首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dopamine D2 receptor binding subunits of the porcine anterior pituitary were visualized by autoradiography following photoaffinity labeling with [125I]N-azidophenethylspiperone and sodium dodecyl-sulfate polyacrylamide gel electrophoresis. The ligand binding subunit comprising the pituitary D2 dopamine receptor migrated as two distinct bands of apparent Mr approximately equal to 150,000 and 118,000, substantially higher than neuronal D2 receptor subunits from porcine or canine brain. The glycoprotein nature of pituitary D2 receptor binding subunits was investigated by the use of exo- and endo-glycosidase treatments and peptide mapping experiments. Photoaffinity labeled polypeptides of the anterior pituitary were susceptible to both neuraminidase and alpha-mannosidase digestion as indexed by their increased electrophoretic mobility on sodium dodecyl-sulfate polyacrylamide gels, and suggests the presence of both complex type and terminal mannose carbohydrate residues. Moreover, the additive effects of sequential treatment with these enzymes suggests that both types of carbohydrate chains are present on each receptor peptide. N-linked deglycosylation of pituitary D2 photolabeled receptors with glycopeptidase-F produced a further increase in the mobility of the labeled protein to apparent Mr approximately equal to 44,000, similar to that of deglycosylated D2 binding subunits of porcine and canine brain. Peptide mapping experiments following limited proteolysis with Staphylococcus aureus V8 proteinase and papain demonstrated that deglycosylated D2 dopamine receptors (Mr = 44,000), in different tissues and species, were homologous. Taken together, these data suggest that despite the differences in the overall molecular weight and tissue specific glycosylation pattern of pituitary D2 dopamine receptors, the primary structure of mammalian D2 receptors appears to be conserved.  相似文献   

2.
The ligand binding subunit of the D2 subtype of the dopamine receptor has been identified by photoaffinity labeling. In order to develop a specific covalent receptor probe, an analogue of the potent D2 selective antagonist spiperone, N-(p-aminophenethyl)spiperone (NAPS) has been synthesized. The aminophenethyl substituent of NAPS can be radioiodinated to theoretical specific radioactivity (2,175 Ci/mmol) and then the arylamine group converted to an arylazide to yield a photosensitive probe [( 125I]N3-NAPS). In rat striatal membranes, the nonradiolabeled azide probe (N3-NAPS) binds to the receptor with high affinity (KD congruent to 1.6 +/- 0.05 nM) and upon photoactivation irreversibly decreases the number of available receptors in these membranes as measured by [3H]spiperone binding. More importantly, however, incubation of rat striatal membranes with [125I]N3-NAPS leads to the photodependent covalent incorporation of the probe into a peptide of Mr = 94,000 as assessed by autoradiography of gels after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Labeling of this Mr = 94,000 peptide can be blocked specifically and stereoselectively by dopaminergic antagonists such as (+)- and (-)-butaclamol but not by non-dopaminergic antagonists. Moreover, dopaminergic agonists also attenuate the covalent labeling of this peptide with an order of potency which is typically D2-dopaminergic. Therefore, the specificity of [125I]N3-NAPS labeling of the Mr = 94,000 peptide suggests that this peptide represents the ligand binding subunit of the D2-dopamine receptor.  相似文献   

3.
We have previously shown that the cholecystokinin (CCK)-binding proteins in rat pancreatic plasma membranes consist of a major Mr 85,000 and minor Mr 55,000 and Mr 130,000 species as revealed by affinity labeling with 125I-CCK-33 using the cross-linker, disuccinimidyl suberate. The glycoprotein nature of these species was investigated using endoglycosidase F (endo F) and neuraminidase treatment and wheat germ agglutinin-agarose chromatography. Treatment of affinity-labeled membranes with endo F resulted in increased electrophoretic mobilities of all three binding proteins, indicating removal of N-linked oligosaccharide side chains. Endo F treatment of each protein in gel slices indicated the following cleavage relationships: Mr 85,000----65,000; Mr 55,000----45,000; Mr 130,000---- 110,000. Using limiting enzyme conditions to digest each protein contained in excised SDS gel slices, three and four products, respectively, were identified for the Mr 85,000 and 55,000 proteins. Similar treatment of the Mr 130,000 protein revealed only the Mr 110,000 product. These results indicated that the Mr 85,000 protein has at least three, the Mr 55,000 protein has at least four, and the Mr 130,000 protein has at least one, N-linked oligosaccharide side chain(s) on their polypeptide backbone. Neuraminidase treatment of affinity-labeled membranes caused slight increases in the electrophoretic mobilities of all three proteins, indicating the presence of sialic acid residues. Solubilization of affinity-labeled membranes in Nonidet P-40 followed by affinity chromatography on wheat germ agglutinin-agarose revealed that all three CCK-binding proteins specifically interact with this lectin and can be eluted with N-acetyl- D-glucosamine. Analysis of the proteins present in the eluted fractions by silver staining indicated a significant enrichment for proteins having molecular weights corresponding to the major CCK-binding proteins in comparison to the pattern of native membranes. Taken together, these studies provide definitive evidence that the CCK- binding proteins in rat pancreas are (sialo)glycoproteins.  相似文献   

4.
Cell surface receptors for immunoglobulin E were isolated by repetitive affinity chromatography from rat basophilic leukemia cells biosynthetically labeled with L-[35S]methionine and D-[3H]mannose. Native immunoglobulin E receptor appeared as a very broad band in the 45,000 to 62,000 Mr region in sodium dodecyl sulfate polyacrylamide gels. However, from cells cultured in the presence of tunicamycin, a relatively narrow band with an apparent Mr of 38,000 was isolated. The 38,000 Mr band rebound to immunoglobulin E-Sepharose, was immunoprecipitated with antibodies to immunoglobulin E receptor, shared tryptic peptides with native receptor, and was labeled with L-[35S]methionine but not D-[3H]mannose, and thus appears to be immunoglobulin E receptor lacking N-linked oligosaccharides. It is demonstrated that N-linked oligosaccharides account for much of the apparent heterogeneity of native receptor in sodium dodecyl sulfate polyacrylamide gels and in two-dimensional gel electrophoresis. A receptor-associated protein with apparent Mr = 30,000, prominently labeled with L-[35S]methionine but not with D-[3H]mannose, did not have altered molecular properties when isolated from tunicamycin-cultured cells, and did not share tryptic peptides with receptor.  相似文献   

5.
The glycoprotein nature of the ligand binding subunit of photoaffinity-labeled striatal D2 receptors was investigated. Upon photolysis, [125I]N-azidophenethylspiperone covalently incorporated into a major band of Mr 94000 with an appropriate pharmacological profile for D2 receptors as assessed by autoradiography following SDS-polyacrylamide gel electrophoresis. The exoglycosidase, neuraminidase, altered the electrophoretic mobility of the 94 kDa labeled band to 54 kDa with a slight modification in the binding affinity of [3H]spiperone. Endoglycosidase treatment (glycopeptidase-F) produced a further increase in the mobility of the 94 kDa peptide to approximately 43 kDa. A smaller specifically photolabeled D2 receptor peptide of 34 kDa does not contain terminal sialic acid but is an N-linked glycoprotein as assessed by lectin affinity chromatography and susceptibility to digestion by glycopeptidase-F to a peptide of approximately 23 kDa.  相似文献   

6.
A-431 cells were treated with inhibitors of either N-linked glycosylation (tunicamycin or glucosamine) or of N-linked oligosaccharide processing (swainsonine or monensin) to examine the glycosylation of epidermal growth factor (EGF) receptors and to determine the effect of glycosylation modification on receptor function. The receptor was found to be an Mr = 130,000 polypeptide to which a relatively large amount of carbohydrate is added co-translationally in the form of N-linked oligosaccharides. Processing of these oligosaccharides accounts for the 10,000-dalton difference in electrophoretic migration between the Mr = 160,000 precursor and Mr = 170,000 mature forms of the receptor. No evidence was found for O-linked oligosaccharides on the receptor. Mr = 160,000 receptors resulting from swainsonine or monensin treatment were present on the cell surface and retained full function, as judged by 125I-EGF binding to intact cells and detergent-solubilized extracts and by in vitro phosphorylation in the absence or presence of EGF. On the other hand, when cells were treated with tunicamycin or glucosamine, ligand binding was reduced by more than 50% in either intact cells or solubilized cell extracts. The Mr = 130,000 receptors synthesized in the presence of these inhibitors were not found on the cell surface. In addition, no Mr = 130,000 phosphoprotein was detected in the in vitro phosphorylation of tunicamycin or glucosamine-treated cells. It appears, therefore, that although terminal processing of N-linked oligosaccharides is not necessary for proper translocation or function of the EGF receptor, the addition of N-linked oligosaccharides is required.  相似文献   

7.
Affinity labeling of the rat pancreatic cholecystokinin (CCK) receptor with decapeptide probes has identified an Mr = 85,000-95,000 protein, distinct from the Mr = 80,000 component previously labeled with 125I-Bolton Hunter-CCK-33. We have characterized the carbohydrate composition of this novel protein labeled with 125I-D-Tyr-Gly-[(Nle28,31)-CCK-26-33] and disuccinimidyl suberate by using chemical and enzymatic deglycosylation and lectin chromatography. The Mr = 85,000-95,000 component was demonstrated to be an N-linked sialoglycoprotein based on neuraminidase digestion to Mr = 75,000-85,000 and endo-beta-N-acetylglucosaminidase F (Endo F) digestion to Mr = 42,000. This was distinct from the Mr = 65,000 product of Endo F digestion of the protein labeled with 125I-Bolton Hunter-CCK-33. Lack of an effect of endo-beta-N-acetylglucosaminidase H demonstrated the absence of N-linked simple oligosaccharides, while products of chemical deglycosylation with hydrogen fluoride and endo-alpha-N-acetylgalactosaminidase supported the absence of O-linked carbohydrate. The presence of at least four oligosaccharide chains on the core protein was suggested by Endo F digestion of the Mr = 85,000-95,000 protein using limiting enzyme conditions. This glycoprotein was retained on wheat germ agglutininagarose and eluted by N,N',N"-triacetylchitotriose. Identification of the Mr = 85,000-95,000 component on the ectodomain of the plasmalemma of intact pancreatic acini confirmed this to be the fully processed form of the CCK-binding protein.  相似文献   

8.
Biogenesis of the somatogenic receptor in rat liver   总被引:1,自引:0,他引:1  
Certain structural characteristics, in particular the type of oligosaccharide chains associated with the rat liver somatogenic (GH) receptors, were studied in different isolated organelles involved in receptor biosynthesis, maturation, and binding, with the use of ligand-affinity cross-linking, incubation with various oligosaccharide chain-cleaving enzymes, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In an endoplasmic reticulum-enriched fraction, a somatogenic receptor with Mr 33,000, after correction for bound ligand (assuming a 1:1 binding ratio of ligand to receptor) was found to contain N-linked high mannose oligosaccharide chain(s). In an intermediate density fraction, enriched in cis-Golgi, a major receptor of Mr 43,000 was found to contain N-linked complex type of oligosaccharide chains. In a low density membrane fraction, containing trans-Golgi complex membranes and endocytic vesicles, three receptors of Mr 95,000, 55,000, and 43,000 were found. These three receptors contain N-linked complex-type oligosaccharide chains. Neuraminidase treatment resulted in a decrease of the Mr 95,000 and 43,000 receptors to Mr 81,000 and 39,000, respectively. Two specific somatogenic receptors of Mr 95,000 and 43,000 containing N-linked complex type of oligosaccharides were found in an isolated plasma membrane-enriched fraction. When isolated hepatocytes were analyzed, the Mr 95,000 receptor was found to be the major labeled species. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis (first dimension nonreducing and the second dimension reducing conditions), showed that the Mr 43,000 receptor is contained within the Mr 95,000 receptor. The data suggest that the Mr 33,000 receptor found in endoplasmic reticulum constitutes a precursor to the Mr 43,000 receptor and that the Mr 43,000 receptor is complexed with an unknown subunit during transport through the Golgi complex to form an Mr 95,000 receptor present on the cell surface.  相似文献   

9.
Plasma membranes of 6-h differentiated Dictyostelium discoideum cells contain a cAMP-binding protein with the properties ascribed to the chemotaxis receptor present on these cells. We have purified this cAMP-binding protein using DEAE-Sephadex chromatography, hydrophobic chromatography on decylagarose and preparative polyacrylamide gel electrophoresis in nonionic detergent. Photoaffinity labeling of the DEAE-purified material with 8-azido-[32P] cAMP shows that only an Mr = 70,000 species on sodium dodecyl sulfate gels contains a cAMP-binding site. Two-dimensional polyacrylamide gel electrophoresis of material eluted from decyl-agarose and photoaffinity labeled indicates that the cAMP-binding protein is the most acidic of many Mr = 70,000 proteins present. This method is readily scaled up to process up to 10(11) cells which yield from 25 to 100 micrograms of cAMP-binding protein. Nucleotide specificity studies established that the cAMP-binding site of the protein is similar to that of the cAMP receptor assayed on intact cells and membranes. The rates of association and dissociation of the cAMP-binding protein are extremely rapid as found for the receptor, and its affinity for cAMP is comparable. The cAMP-binding protein is a concanavalin A binding glycoprotein, and is resistant to proteolysis by trypsin, but not chymotrypsin. Like the cAMP receptor in membranes and crude detergent extracts, this cAMP-binding protein is inhibited by phenylmethylsulfonyl fluoride. The purified binding protein exists in solution largely as a monomeric species, with some dimer being detected on gel filtration. Based on these criteria, we conclude that this cAMP binding protein represents the binding subunit of the cAMP chemotaxis receptor.  相似文献   

10.
A ligand affinity matrix has been developed and utilized to purify the dopamine D2 receptor approx. 2100 fold from bovine striatal membranes. 3-[2-Aminoethyl]-8-[3-(4-fluorobenzoyl)propyl]-4-oxo-1-phenyl-1,3,8- triazaspiro[4.5]decan-4-one (AES) was synthesized and used to prepare the affinity matrix by coupling to epoxy-activated Sepharose 6B (AES-Sepharose). AES (Ki approximately 1.7 nM) is similar in potency to the parent compound, spiperone (Ki approximately 0.8 nM), in competing for [3H]spiperone-binding activity. AES has no significant potency in competing for the dopamine D1 receptor as assessed by competition for [3H]SCH23390 binding (Ki greater than 1 microM). Covalent photoaffinity labeling of the dopamine D2 receptor in bovine striatal membranes with N-(p-azido-m-[125I]iodophenethyl)spiperone [( 125I]N3-NAPS) was prevented by AES at nanomolar concentrations. The dopamine D2 receptor was solubilized from bovine striatal membranes using 0.25% cholate in the presence of high ionic strength, followed by precipitation and subsequent treatment with 0.5% digitonin. Nearly 100% of the [3H]spiperone-binding activity in the cholate-digitonin solubilized preparation was absorbed at a receptor-to-resin ratio of 2:1 (v/v). Dopamine D2 receptor was eluted from the affinity resin using a competing dopaminergic antagonist molecule, haloperidol. Recovery of dopamine D2 receptor activity from the affinity matrix was approx. 9% of the activity adsorbed to the resin. The [3H]spiperone-binding activity in AES-Sepharose affinity purified preparations is saturable and of high affinity (0.2 nM). Affinity-purified preparations maintain the ligand-binding characteristics of a dopamine D2 receptor as assessed by agonist and antagonist competition for [3H]spiperone binding.  相似文献   

11.
In human fibroblasts, the receptor for low density lipoprotein (LDL) is synthesized as a precursor of apparent Mr = 120,000 which is converted to a mature form of apparent Mr = 160,000, as determined by migration in sodium dodecyl sulfate (SDS)-polyacrylamide gels (Tolleshaug, H., Goldstein, J. L., Schneider, W. J., and Brown, M. S. (1982) Cell 30, 715-724). The current paper describes the relationship of N- and O-glycosylation to this post-translational modification. Oligosaccharides were analyzed from precursor and mature forms of LDL receptors that had been immunoprecipitated from cells grown in media containing radioactive sugars. In human epidermoid carcinoma A-431 cells, the receptor precursor appears to contain one N-linked high mannose oligosaccharide and approximately 6-9 N-acetylgalactosamine residues linked O-glycosidically to Ser/Thr residues. In the mature receptor, the O-linked oligosaccharides are mono- and disialylated species having the core structure of galactose leads to N-acetylgalactosamine leads to Ser/Thr. The single N-linked oligosaccharide of the mature receptor can either be a tri- or tetraantennary complex-type species. Similar results were obtained with normal human fibroblast receptor except that the O-linked oligosaccharides on the precursor are neutral disaccharides, of which one component is GalNAc and the N-linked complex type unit on the mature receptor is less branched. Since the addition of GalNAc residues to Ser/Thr residues precedes the conversion of N-linked high mannose-type oligosaccharides to complex-type structures, the transfer of N-acetylgalactosamine must occur prior to the entry of glycoproteins into the region of the Golgi containing the processing enzyme alpha-mannosidase I. We also studied the receptor from tunicamycin-treated cells and after treatment with neuraminidase. In addition, we analyzed the receptor synthesized by a lectin-resistant clone of Chinese hamster ovary cells that is deficient in adding galactose residues to both N- and O-linked oligosaccharides. These studies suggest that the apparent differences in molecular weight between the precursor and mature forms of the LDL receptor are largely, if not entirely, due to the addition of sialic acid and galactose residues to the O-linked GalNAc residues.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The D2-dopamine receptor from bovine anterior pituitary has been purified approximately 33,000-fold to apparent homogeneity by sequential use of affinity chromatography on immobilized carboxymethyleneoximinospiperone-Sepharose, Datura stramonium lectin-agarose, and hydroxylapatite chromatography. The purification yields a single polypeptide band of Mr approximately 120,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed by labeling with radioiodinated Bolton-Hunter reagent, Coomassie Blue, or silver staining. The purified D2 receptor preparations display a specific activity of approximately 5.3 nmol of [3H]spiperone bound per mg of protein. In detergent solutions, the purified receptor has a KD for [3H]spiperone of 5-8 nM; however, after reinsertion of the purified protein into phospholipid vesicles, a KD of approximately 160 pM is obtained, similar to that found for the receptor in crude membrane preparations. Several lines of evidence document that this polypeptide contains the ligand binding site as well as the functional activity of the D2 receptor. The Mr approximately 120,000 peptide can be covalently labeled by the affinity probe, 125I-bromoacetyl-N-(p-aminophenethyl)spiperone, with the pharmacological specificity expected of a D2-dopamine receptor. Agonist and antagonist ligands compete for [3H]spiperone binding to purified receptors in phospholipid vesicles with a rank order of potency and selectivity typical of a D2-dopamine receptor. Moreover, when reinserted into phospholipid vesicles with purified brain Gi/Go, the purified D2 receptors mediate the agonist stimulation of 35S-labeled guanosine 5'-O-(thiotriphosphate) binding to brain G-proteins with a typical D2-dopaminergic order of potency. These data suggest that we have purified an intact functional D2-dopamine receptor.  相似文献   

13.
The bombesin/gastrin-releasing peptide (GRP) receptor was solubilized from Swiss mouse 3T3 cell membranes in an active form and was purified about 90,000-fold to near homogeneity by a combination of wheat germ agglutinin-agarose and ligand affinity chromatography. The purified receptor displayed a single diffuse band with a Mr of 75,000-100,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After treatment of the receptor with N-glycanase, removing N-linked oligosaccharide moieties, the protein yielded a Mr = 38,000 band. These results agree with the Mr value estimated for the GRP receptor that was labeled on Swiss 3T3 cells by cross-linking to 125I-GRP1-27. GRP1-27 bound to the purified receptor with a Kd of 0.038 +/- 0.019 nM. By comparison, the soluble receptor in unfractionated extracts and intact membranes displayed a Kd for GRP1-27 of 0.036 +/- 0.003 nM and 0.13 +/- 0.04 nM, respectively. The relative potencies of a series of GRP analogs for the soluble receptor and intact membranes indicated that the extraction procedure did not significantly alter the receptor's ligand binding specificity. However coupling of the receptor to its guanyl nucleotide regulatory protein was not maintained in the soluble extract, and a G-protein did not co-purify with the receptor. Physiological concentrations of NaCl greatly inhibited the binding of some GRP analogs to the receptor, while the binding of other analogs was not affected. A domain on the GRP molecule involving Lys-13 or Arg-17 was identified which promoted binding to the GRP receptor under conditions of low ionic strength. These findings aided the development of an effective ligand affinity resin for the purification of the GRP receptor.  相似文献   

14.
Photoaffinity labeling of the D2-dopamine receptor in plasma membrane preparations of various tissues from several mammalian species was performed using the recently developed D2-dopaminergic antagonist probe [125I]N-(p-azidophenethyl)spiperone ([125I]N3-NAPS). In tissues containing D2-receptors such as the corpus striatum from rat, dog, calf, hamster, guinea pig, and rabbit as well as the anterior pituitary of rat, bovine, and hamster, the probe covalently labels a peptide of Mr = 94,000. Specificity of the labeling is typically D2-dopaminergic in character. The covalent labeling is blocked by (+)-butaclamol but not by the inactive (-)isomer. Agonists block incorporation with the order of potency: N-n-propylnorapomorphine greater than apomorphine greater than dopamine. The D2-selective antagonist spiperone blocks labeling of the Mr = 94,000 peptide whereas the D1-selective antagonist SCH-23390 is ineffective. Thus, these results indicate that the ligand binding subunit of the D2-dopamine receptor resides on a Mr = 94,000 peptide in these various tissues from several species. Under conditions where proteolysis is not stringently controlled, peptides of lower Mr (32-38,000) are labeled at the expense of the Mr = 94,000 peptide. The most efficient protease inhibitor tested in these systems was EDTA, suggesting that the generation of these lower Mr receptor fragments might be the result of a metal-dependent proteolysis in the membrane preparations. In the rat neurointermediate lobe, a tissue containing D2-receptors, [125I]N3-NAPS specifically labels a major peptide of Mr approximately equal to 120,000 in addition to the Mr = 94,000 peptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We have characterized the dopamine D2 receptor photoaffinity probe, [3H]azido-N-methylspiperone ([3H]AMS). In the absence of light, [3H]AMS bound reversibly and with high affinity (Kd 70 pM) to sites in canine striatal membranes and was competitively inhibited by dopaminergic agonists and antagonists with an appropriate D2 receptor specificity. Upon photolysis, [3H]AMS covalently incorporated into a peptide of Mr 92,000 as assessed by fluorography following SDS-polyacrylamide gel electrophoresis. Labelling of this peptide was specifically and stereoselectively blocked by D2 antagonists and agonists. Minor specifically labelled peptides of Mr 70,000-55,000 were observed under some conditions and were the result of proteolytic degradation of the peptide at Mr 92,000.  相似文献   

16.
The ligand binding subunit of the D2 dopamine receptor (Mr approximately equal to 94,000) can be visualized by autoradiography following photoaffinity labeling with [125I]N-azidophenethylspiperone and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Following removal of sialic acids with the exoglycosidase, neuraminidase, [125I]N-azidophenethylspiperone photoincorporated into a protein of Mr = 54,000 with the appropriate pharmacological profile for D2 receptors. The desialylated D2 receptor bound dopaminergic agonists with high affinity and was capable of coupling to a functional G-protein as indexed by: 1) pertussis-toxin mediated [32P]ADP ribosylation of proteins of Mr = 42,000 and 39,000, and 2) the conversion of the agonist high affinity form of D2 receptors to one displaying low affinity for agonists in the presence of guanine nucleotides. These data suggest that sialic acid residues do not contribute significantly to the ligand binding characteristics of D2 receptors despite the large change produced in the estimated molecular mass of the binding subunit.  相似文献   

17.
18.
We have previously identified by chemical cross-linking a cell surface protein in Swiss 3T3 cells of apparent Mr 75,000-85,000, which may represent a major component of the receptor for peptides of the bombesin family in these cells. Because bombesin-like peptides may interact with other cell surface molecules, it was important to establish the correlation between receptor binding and functions of this complex and further characterize the Mr 75,000-85,000 cross-linked protein. Detailed time courses carried out at different temperatures demonstrated that the Mr 75,000-85,000 affinity-labelled band was the earliest cross-linked complex detected in Swiss 3T3 cells incubated with 125I-labelled gastrin-releasing peptide (125I-GRP). Furthermore, the ability of various nonradioactive bombesin agonists and antagonists to block the formation of the Mr 75,000-85,000 cross-linked complex correlated extremely well (r = 0.994) with the relative capacity of these peptides to inhibit 125I-GRP specific binding. Pretreatment with unlabelled GRP for up to 6 h caused only a slight decrease in both specific 125I-GRP binding and the affinity labelling of the Mr 75,000-85,000 protein. We also show that the cross-linked complex is a glycoprotein. First, solubilized affinity labelled Mr 75,000-85,000 complex applied to wheat germ lectin-sepharose columns was eluted by addition of 0.3 M N-acetyl-D-glucosamine. Second, treatment with endo-beta-N-acetylglucosaminidase F reduced the apparent molecular weight of the affinity-labelled band from 75,000-85,000 to 43,000, indicating the presence of N-linked oligosaccharide groups.  相似文献   

19.
When rat cerebral-cortex membranes were labelled with [3H]propylbenzilylcholine mustard ([3H]PrBCM), a single protein of Mr 68,000 was found to carry the atropine-sensitive covalent label. After trypsinolysis of the receptors solubilized in 0.075% SDS, the resulting fragments were submitted to size analysis in combination with wheat-germ agglutinin (WGA)-Sepharose and organomercurial-agarose chromatography. Peptides of Mr 75,000, 50,000, 30,000, 18,000 and 8000 were specifically released from the receptor. All fragments above Mr 8000 were able to bind WGA-Sepharose and therefore the peptide of Mr 18,000 was taken as the upper limit of the distance between the antagonist and the glycan moieties. The limit fragment of Mr 8000 carried chemical groups which were modified by N-ethylmaleimide and reacted with an immobilized organomercurial. About 65-80% of the labelled receptors were adsorbed on concanavalin A-Sepharose with low affinity, generating two further components after sequential application to WGA-Sepharose. About 50% of the receptors were susceptible to neuraminidase treatment, with a concomitant slight modification of the SDS/polyacrylamide-gel-electrophoretic pattern.  相似文献   

20.
Nucleoside- and glucose-transport proteins isolated from human erythrocyte membranes were photoaffinity-labelled with [3H]nitrobenzylthioinosine and [3H]cytochalasin B, respectively, and subjected to endo-beta-galactosidase or endoglycosidase-F digestion. Without enzyme treatment the two radiolabelled transporters migrated on SDS/polyacrylamide gels with the same apparent Mr (average) of 55,000. Apparent Mr (average) values after endo-beta-galactosidase digestion were 47,000 and 48,000 for the nucleoside and glucose transporters respectively, and 44,000 and 45,000 respectively after endoglycosidase-F digestion. In contrast, endo-beta-galactosidase had no effect on the electrophoretic mobility of the nucleoside transporter isolated from pig erythrocytes. This transport system exhibited a higher Mr than the human protein, endoglycosidase-F treatment decreasing its apparent Mr (average) from 64,000 to 57,000. It is concluded that the human and pig erythrocyte nucleoside transporters are glycoproteins containing N-linked oligosaccharide. The data provide evidence of substantial carbohydrate and polypeptide differences between the human and pig erythrocyte nucleoside transporters, but evidence of molecular similarities between the human erythrocyte nucleoside and glucose transporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号