首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscarinic receptor-linked increases in intracellular free Ca2+ as measured with quin-2 and Ca2+ release from monolayers of cells have been measured in the human neuroblastoma cell line SH-SY5Y. Induction of differentiation with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) leads to a decrease in the sensitivity of the cells to low concentrations of agonists with respect to the induced increase in cytosolic free Ca2+ and stimulation of Ca2+ efflux. No decrease in agonist binding affinity was observed when the displacement of a labelled antagonist, 3H-NMS, by a non-labelled agonist was studied.  相似文献   

2.
The relationship between muscarinic receptor activation of phosphoinositide hydrolysis and the sequestration of cell surface muscarinic receptors has been examined for both intact and digitonin-permeabilized human SK-N-SH neuroblastoma cells. Addition of the aminosteroid 1-[6-[[17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino] hexyl]-1H-pyrrole-2,5-dione (U-73122) to intact cells resulted in the inhibition of oxotremorine-M-stimulated inositol phosphate release and of Ca2+ signaling by greater than 75%. In contrast, when phospholipase C was directly activated by the addition of the calcium ionophore ionomycin, inclusion of U-73122 had little inhibitory effect. Addition of U-73122 to intact cells also inhibited the agonist-induced sequestration of cell surface muscarinic receptors and their subsequent down-regulation with an IC50 value (4.1 microM) similar to that observed for inhibition of inositol phosphate release (3.7 microM). In contrast, when oxotremorine-M-stimulated phosphoinositide hydrolysis was inhibited by depletion of extracellular Ca2+, no reduction in the extent of receptor sequestration was observed. When introduced into digitonin-permeabilized cells, U-73122 more markedly inhibited inositol phosphate release elicited by either oxotremorine-M or guanosine-5'-O-(3-thiotriphosphate) than that induced by added Ca2+. Addition of oxotremorine-M to permeabilized cells resulted in muscarinic receptor sequestration and down-regulation. Both the loss of muscarinic acetylcholine receptors and activation of phosphoinositide hydrolysis in permeabilized cells were inhibited by the inclusion of guanosine-5'-O-(2-thiodiphosphate). The results indicate that the agonist-induced sequestration of muscarinic acetylcholine receptor in SK-N-SH cells requires the involvement of a GTP-binding protein but not the production of phosphoinositide-derived second messenger molecules.  相似文献   

3.
Muscarinic acetylcholine receptors (mAchRs) are guanosine nucleotide-binding protein (G protein) coupled receptors that crosstalk with receptor tyrosine kinases (RTKs) to signal mitogenic pathways. In particular, mAchRs are known to couple with RTKs for several growth factors to activate the mammalian target of rapamycin (mTOR)/Akt pathway, a regulator of protein synthesis. The RTK for the vascular endothelial growth factor (VEGF), VEGFR2, can signal protein synthesis but whether it cooperates with mAchRs to mediate mTOR activation has not been demonstrated. Using serum starved SK-N-SH neuroblastoma cells, we show that the muscarinic receptor agonists carbachol and pilocarpine enhance the activation of the mTOR substrate p70 S6 Kinase (S6K) and its target ribosomal protein S6 (S6) in a VEGFR2 dependent manner. Treatments with carbachol increased VEGFR2 phosphorylation, suggesting that mAchRs stimulate VEGFR2 transactivation to enhance mTOR signaling. Inhibitor studies revealed that phosphatidylinositol 3 kinase resides upstream from S6K, S6 and Akt phosphorylation while protein kinase C (PKC) functions in an opposing fashion by positively regulating S6K and S6 phosphorylation and suppressing Akt activation. Treatments with the phosphatase inhibitors sodium orthovanadate and okadaic acid increase S6, Akt and to a lesser extent S6K phosphorylation, indicating that tyrosine and serine/threonine dephosphorylation also regulates their activity. However, okadaic acid elicited a far greater increase in phosphorylation, implicating phosphatase 2A as a critical determinant of their function. Finally, pilocarpine but not carbachol induced a time and dose dependent cell death that was associated with caspase activation and oxidative stress but independent of S6K and S6 activation through VEGFR2. Accordingly, our findings suggest that mAchRs crosstalk with VEGFR2 to enhance mTOR activity but signal divergent effects on survival through alternate mechanisms.  相似文献   

4.
1. Muscarinic acetylcholine receptors in a plasma-membrane fraction derived from mouse neuroblastoma clone NIE-115 bind [3-3H]quinuclidinyl benzilate according to the Law of Mass Action (Kdissociation 40 pM, h0.96). 2. Antagonist and agonist binding to the receptor was studied by displacement of [3-3H]quinuclidinyl benzilate with non-radioactive ligands. The data show good agreement with similar data obtained on rat brain and ideal smooth muscle [Birdsall & Hulme (1976) J. Neurochem. 27, 7-16] indicating that the receptor is very similar in these three tissues.  相似文献   

5.
6.
J Baumgold  R Paek  T Yasumoto 《Life sciences》1992,50(23):1755-1759
Stimulation of m1 and of m3 muscarinic receptors has previously been shown to increase intracellular cAMP levels in a variety of cells. Although the mechanism underlying this response is not fully understood, it has been hypothesized to be secondary to the IP3-mediated rise in intracellular calcium. In order to determine whether other means of elevating intracellular calcium also raise cAMP levels, we stimulated SK-N-SH human neuroblastoma cells with bradykinin or with maitotoxin. Both of these agents stimulated phospholipase C, stimulated inositol phosphate release and elevated cAMP levels, thus demonstrating that this cAMP response is not unique to muscarinic receptor stimulation.  相似文献   

7.
The effects of caffeine on receptor-controlled Ca2+ mobilization and turnover of inositol phosphates in human neuroblastoma SK-N-SH cells were studied. Caffeine inhibited both the rise in cytosolic Ca2+ concentration ([Ca2+]i) evoked by muscarinic receptor agonists and the total production of inositol phosphates in a dose-dependent manner, but to different extents. At 10 mM, caffeine inhibited agonist-evoked generation of inositol phosphates almost completely, whereas the agonist-evoked [Ca2+]i rise remained observable after caffeine treatment, in the absence or presence of extracellular Ca2+. Raising the cytosolic cAMP concentration increased the carbachol-induced [Ca2+]i rise, and this effect was abolished in the presence of caffeine. Our data suggested that caffeine may exert two effects on receptor-controlled Ca2+ mobilization: 1) inhibition of inositol phosphate production, 2) augmentation of the size of the releasable Ca2+ pool by elevating cytosolic cAMP concentration.  相似文献   

8.
Carbamate esters are widely used as pesticides and can cause neurotoxicity in humans and animals; the exact mechanism is still unclear. In the present investigation, the effects of carbamates at sublethal concentration on neurite outgrowth and cytoskeleton as well as activities of acetylcholinesterase (AChE) and neuropathy target esterase (NTE) in differentiating human SK-N-SH neuroblastoma cells were studied. The results showed that 50 microM of either aldicarb or carbaryl significantly decreased neurite length in the retinoic acid-induced differentiation of the neuroblastoma cells, compared to cells treated with vehicle. Western blot analyses revealed that neither carbamate had significant effects on the levels of actin, or total neurofilament high molecular proteins (NF-H). However, increased NF-H phosphorylation was observed following carbamate treatment. These changes may represent a useful in vitro marker of carbamate neurotoxicity within a simple model of neuronal cell differentiation. Furthermore, activity of AChE, but not NTE, was significantly inhibited by aldicarb and carbaryl in differentiating cells, which suggested that cytoskeletal protein changes induced by carbamate esters in differentiating cells was associated with inhibition of AChE but not NTE.  相似文献   

9.
The main physiological role of somatostatin (SST) is the control of hormone secretion. Recently, SST has been shown to exert antiproliferative effects on some human tumors via both direct and indirect mechanisms. We have previously found that in the human neuroblastoma cell line SY5Y the SST analogue lanreotide (BIM 23014) inhibited serum-stimulated cell proliferation and MAP kinase activity. Here, we examine the effect of SST on PDGF-induced Ras activation. We found that SST suppressed PDGF-induced Ras activation in a pertussis toxin (PTx)-independent and peroxovanadate-dependent manner. Ras-specific GTPase activating protein (GAP) activities were not altered by SST treatment. On the contrary, PDGF-induced PDGF receptor phosphorylation was decreased by SST in a PTx-independent, peroxovanadate-dependent manner, likely accounting for the SST-mediated inhibition of PDGF-induced Ras activation.  相似文献   

10.
Baek YM  Hwang HJ  Kim SW  Hwang HS  Lee SH  Kim JA  Yun JW 《Proteomics》2008,8(22):4748-4767
The endogenous ROS levels were increased during HepG2 apoptosis, whereas they were decreased during SK-N-SH apoptosis in response to capsaicin treatments. We used 2-DE-based proteomics to analyze the altered protein levels in both cells, with special attention on oxidative stress proteins before and after capsaicin treatments. The 2-DE analysis demonstrated that 23 proteins were increased and 26 proteins were decreased significantly (fold change>1.4) in capsaicin-treated apoptotic HepG2 and SK-N-SH cells, respectively. The distinct effect of capsaicin-induced apoptosis on the expression pattern of HepG2 proteins includes the downregulation of some antioxidant enzymes including aldose reductase (AR), catalase, enolase 1, peroxiredoxin 1, but upregulation of peroxiredoxin 6, cytochrome c oxidase, and SOD2. In contrast, most antioxidant enzymes were increased in SK-N-SH cells in response to capsaicin, where catalase might play a pivotal role in maintenance of low ROS levels in the course of apoptosis. The global gene expression for oxidative stress and antioxidant defense genes revealed that 84 gene expressions were not significantly different in HepG2 cells between control and capsaicin-treated cells. In contrast, a number of oxidative genes were downregulated in SK-N-SH cells, supporting the evidence of low ROS environment in apoptotic SK-N-SH cells after capsaicin treatment. It was concluded that the different relationship between endogenous ROS levels and apoptosis of two cancer cells presumably resulted from complicated expression patterns of many oxidative stress and antioxidant genes, rather than the individual role of some classical antioxidant enzymes such as SOD and catalase.  相似文献   

11.
Our previous studies have demonstrated that ginsenoside Rg1 is a novel class of potent phytoestrogen and can mimic the action of estradiol in stimulation of MCF-7 cell growth by the crosstalk between insulin-like growth factor-I receptor (IGF-IR)-dependent pathway and estrogen receptor (ER)-dependent pathway. The present study was designed to investigate the neuroprotective effects of ginsenoside Rg1 against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in human neuroblastoma SK-N-SH cells and the possible mechanisms. Pre-treatment with ginsenoside Rg1 resulted in an enhancement of survival, and significant rescue occurred at the concentration of 0.01 μM on cell viability against 6-OHDA-induced neurotoxicity. These effects could be completely blocked by IGF-IR antagonist JB-1 or ER antagonist ICI 182780. 6-OHDA arrested the cells at G0G1 phase and prevented S phase entry. Rg1 pre-treatment could reverse the cytostatic effect of 6-OHDA. Ginsenoside Rg1 also could attenuate 6-OHDA-induced decrease in mitochondrial membrane potential. These effects could also be completely blocked by JB-1 or ICI 182780. Furthermore, 6-OHDA-induced up-regulation of Bax and down-regulation of Bcl-2 mRNA and protein expression could be restored by Rg1 pre-treatment. Rg1 pre-treatment could reverse the down-regulation of ERα protein expression induced by 6-OHDA treatment. Cells transfected with the estrogen responsive element (ERE)-luciferase reporter construct exhibited significantly increased ERE-luciferase activity in the Rg1 presence, suggesting that the estrogenic effects of Rg1 were mediated through the endogenous ERs. These results suggest that ginsenoside Rg1 may attenuate 6-OHDA-induced apoptosis and its action might involve the activation of IGF-IR signaling pathway and ER signaling pathway.  相似文献   

12.
Although previous pharmacological and biochemical data support the notion that muscarinic acetylcholine receptors (mAChR) form homo- and heterodimers, the existence of mAChR oligomers in live cells is still a matter of controversy. Here we used bioluminescence resonance energy transfer to demonstrate that M(1), M(2), and M(3) mAChR can form constitutive homo- and heterodimers in living HEK 293 cells. Quantitative bioluminescence resonance energy transfer analysis has revealed that the cell receptor population in cells expressing a single subtype of M(1), M(2), or M(3) mAChR is predominantly composed of high affinity homodimers. Saturation curve analysis of cells expressing two receptor subtypes demonstrates the existence of high affinity M(1)/M(2), M(2)/M(3), and M(1)/M(3) mAChR heterodimers, although the relative affinity values were slightly lower than those for mAChR homodimers. Short term agonist treatment did not modify the oligomeric status of homo- and heterodimers. When expressed in JEG-3 cells, the M(2) receptor exhibits much higher susceptibility than the M(3) receptor to agonist-induced down-regulation. Coexpression of M(3) mAChR with increasing amounts of the M(2) subtype in JEG-3 cells resulted in an increased agonist-induced down-regulation of M(3), suggesting a novel role of heterodimerization in the mechanism of mAChR long term regulation.  相似文献   

13.
Long-term treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) down-regulates select protein kinase C (PKC) isozymes and may differentially affect PKC substrates. We investigated the role of PKC down-regulation on phosphorylation of two PKC substrates, the 43 kDa growth-associated protein (GAP-43) and the myristoylated alanine-rich C-kinase substrate (MARCKS) in SK-N-SH human neuroblastoma cells. Cells were treated with 70 nM TPA for 15 min, 17 or 72 h. Phosphorylation of MARCKS and GAP-43 was elevated throughout 72 h of TPA. The magnitude and peptidic sites of phosphorylation in GAP-43 and MARCKS were similar after all TPA treatments. GAP-43, but not MARCKS, content was increased after 17 and 72 h of TPA. The ratio of GAP-43 phosphorylation to content was elevated throughout 17 h but returned to control by 72 h as content increased. PKC epsilon and alpha isozyme content was greatly reduced after 72 h of TPA but membranes retained 23% of PKC activity. Only PKC epsilon translocated to membranes after 15 min TPA. GAP-43 content after 72 h of TPA was increased in subcellular fractions in which significant PKC epsilon isozyme concentration remained. These results demonstrate that continuous TPA differentially affected phosphorylation of PKC substrate proteins and regulation of PKC isozyme content in SK-N-SH cells.  相似文献   

14.
Side reactions which may affect the determination of phosphatidate phosphatase activity were investigated in rat liver cytosol and microsomes. Incubation of these subcellular fractions with either 14C-labeled phosphatidate bound to microsomal membranes (PAmb) or that coemulsified with microsomal lipids resulted in rapid formation of water-soluble products, most of which were identified as glycerol, in addition to diacylglycerol. Neither lysophosphatidate nor glycerol 3-phosphate accumulated under any of the conditions used and only a minute amount of activity catalyzing hydrolysis of glycerol 3-phosphate could be detected in cytosol and microsomes, suggesting that glycerol was not formed by the deacylation of phosphatidate to glycerol 3-phosphate and subsequent dephosphorylation. On the other hand, pretreatment of cytosol or microsomes with diisopropylfluorophosphate abolished the formation of water-soluble products, indicating that glycerol was formed from diacylglycerol, the product of the phosphatidate phosphatase reaction, by lipase-type activities. Rapid deacylation of diacylglycerol by these subcellular fractions was also observed with an emulsion of phosphatidate, which has been purified from the total lipid extract of PAmb as substrate. The rate of hydrolysis of diacylglycerol was maximum when the concentration of diacylglycerol was less than 20 microM with either cytosol or microsomes. The present results suggest that it is essential to characterize the reaction products before employing specific assay conditions for phosphatidate phosphatase. At least under the conditions we tested, reliable measurement of the enzyme activity in rat liver cytosol and microsomes can be achieved only by determining the release of Pi or that of water-soluble activity from 32P-labeled phosphatidate.  相似文献   

15.
Calmodulin (CaM) mediates the Ca(2+)-dependent activation of many enzyme systems in accordance with its cellular localization. We have described previously a muscarinic receptor-mediated translocation of CaM from membranes into the cytosol of SK-N-SH human neuroblastoma cells. To explore the potential targets (CaM-binding proteins, CaMBP) for CaM upon translocation, a photoreactive CaM derivative was introduced into living SK-N-SH cells using a scrape-loading technique. Scrape-loading incorporated rhodamine isothiocyanate-labeled CaM with an efficiency of 38%. CaM-diazopyruvamide (CaM-DAP), a Ca(2+)-dependent and CaM-specific probe, was also introduced into the cells. The muscarinic agonist carbachol stimulated a translocation of CaM from membranes into cytosol in CaM-DAP-loaded SK-N-SH cells. Upon photochemical cross-linking, cross-linked adducts of CaM-CaMBP were detected by immunoblotting with anti-CaM antibody. Carbachol stimulated increased photoaffinity labeling of three proteins with relative adduct molecular masses of 70, 120, and 180 kDa. The time course of labeling for the 70- and 120-kDa adducts showed maximal increased by 15-30 min. The 180-kDa adduct displayed a slower time course of maximal labeling, with increases maintained for 2-4 h. Subtracting the molecular mass of CaM, carbachol stimulated binding to CaMBPs of 55, 105, and 163 kDa. Predominant cellular CaMBP were identified using a biotinylated CaM overlay procedure. Western blot analysis indicated the expression of specific CaM-dependent enzymes such as calcineurin, phosphodiesterase, the beta-isoform (rat brain) of CaM kinase II, and Ca(2+)-ATPase. Numerous cytoskeletal CaMBP were expressed such as microtubule-associated protein-2, spectrin, tubulin, caldesmon, adducin, and neuromodulin. Of the CaMBP expressed, phosphodiesterase, calcineurin, caldesmon, and adducin cross-linked with CaM-DAP in the loaded SK-N-SH cells. Carbachol stimulated the time-dependent CaM-DAP labeling of calcineurin and adducin. This study demonstrates the novel incorporation of a photoreactive CaM derivative into living cells, as well as muscarinic receptor-activated CaM-DAP interaction with several cellular CaMBP. We postulate that carbachol-stimulated CaM translocation in SK-N-SH cells may affect the activity of CaM-dependent enzymes and may alter aspects of cytoskeletal function.  相似文献   

16.
The ability of muscarinic receptors, present in either the cell surface or sequestered compartments of intact human SK-N-SH neuroblastoma cells, to stimulate phosphoinositide hydrolysis has been examined. When cells were first exposed to carbachol for 1 h at 37 degrees C, approximately 50% of the cell surface receptors became sequestered, and this was accompanied by a comparable reduction in the subsequent ability of muscarinic agonists to stimulate phosphoinositide turnover, as monitored by the release of labeled inositol phosphates at 10 degrees C. At this temperature, muscarinic receptor cycling between the two cell compartments is prevented. Upon warming the carbachol-pretreated cells to 37 degrees C, receptor cycling is reinitiated and stimulated phosphoinositide turnover is fully restored within 5-8 min. When measured at 10 degrees C, the reduction of stimulated phosphoinositide turnover observed following carbachol pretreatment was similar in magnitude for both hydrophilic (carbachol, oxotremorine-M) and lipophilic (arecoline, oxotremorine-2, and L-670,548) agonists. The loss of response for both groups of agonists could be prevented if the incubation temperature was maintained at 37 degrees C, rather than at 10 degrees C. At the latter temperature carbachol pretreatment of SK-N-SH cells reduced the maximum release of inositol phosphates elicited by either carbachol or L-670,548 but not the agonist concentrations required for half-maximal stimulation. Radioligand binding studies, carried out at 10 degrees C, indicate that following receptor sequestration, significantly higher concentrations of carbachol were required to occupy the available muscarinic receptor sites. In contrast the lipophilic full agonist L-670,548 recognized receptors present in control and carbachol-pretreated cells with comparable affinities. Analysis of the inositol lipids present after carbachol pretreatment indicate that only a minimal depletion of the substrates necessary for phospholipase C activation had occurred. The results indicate that the agonist-induced sequestration of muscarinic receptors from the cell surface results in a loss of stimulated phosphoinositide hydrolysis when measured under conditions in which the return of the sequestered receptors to the cell surface is prevented. Thus, only those receptors present at the cell surface are linked to phospholipase C activation.  相似文献   

17.
When SK-N-SH human neuroblastoma cells were exposed to nicotine (NIC) or KCl they showed a dose-dependent transient increase (2- to 4-fold) in intracellular Ca2+ concentration ([Ca2+])i as detected by quin-2 fluorescence, with half maximal effects (EC50) observed at 13 microM and 26 mM, respectively. Tubocurarine and 1-isodihydrohistrionicotoxin potently blocked the NIC-evoked (IC50 congruent to 1 microM and 0.3 microM, respectively), but not the high [K+]o-evoked [Ca2+]i accumulation. The KCl-induced response was inhibited by verapamil and diltiazem (IC50 = 1.4 and 10.9 microM, respectively). Tetrodotoxin (3 microM) and tetraethylammonium (10 microM) had no effect on [Ca2+]i accumulation induced by either agent. Increases in [Ca2+]i could be evoked sequentially by NIC and KCl in the same cells suggesting independent mechanisms of Ca2+ entry. In a Ca2+-free medium, no response to either KCl or NIC was observed. However, when Ca2+ ions were restored, [Ca2+]i accumulation was enhanced to the same extent as cells suspended in a Ca2+-containing buffer. Long-term (18 hr) pretreatment of SK-N-SH cells with pertussis (100 ng/ml) or cholera toxins (10 nM) had no effect on NIC or KCl-induced [Ca2+]i accumulation. Together, these data demonstrate the presence of NIC receptors and voltage-sensitive Ca2+ channels on SK-N-SH neuroblastoma cells, through which [Ca2+]i may be modulated.  相似文献   

18.
Gel-filtered human platelets were stimulated with 5i.u. of thrombin/ml for times up to 1 min. The fatty acid composition of inositol-containing phospholipids, phosphatidic acid and diacylglycerol was determined by g.l.c. in control and thrombin-stimulated platelet suspensions. Inositol phospholipids were found to have similar proportions of stearic and arachidonic acids, the sum of these representing 86.6% of the total fatty acids in phosphatidylinositol (PtdIns), 76.9% in phosphatidylinositol 4-phosphate (PtdIns4P) and 85.4% in phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. However, arachidonic and stearic acids were less abundant in phosphatidic acid (PtdA) and diacylglycerols in non-stimulated platelets. A transient decrease in the mass of PtdIns(4,5)P2 was observed after 5-10s of thrombin stimulation, followed by an increase after 30s. The amounts of PtdIns4P and PtdIns decreased throughout the experiment. A transient accumulation of stearoylarachidonoylglycerol was observed at 5s, whereas stearoylarachidonoylglycerol 3-phosphate (PtdA) was produced in increasing amounts throughout the experiment. The decrease in inositol-containing phospholipids was not fully compensated for by the production of diacylglycerol or PtdA [or PtdIns(4,5)P2] at 1 min. All the changes in inositol phospholipids, as well as those observed in diacylglycerols and PtdA, were due to a parallel reduction or increase in the contents of stearic and arachidonic acids, with a stoichiometry equal to 1. Taken together, this suggests an interconversion of all these lipids with the utilization of a common backbone, stearoylarachidonoylglycerol. The deacylation of this diacylglycerol could account for up to 4-5nmol of arachidonate/10(9) platelets after 1 min stimulation by thrombin.  相似文献   

19.
20.
Many recent reports have indicated that the effect of the phorbol ester tumor promoters is mediated through the Ca2+/phospholipid dependent protein kinase C. We have investigated the effect of two biologically active phorbol esters, 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) and 4 beta-phorbol 12 beta,13 alpha-didecanoate (beta PDD) on muscarinic agonist binding and receptor-stimulated phosphoinositide breakdown in cultured human neuroblastoma (SH-SY5Y) cells. Preincubation of these cells with phorbol esters significantly reduced the carbachol-stimulated breakdown of inositol phospholipids and caused a decrease of agonist affinity for [3H](-)methyl quinuclidinyl benzilate ([3H](-)MQNB) binding without affecting the affinity of antagonist to the muscarinic receptor. The nontumor promoting 4 alpha-phorbol 12 beta,12 alpha-didecanoate (alpha PDD) was ineffective in our studies. These results suggest that the activation of protein kinase C may play an important role in regulating the muscarinic receptor system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号