NOS/COX blockade was markedly potentiated by sulfaphenazole under control conditions but not in the presence of the ROS scavenger N-(2-mercaptoproprionyl)-glycine. In conclusion, CYP 2C9 can produce both vasoconstrictor and vasodilator metabolites. Production of these metabolites is enhanced by combined NOS/COX blockade and is critically dependent on the experimental conditions. Thus production of vasoconstrictors slightly outweighed the production of vasodilators at rest and during exercise. Pharmacological stimulation with bradykinin resulted in vasodilator CYP 2C9 metabolite production when administered in vivo, whereas vasoconstrictor CYP 2C9 metabolites, most likely ROS, were dominant when administered in vitro.  相似文献   

5.
Vasoactive mediators play an important role in the control of coronary vascular tone. Arachidonic acid (AA) metabolites and endothelium-derived vasoactive factors have been implicated in coronary vasoregulation. AA can be metabolized via three separate routes in blood vessels, mediated by cyclooxygenase, lipoxygenase, and cytochrome P-450-dependent monooxygenase enzymes. AA can evoke endothelium-dependent relaxations that are due in part to the formation of cytochrome P-450-dependent metabolites, inasmuch as drugs that modify cytochrome P-450 activity produce parallel changes in endothelium-dependent relaxations to AA. Moreover, some cytochrome P-450-derived metabolites formed biologically cause relaxations of isolated blood vessels. A cytochrome P-450-dependent pathway does not appear to contribute to endothelium-dependent relaxations induced by acetylcholine, which suggests that there may be a number of endothelium-derived relaxing factors (EDRFs). In addition, two endothelium-derived contractile factors have been described, including an unidentified cyclooxygenase metabolite of AA and a polypeptide isolated from cultured cells. As both prostaglandin I2 and acetylcholine-induced EDRF also inhibit platelet aggregation, endothelial injury and loss of these factors may predispose to vasospasm precipitated by release of platelet-derived mediators such as thromboxane A2 (TXA2) and 5-hydroxytryptamine. Unstable angina may be a clinical syndrome in which these events occur, which can be alleviated by inhibition of platelet activation and TXA2 formation with aspirin. Attenuation of endothelium-dependent relaxations can also occur without loss of endothelial cells. Neutrophil-endothelium interactions, precipitated by an ischemic episode, may initiate endothelial dysfunction and underlie the development of vasospasm in some conditions. Whether increased production of endothelium-derived contractile factors also occurs in vasospastic conditions remains to be determined.  相似文献   

6.
20-Hydroxyeicosatetraenoic acid (20-HETE), a cytochrome p-450 metabolite of arachidonic acid, is a vasoconstrictor in the systemic circulation and a vasodilator in the adult pulmonary circulation. Little is known about the vasoactive properties of 20-HETE in the newborn pulmonary circulation. The objectives of this study were to determine the vascular effects of 20-HETE and to explore the signaling mechanism(s) that mediate these effects in newborn pulmonary resistance-level arteries (PRA). Our findings demonstrate that, in contrast to the adult pulmonary circulation where 20-HETE mediates vasodilation, it causes constriction in newborn PRA at resting tone. Furthermore, inhibition of cyclooxygenase (COX) with indomethacin augments 20-HETE-induced constriction. The enhanced constrictor response to 20-HETE under conditions of COX inhibition is abolished in endothelium-disrupted PRA, suggesting that 20-HETE either stimulates endothelium-derived COX to release a counteracting vasodilator or is rapidly metabolized by COX to a less potent vasoconstrictor. 20-HETE-induced constriction is significantly inhibited by blocking calcium-dependent K(+) (K(Ca)) channels and the thromboxane-PGH(2) receptor. Altogether, our data indicate that the vascular actions of 20-HETE are partially mediated via the activation of K(Ca) channels and are significantly modulated by interactions with the COX-prostaglandin pathway.  相似文献   

7.
Hydrogen peroxide, a relatively stable reactive oxygen species, is known to elicit vasodilation, but its underlying mechanism remains elusive. Here, we examined the role of endothelial nitric oxide (NO), prostaglandin, cytochrome P-450-derived metabolites, and smooth muscle potassium channels in coronary arteriolar dilation to abluminal H2O2. Pig subepicardial coronary arterioles (50-100 microm) were isolated and pressurized without flow for in vitro study. Arterioles developed basal tone and dilated dose dependently to H2O2 (1-100 microM). Disruption of th endothelium and inhibition of cyclooxygenase (COX) by indomethacin produced identical attenuation of vasodilation to H2O2. Conversely, the vasodilation to H2O2 was not affected by either the NO synthase inhibitor NG-nitro-l-arginine methyl ester or the cytochrome P-450 enzyme blocker miconazole. Inhibition of the COX-1, but not the COX-2 pathway, attenuated H2O2-induced dilation similarly to indomethacin. The production of prostaglandin E2 (PGE2), but not prostaglandin I2, from coronary arterioles was significantly increased by H2O2. Furthermore, inhibition of PGE2 receptors with AH-6809 attenuated vasodilation to H2O2 similar to that produced by indomethacin. In the absence of a functional endothelium, H2O2-induced dilation was attenuated, in an identical manner, by a depolarizing agent KCl and a calcium-activated potassium (KCa) channel inhibitor iberiotoxin. However, PGE2-induced dilation was not affected by iberiotoxin. The endothelium-independent dilation to H2O2 was also insensitive to the inhibition of guanylyl cyclase, lipoxygenase, ATP-sensitive potassium channels, and inward rectifier potassium channels. These results suggest that H2O2 induces endothelium-dependent vasodilation through COX-1-mediated release of PGE2 and also directly relaxes smooth muscle by hyperpolarization through KCa channel activation.  相似文献   

8.
Adrenic acid (docosatetraenoic acid), an abundant fatty acid in the vasculature, is produced by a two-carbon chain elongation of arachidonic acid. Despite its abundance and similarity to arachidonic acid, little is known about its role in the regulation of vascular tone. Gas chromatography/mass spectrometric analysis of bovine coronary artery and endothelial cell lysates revealed arachidonic acid concentrations of 2.06 +/- 0.01 and 6.18 +/- 0.60 microg/mg protein and adrenic acid concentrations of 0.29 +/- 0.01 and 1.56 +/- 0.16 microg/mg protein, respectively. In bovine coronary arterial rings preconstricted with the thromboxane mimetic U-46619, adrenic acid (10(-9)-10(-5) M) induced concentration-related relaxations (maximal relaxation = 83 +/- 4%) that were similar to arachidonic acid relaxations. Adrenic acid relaxations were blocked by endothelium removal and the K(+) channel inhibitor, iberiotoxin (100 nM), and inhibited by the cyclooxygenase inhibitor, indomethacin (10 microM, maximal relaxation = 53 +/- 4%), and the cytochrome P-450 inhibitor, miconazole (10 microM, maximal relaxation = 52 +/- 5%). Reverse-phase HPLC and liquid chromatography/mass spectrometry isolated and identified numerous adrenic acid metabolites from coronary arteries including dihomo (DH)-epoxyeicosatrienoic acids (EETs) and DH-prostaglandins. DH-EET [16,17-, 13,14-, 10,11-, and 7,8- (10(-9)-10(-5) M)] induced similar concentration-related relaxations (maximal relaxations averaged 83 +/- 3%). Adrenic acid (10(-6) M) and DH-16,17-EET (10(-6) M) hyperpolarized coronary arterial smooth muscle. DH-16,17-EET (10(-8)-10(-6) M) activated iberiotoxin-sensitive, whole cell K(+) currents of isolated smooth muscle cells. Thus, in bovine coronary arteries, adrenic acid causes endothelium-dependent relaxations that are mediated by cyclooxygenase and cytochrome P-450 metabolites. The adrenic acid metabolite, DH-16,17-EET, activates smooth muscle K(+) channels to cause hyperpolarization and relaxation. Our results suggest a role of adrenic acid metabolites, specifically, DH-EETs as endothelium-derived hyperpolarizing factors in the coronary circulation.  相似文献   

9.
Withdrawal of the endothelin (ET)-mediated vasoconstrictor influence contributes to metabolic coronary vasodilation during exercise. Because production of nitric oxide (NO) and prostanoids increases with increasing shear stress and because NO and prostanoids are able to modify the release of ET, we hypothesized that the withdrawal of ET-mediated coronary vasoconstriction during exercise is mediated through NO and/or prostanoids. To test this hypothesis, 19 chronically instrumented swine were studied at rest and while running on a treadmill up to 85-90% of maximal heart rate. Blockade of ET(A)/ET(B) receptors with tezosentan resulted in an increase in coronary venous O(2) levels (i.e., in coronary vasodilation) at rest, which waned at increasing levels of exercise intensity. Inhibition of either NO synthase [N(omega)-nitro-l-arginine (l-NNA)] or cyclooxygenase (indomethacin) did not affect the response to tezosentan under resting conditions but unmasked a vasodilator response to tezosentan during exercise. The vasodilator response to tezosentan during exercise increased progressively after combined administration of l-NNA and indomethacin. These findings suggest that NO and prostanoids act synergistically to inhibit the vasoconstrictor influence of ET on the coronary circulation during exercise, thereby facilitating the exercise-induced vasodilation of coronary resistance vessels.  相似文献   

10.
The vascular effects of 7-epiclusianone on the rat aorta were investigated. In the rat aortic rings with functional endothelia, 7-epiclusianone up to 10microM induced a concentration-dependent vasodilatation of the sustained contractions induced by phenylephrine (0.3microM). At concentrations higher than 10microM, 7-epiclusianone induced a concentration-dependent contraction in the aortic rings. The vasodilator effect of 7-epiclusianone was drastically decreased with L-NAME (100microM) as well as in endothelium-denuded aortic rings. Moreover, indomethacin (10microM) induced a significant shift to the left in the vasodilator but did not modify the vasoconstrictor effect of 7-epiclusianone. In arteries without pre-contraction, 7-epiclusianone (3-100microM) induced concentration-dependent contraction only in endothelium-intact and in the presence of L-NAME (100microM). This effect was inhibited by indomethacin (10microM) and ZM230487 (1microM), selective inhibitors of cyclooxygenase and of 5-lipoxygenase, respectively. We can conclude that at low concentrations 7-epiclusianone induces an endothelium-dependent vasodilator effect in rat aortic rings. At higher concentrations and in conditions where NO synthase was inhibited, 7-epiclusianone induces a vasocontractile effect. Nitric oxide seems to participate in the vasodilatation, while endothelial cyclooxygenase- and 5-lipoxygenase-derived products play a role in the vasoconstrictor effect.  相似文献   

11.
The vascular effects of adenosine triphosphate (ATP) were examined in the isolated perfused mesenteric arteries of the rabbit. Bolus injections of ATP (1 X 10(-8) to 10(-6) mol) induced a dose-dependent vasoconstrictor response at resting perfusion pressure, while continuous perfusion with ATP briefly elicited a vasoconstrictor response which was not maintained. Perfusion with phentolamine (2.65 X 10(-6) M, an alpha-adrenergic receptor blocker), indomethacin (8.37 X 10(-6) M, an inhibitor of cyclooxygenase), atropine (1 X 10(-7) M, a muscarinic receptor blocker), and hydralazine (2 X 10(-4) M, a vascular smooth muscle inhibitor) for a period of 1 h had no effect on vasoconstrictor responses to ATP. However, pretreatment with reserpine (2 mg X kg-1 X day-1 for 2 days), an agent which depletes catecholamines, potentiated responses to ATP. On the other hand, when vascular tone was increased with an isoosmotic 60 mM K+ depolarizing Krebs bicarbonate solution, bolus injections of ATP elicited a prominent dose-dependent vasoconstriction followed by a prominent vasodilation. The degree of vasodilation but not of vasoconstriction elicited by ATP was greater in small terminal arteries with branches (less than 0.5 mm outside diameter (o.d.) ) than in the medium size arteries (less than or equal to 1 mm o.d.) without terminal branches. Both the vasoconstrictor and vasodilator responses were unaffected by a perfusion with atropine, indomethacin, or eicosatetraynoic acid (ETYA, 1 X 10(-4) M) for 1-2 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
This study aimed to determine whether PGI(2) would be evoked by the endogenous endothelial B(2) receptor agonist bradykinin (BK) in the porcine interlobular renal artery and, if so, to determine how it would influence the vasomotor reaction, and the specific cyclooxygenase (COX) isoform(s) involved in its synthesis. The production of the PGI(2) metabolite 6-keto-PGF(1α) was analyzed with HPLC-mass spectroscopy, while vasomotor reaction to PGI(2) or BK was determined with isometric force measurement. Results showed that BK evoked an increase in the production of 6-keto-PGF(1α), which was abolished by endothelial denudation that removed COX-1 expression, or was reduced by COX-1 inhibition. Interestingly, PGI(2) evoked a potent contraction, which was prevented by antagonizing thromboxane-prostanoid (TP) receptors and was not enhanced by antagonizing the vasodilator PGI(2) (IP) receptors. The IP receptor agonists MRE-269 and iloprost did not induce any relaxation. Moreover, iloprost, which is also a PGI(2) analog, caused a contraction, which was sensitive to TP receptor antagonism, but was to a significantly lesser extent than that of PGI(2). Indeed, IP receptors were not detected by RT-PCR or Western blotting in the vessel. Following nitric oxide synthase (NOS) inhibition, BK also evoked an endothelium-dependent contraction, which was blocked by TP receptor antagonism. In addition, inhibition of COX-1 (but not COX-2) impeded the vasoconstrictor activity of BK and expedited the relaxation induced by the agonist in NOS-intact vessels. These results demonstrate that in the porcine interlobular renal artery BK evokes endothelial COX-1-mediated PGI(2) synthesis, which mainly leads to the activation of TP receptors and a vasoconstrictor response, possibly due to a scarcity of vasodilator activity mediated by IP receptors. Also, our data suggested that the effect of a PGI(2) analog on TP receptors could be reduced compared with that of PGI(2) due to modified structure as with iloprost.  相似文献   

13.
Neurotensin (NT) infusions into isolated, electrically-driven hearts of guinea pigs, elicited concentration-dependent reductions of myocardial perfusion pressure accompanied by proportional increases of myocardial tension. The decrease of myocardial perfusion pressure caused by NT (attributed to the coronary vasodilator effect of NT) was highly dependent on basal (pre-NT infusions) levels of perfusion pressure, being larger at high perfusion pressure (e.g., 75 mmHg) values than at lower ones (e.g., 50 and 25 mmHg). The perfusion pressure-lowering effect on NT was potentiated and inhibited by neostigmine and atropine, respectively. It was slightly inhibited by methysergide. However, it was not affected by propranolol, indomethacin or a mixture of diphenhydramine and cimetidine. The decreases of myocardial perfusion pressure caused by NT were abolished by NT receptor desensitization, while those evoked by acetylcholine or vasoactive intestinal peptide (VIP) were minimally affected by the desensitization. These results indicate that NT exerts a vasodilator effect in guinea pig coronary vessels. This effect is likely to involve the participation of acetylcholine released from NT-stimulated cardiac cholinergic (vagal) neurons and/or nerve terminals and to be mediated by specific NT receptors. The possible contribution of intracardiac serotonin and/or its receptors to the coronary vasodilator effect of NT is discussed.  相似文献   

14.
While myogenic force in response to a changing arterial pressure has been described early in the 20th century, it was not until 1984 that the effect of a sequential increase in intraluminal pressure on cannulated cerebral arterial preparations was found to result in pressure-dependent membrane depolarization associated with spike generation and reduction in lumen diameter. Despite a great deal of effort by different laboratories and investigators, the identification of the existence of a mediator of the pressure-induced myogenic constriction in arterial muscle remained a challenge. It was the original finding by our laboratory that demonstrated the capacity of cerebral arterial muscle cells to express the cytochrome P-450 4A enzyme that catalyzes the formation of the potent vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE) from arachidonic acid, the production of which in cerebral arterial muscle cells increases with the elevation in intravascular pressure. 20-HETE activates protein kinase C and causes the inhibition of Ca(2+)-activated K(+) channels, depolarizes arterial muscle cell membrane, and activates L-type Ca(2+) channel to increase intracellular Ca(2+) levels and evoke vasoconstriction. The inhibition of 20-HETE formation attenuates pressure-induced arterial myogenic constriction in vitro and blunts the autoregulation of cerebral blood flow in vivo. We suggest that the formation and action of cytochrome P-450-derived 20-HETE in cerebral arterial muscle could play a critically important role in the control of cerebral arterial tone and the autoregulation of cerebral blood flow under physiological conditions.  相似文献   

15.
Nitric oxide (NO) plays a key role in regulating vascular tone. Mice overexpressing endothelial NO synthase [eNOS-transgenic (Tg)] have a 20% lower systemic vascular resistance (SVR) than wild-type (WT) mice. However, because eNOS enzyme activity is 10 times higher in tissue homogenates from eNOS-Tg mice, this in vivo effect is relatively small. We hypothesized that the effect of eNOS overexpression is attenuated by alterations in NO signaling and/or altered contribution of other vasoregulatory pathways. In isoflurane-anesthetized open-chest mice, eNOS inhibition produced a significantly greater increase in SVR in eNOS-Tg mice compared with WT mice, consistent with increased NO synthesis. Vasodilation to sodium nitroprusside (SNP) was reduced, whereas the vasodilator responses to phosphodiesterase-5 blockade and 8-bromo-cGMP (8-Br-cGMP) were maintained in eNOS-Tg compared with WT mice, indicating blunted responsiveness of guanylyl cyclase to NO, which was supported by reduced guanylyl cyclase activity. There was no evidence of eNOS uncoupling, because scavenging of reactive oxygen species (ROS) produced even less vasodilation in eNOS-Tg mice, whereas after eNOS inhibition the vasodilator response to ROS scavenging was similar in WT and eNOS-Tg mice. Interestingly, inhibition of other modulators of vascular tone [including cyclooxygenase, cytochrome P-450 2C9, endothelin, adenosine, and Ca-activated K(+) channels] did not significantly affect SVR in either eNOS-Tg or WT mice, whereas the marked vasoconstrictor responses to ATP-sensitive K(+) and voltage-dependent K(+) channel blockade were similar in WT and eNOS-Tg mice. In conclusion, the vasodilator effects of eNOS overexpression are attenuated by a blunted NO responsiveness, likely at the level of guanylyl cyclase, without evidence of eNOS uncoupling or adaptations in other vasoregulatory pathways.  相似文献   

16.
Isolated perfused hearts of rats and guinea pigs reacted to arachidonic acid (AA) with coronary vasoconstriction followed by vasodilatation. The infusion of prostacyclin (PGI2), Iloprost, hydralazine (HYD), and nifedipine (NFP) elicited a vasodilatation that nullified the coronary flow reserve, therefore the AA-induced vasodilatation was abolished. Dipyridamole (DPY) and 1-methyl-3-isobutylxanthine (MIX) produced a slight coronary dilatation without restricting the dilatation induced by AA. Regardless of their vasodilator action, all these drugs acted by inhibiting the AA-induced coronary constriction, while their infusion lasted. We postulated that a thromboxane-like substance, formed from AA in the vascular walls, would be responsible for the coronary vasoconstriction caused by AA. The inhibition of the AA-induced coronary constriction by PGI2, Iloprost, HYD, NFP, DPY, and MIX may be explained by an inhibitory action of these drugs on the synthetic processes of the thromboxane-like substance.  相似文献   

17.
We previously demonstrated that uridine adenosine tetraphosphate (Up4A) induces potent and partially endothelium-dependent relaxation in the healthy porcine coronary microvasculature. We subsequently showed that Up4A-induced porcine coronary relaxation was impaired via downregulation of P1 receptors after myocardial infarction. In view of the deleterious effect of metabolic derangement on vascular function, we hypothesized that the coronary vasodilator response to Up4A is impaired in metabolic derangement, and that the involvement of purinergic receptor subtypes and endothelium-derived vasoactive factors (EDVFs) is altered. Coronary small arteries, dissected from the apex of healthy swine and swine 6 months after induction of diabetes with streptozotocin and fed a high-fat diet, were mounted on wire myographs. Up4A (10?9–10?5 M)-induced coronary relaxation was maintained in swine with metabolic derangement compared to normal swine, despite impaired endothelium-dependent relaxation to bradykinin and despite blunted P2X7 receptor and NO-mediated vasodilator influences of Up4A. Moreover, a thromboxane-mediated vasoconstrictor influence was unmasked. In contrast, an increased Up4A-mediated vasodilator influence via P2Y1 receptors was observed, while, in response to Up4A, cytochrome P450 2C9 switched from producing vasoconstrictor to vasodilator metabolites in swine with metabolic derangement. Coronary vascular expression of A2A and P2X7 receptors as well as eNOS, as assessed with real-time PCR, was reduced in swine with metabolic derangement. In conclusion, although the overall coronary vasodilator response to Up4A was maintained in swine with metabolic derangement, the involvement of purinergic receptor subtypes and EDVF was markedly altered, revealing compensatory mechanisms among signaling pathways in Up4A-mediated coronary vasomotor influence in the early phase of metabolic derangement. Future studies are warranted to investigate the effects of severe metabolic derangement on coronary responses to Up4A.  相似文献   

18.
Control mechanisms operating through a cytochrome P-450 system have emerged lately as a possible important determinant of pulmonary hemodynamics. Their action may be expressed in the adjustment of vascular tone under both physiologic and pathophysiologic conditions. One such condition is the pulmonary constrictor response to hypoxia. The identity of the effector agent, or agents, is not known, though there are data implicating monooxygenase products of arachidonic acid. From this premise, we wanted to evaluate the effect of cytochrome P-450 inhibitors on basal pulmonary vascular tone during normoxia, and their effect upon hypoxic pulmonary vasoconstriction response. Experiments were performed in an isolated, perfused lung preparation from 1- and 7-day-old piglets, and the effects of two cytochrome P-450 inhibitors (metyrapone and ketoconazole) were tested on the perfusion pressure. At 10(-5) and 10(-4) M, metyrapone caused a modest, but significant, increase in pulmonary pressure (p less than 0.05) in 7-day-old preparations, while it was without effect in the 1-day-old preparation. Similarly, ketoconazole at concentrations from 10(-6) M upwards increased the perfusion pressure in the older animal (p less than 0.01). Responses to the inhibitors were not seen in preparations that had been pretreated with a cyclooxygenase inhibitor (indomethacin, 2.8 x 10(-6) M) or a dual cyclooxygenase-lipoxygenase inhibitor (BW755C, 10(-5) M). Hypoxic vasoconstriction was marginally enhanced by 10(-4) M metyrapone, while it was affected inconsistently by 10(-5) M ketoconazole. We conclude that vasoactive agents formed through cytochrome P-450 reactions have a minor role, or no role at all, in the control of pulmonary hemodynamics in the newborn pig.  相似文献   

19.
The endothelium-dependent (acetylcholine, bradykinin, substance P) and the endothelium-independent (gliceryl trinirate, 3-morpholinsydnominine, sodium nitroprusside) vasodilators were studied in the Langendorff-perfused heart of the guinea pig. The involvement of prostanoids and EDRF in the endothelium-dependent responses were assessed by using indomethacin, an inhibitor of cyclooxygenase, and NG-nitro-L-Arginine, an inhibitor of NO synthase. The endothelium-independent agents were used as reference compounds. Both indomethacin and NG-nitro-L-Arginine elevated significantly baseline coronary perfusion pressure, indicating that prostanoids (most likely PGI2 and PGE2) and EDRF modulate the resting tone of the guinea pig coronary circulation. NG-nitro-L-Arginine, but not indomethacin, considerably reduced receptor-stimulated responses. It is concluded that acetylcholine, bradykinin or substance P-induced vasodilation is mediated by EDRF. In contrast, prostanoids do not contribute to endothelium-dependent responses. In addition, short-term tachyphylaxis to bolus injection of gliceryl trinitrate but not of sodium nitroprusside was demonstrated, suggesting that this preparation may be of value for studying nitrate tolerance.  相似文献   

20.
The effects of peroxynitrite (ONOO-) on vascular responses were investigated in the systemic and hindquarters vascular bed and in the isolated perfused rat lung. Intravenous injections of ONOO- decreased systemic arterial pressure, and injections of ONOO- into the hindquarters decreased perfusion pressure in a dose-related manner. Injections of ONOO- into the lung perfusion circuit increased pulmonary arterial perfusion pressure. Responses to ONOO- were rapid in onset, short in duration, and repeatable without exhibiting tachyphylaxis. Repeated injections of ONOO- did not alter systemic, hindquarters, or pulmonary responses to endothelium-dependent vasodilators or other vasoactive agonists and did not alter the hypoxic pulmonary vasoconstrictor response. Injections of sodium nitrate or nitrite or decomposed ONOO- had little effect on vascular pressures. Pulmonary and hindquarters responses to ONOO- were not altered by a cyclooxygenase inhibitor in a dose that attenuated responses to arachidonic acid. These results demonstrate that ONOO- has significant pulmonary vasoconstrictor, systemic vasodepressor, and vasodilator activity; that short-term repeated exposure does impair vascular responsiveness; and that responses to ONOO- are not dependent on cyclooxygenase product release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号