首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spectra of coherence (Coh) and phasic shifts (PhS) of cortical potentials were studied by correlation-spectral analysis in a wide frequency range (1--100 Hz) in dogs in a state of quiet wakefulness. Estimation was made by parameters: significant Coh (above 0.5), high Coh (above 0.75), considered PhS (not above +/- 30 degrees), small PhS (not above +/- 15 degrees C). The presence is shown of individual features in coherent-phasic characteristics of neocortex potentials. High values of cross-correlation coefficients (Cc) between cortical potentials correspond in Coh spectra to a great part (90--100% peaks) of significant Coh, in which the great part (90--70% peaks) belongs to the high Coh with small PhS (in most cases). A certain correspondence, though expressed weaker, persisted also for lower values of Cc, Coh, and considered PhS. Coherent-phasic relations between potentials of certain cortical areas are characterized by stability in each animal; a tendency to it is manifest in all animals, despite individual differences of the brain electrical activity.  相似文献   

2.
A review. The article dedicated to the centenary of academician Mikhail Nikolaevich Livanov briefly outlines the history of development of his original concept of the functional significance of the brain potential's spatial synchronization phenomenon as a possible way of studying systemic organization of the brain electrical activity. The new parameter of "space" introduced into neurophysiology by M. N. Livanov made it possible to research the earlier unknown aspect of the brain activity. Livanov's ideas have been developed in many studies of the late decades of the XX century. In the review, much attention is given to specific functional significance of this phenomenon in a broad frequency band 1-250 Hz, especially, during instrumental learning. Energy (power spectra) and coherent-phase characteristics of cortical potentials in traditional (1-30 Hz), gamma-(30-80 Hz) and high-frequency (80-250 Hz) bands are compared. The problem of linear and nonlinear processes in the organization of the brain potentials is mentioned.  相似文献   

3.
Coherence function of the EEG in the bands of 8-13 (alpha rhythm) and 14-25 Hz (beta rhythm) was analyzed in 35 healthy adult subjects during formation and testing of a visual cognitive set to pictures of faces with different emotional expressions. The intra- and interhemispheric coherences of the potentials in the frontal area and coherence between the right frontal and temporal derivation were shown to increase at the stage of set actualization. The results of the analysis confirm the suggestion that the frontal cortical areas are predominantly involved in formation and actualization of the set to facial emotional expression. The conclusion is based on the idea that the spatial synchronization of the brain electrical potentials is an index of the functional relations between the corresponding cortical areas and their cooperative involvement in a certain kind of activity (their simultaneous activation).  相似文献   

4.
The state of selective attention was studied in dogs in the course of instrumental conditioning. During interstimuli intervals, this state was manifested in the state of strained waiting for conditioned stimuli. Electrical activity of different areas in both hemispheres was analyzed using the Fast Fourier Transformation. It was shown that in the process of development of selective attention, the high-frequency EEG components (40-200 Hz) in the motor area of the right hemisphere and the visual and parietal areas of the left hemisphere had a predominant significance over the traditional EEG frequencies of 1-30 Hz. The state of selective attention was characterized by another functional mosaic organization of the neocortical potentials.  相似文献   

5.
The event-related potentials (ERPs) in visual discrimination task in parietal and temporal cortical areas were recorded in 11 young adults during passive observation (involuntary attention) and target selection (voluntary attention). The voluntary selective attention resulted in: 1) increased ERP correlation between the parietal; and temporal cortical areas; 2) increased correlation of sequential ERPs in monopolar leads (P3, P4, T3, T4, T5, T6); and 3) increased correlation of sequential ERPs in bipolar leads (P3-T3, P3-T5, P4-T4, P4-T6). The findings suggest that voluntary attention maintains a concordant activity of the parietal and temporal cortical areas in execution of visual selection tasks.  相似文献   

6.
Phase-coherent characteristics of neocortex background electrical activity were studied in a wide frequency range (1-100 Hz) during interstimulus periods in the process of elaboration of motor alimentary conditioned reflexes in dogs. It was shown that the process of learning led to a considerable increase of the part of high (greater than 0.75) and significant (0.5-0.75) coherences, and also of small (0 +/- 15 degrees) and accounted (+/- 16 - +/- 30 degrees) phasic shifts as compared with the state of calm wakefulness. This increase lay mainly in the high-frequency range (40-100 Hz). The analysis of the interregional relations showed that they differed not only by values of phase-coherent characteristics, but also by distributions of the latter. The obtained data testify that the state of activation is manifested both in the rise of frequency of potentials oscillations and in the increase of their synchronization.  相似文献   

7.
EEGs of 15 healthy subjects and 30 patients in early period after surgical ablation of tumours with basal localization, were investigated by means of monitor "Neuro-1" which allows to obtain in continuous regime characteristics of EEG dynamics according to power spectra and reveal the characteristics of intercentral relations of electrical brain processes by coherence and phase shifts. In healthy subjects in the period of transition from wakefulness to drowsiness highly coherent beta-rhythm (16-18 Hz) was revealed, preceeding typical picture of drowsiness and sleep. Study of the patients shows that certain characteristics of coherence and phasic shifts have an important prognostic value. Conclusion is made that for estimation of the functional state of healthy subjects during transition from wakefulness to drowsiness and of patients in early postoperative period the data on spectra of coherence are most informative.  相似文献   

8.
Previous studies investigated the effects of crossmodal spatial attention by comparing the responses to validly versus invalidly cued target stimuli. Dynamics of cortical rhythms in the time interval between cue and target might contribute to cue effects on performance. Here, we studied the influence of spatial attention on ongoing oscillatory brain activity in the interval between cue and target onset. In a first experiment, subjects underwent periods of tactile stimulation (cue) followed by visual stimulation (target) in a spatial cueing task as well as tactile stimulation as a control. In a second experiment, cue validity was modified to be 50%, 75%, or else 25%, to separate effects of exogenous shifts of attention caused by tactile stimuli from that of endogenous shifts. Tactile stimuli produced: 1) a stronger lateralization of the sensorimotor beta-rhythm rebound (15-22 Hz) after tactile stimuli serving as cues versus not serving as cues; 2) a suppression of the occipital alpha-rhythm (7-13 Hz) appearing only in the cueing task (this suppression was stronger contralateral to the endogenously attended side and was predictive of behavioral success); 3) an increase of prefrontal gamma-activity (25-35 Hz) specifically in the cueing task. We measured cue-related modulations of cortical rhythms which may accompany crossmodal spatial attention, expectation or decision, and therefore contribute to cue validity effects. The clearly lateralized alpha suppression after tactile cues in our data indicates its dependence on endogenous rather than exogenous shifts of visuo-spatial attention following a cue independent of its modality.  相似文献   

9.
In experiments on freely moving rabbits the existence of interhemispheric asymmetry of spatial-temporal organization of the cortical potentials in the state of calm alertness was shown. Episodes were revealed of interhemispheric discordance of spatial reconstructions of momentary reliefs of the cortical potentials topograms 1/64-1/3-1/5 s in duration, i.e. periods of the theta- or delta-rhythms. Total duration of time of interhemispheric asymmetry (according to significant divergences in dynamics of resemblance coefficients of consequent reliefs of the cortical potentials topograms) in most cases was not less than 10% and not more than 30% of time of analysis epoch and consisted of discordance episodes both of different global reconstructions of spatial correlations of the left and right hemisphere potentials and of interhemispheric local shifts in spatial organization of the cortex potentials.  相似文献   

10.
Interhemispheric asymmetry was studied of spatial-temporal potentials organization (STPO) of the cortex in non-fixated animals in the states of deep rest, behavioural activity and in the transition period between them. Despite the intrahemispheric differences of the STPO in each of these states, interhemispheric divergences in the character of reconstructions of momentary topograms of the cortical potentials, recorded at 24-channels leading, are limited by 35% of the epoch analysis time. Comparison of the dynamics of intrahemispheric changes of topograms of cortical potentials in the left and right hemispheres in the states of rest and activity revealed a narrowing of temporal period of the absence of resemblance in reconstructions of successive topograms of the left and right hemispheres in comparison with transition processes. In the phase of rest the interhemispheric conjugation of spatial reconstructions in topograms became lowered mainly because of the disturbances of monotony of changes of their reliefs in one of the hemispheres in turn. In the active phase, deviations from STPO of the cortex, characteristic of the state of rest, were met more frequently in the right hemisphere; in that case oscillations of the topograms general mean level connected with the activity of non-specific activating subcortical brain system acquired a significant role in regulation of interhemispheric relations. Presence of interhemispheric resemblance of reconstructions of topograms reliefs in the active phase, despite the tendency to its lowering in comparison with the rest, testifies to the contribution also of the intracortical processes to the interhemispheric spatial synchronization of the cortical potentials in this state.  相似文献   

11.
Power spectra of cortical potentials of baseline activity during interstimuli intervals (4 s; Fourier transform in the frequency band of 1-60 Hz) and short-term (0.8 s) induced responses to facial stimuli (wavelet transform in the 15-60 Hz band) were assessed in the study of the visual cognitive set to facial expression. Significant differences between groups of subjects with different set rigidity were observed only at the set-testing stage. Estimation of the short-term (0.8 s) induced responses of the wavelet spectra in the group with plastic set revealed an increase in the power (in comparison with the power of background activity) of the gamma2 band (41-60 Hz) in the left hemisphere of the temporal, central and occipital areas, whereas in the group with rigid set these power spectra decreased. At the same time the power in the gamma1 band (21-40 Hz) was significantly lower (at the same level with the rigid form), indicating a discrete nature and functional selectivity in the gamma frequency band.  相似文献   

12.
13.
The influence of stimulus duration on auditory evoked potentials (AEPs) was examined for tones varying randomly in duration, location, and frequency in an auditory selective attention task. Stimulus duration effects were isolated as duration difference waves by subtracting AEPs to short duration tones from AEPs to longer duration tones of identical location, frequency and rise time. This analysis revealed that AEP components generally increased in amplitude and decreased in latency with increments in signal duration, with evidence of longer temporal integration times for lower frequency tones. Different temporal integration functions were seen for different N1 subcomponents. The results suggest that different auditory cortical areas have different temporal integration times, and that these functions vary as a function of tone frequency.  相似文献   

14.
Symptoms of Major Depressive Disorder (MDD) are hypothesized to arise from dysfunction in brain networks linking the limbic system and cortical regions. Alterations in brain functional cortical connectivity in resting-state networks have been detected with functional imaging techniques, but neurophysiologic connectivity measures have not been systematically examined. We used weighted network analysis to examine resting state functional connectivity as measured by quantitative electroencephalographic (qEEG) coherence in 121 unmedicated subjects with MDD and 37 healthy controls. Subjects with MDD had significantly higher overall coherence as compared to controls in the delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), and beta (12-20 Hz) frequency bands. The frontopolar region contained the greatest number of "hub nodes" (surface recording locations) with high connectivity. MDD subjects expressed higher theta and alpha coherence primarily in longer distance connections between frontopolar and temporal or parietooccipital regions, and higher beta coherence primarily in connections within and between electrodes overlying the dorsolateral prefrontal cortical (DLPFC) or temporal regions. Nearest centroid analysis indicated that MDD subjects were best characterized by six alpha band connections primarily involving the prefrontal region. The present findings indicate a loss of selectivity in resting functional connectivity in MDD. The overall greater coherence observed in depressed subjects establishes a new context for the interpretation of previous studies showing differences in frontal alpha power and synchrony between subjects with MDD and normal controls. These results can inform the development of qEEG state and trait biomarkers for MDD.  相似文献   

15.
We sought to determine the extent to which red-green, colour-opponent mechanisms in the human visual system play a role in the perception of drifting luminance-modulated targets. Contrast sensitivity for the directional discrimination of drifting luminance-modulated (yellow-black) test sinusoids was measured following adaptation to isoluminant red-green sinusoids drifting in either the same or opposite direction. When the test and adapt stimuli drifted in the same direction, large sensitivity losses were evident at all test temporal frequencies employed (1-16 Hz). The magnitude of the loss was independent of temporal frequency. When adapt and test stimuli drifted in opposing directions, large sensitivity losses were evident at lower temporal frequencies (1-4 Hz) and declined with increasing temporal frequency. Control studies showed that this temporal-frequency-dependent effect could not reflect the activity of achromatic units. Our results provide evidence that chromatic mechanisms contribute to the perception of luminance-modulated motion targets drifting at speeds of up to at least 32 degrees s(-1). We argue that such mechanisms most probably lie within a parvocellular-dominated cortical visual pathway, sensitive to both chromatic and luminance modulation, but only weakly selective for the direction of stimulus motion.  相似文献   

16.
Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS). At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex during SWS. We report that gamma oscillations in low (30-50 Hz) and high (60-120 Hz) frequency bands recurrently emerged in all investigated regions and their amplitudes coincided with specific phases of the cortical slow wave. In most of the cases, multiple oscillatory bursts in different frequency bands from 30 to 120 Hz were correlated with positive peaks of scalp slow waves ("IN-phase" pattern), confirming previous animal findings. In addition, we report another gamma pattern that appears preferentially during the negative phase of the slow wave ("ANTI-phase" pattern). This new pattern presented dominant peaks in the high gamma range and was preferentially expressed in the temporal cortex. Finally, we found that the spatial coherence between cortical sites exhibiting gamma activities was local and fell off quickly when computed between distant sites. Overall, these results provide the first human evidences that gamma oscillations can be observed in macroscopic EEG recordings during sleep. They support the concept that these high-frequency activities might be associated with phasic increases of neural activity during slow oscillations. Such patterned activity in the sleeping brain could play a role in off-line processing of cortical networks.  相似文献   

17.
By means of records of multicellular activity, interneuronal relations and their modifications in two cortical zones (Visual and motor) were studied in cats at different levels of alimentary motivation. For quantitative evaluation of interneuronal relations the statistic method of cross-correlation analysis of impulse trains was used in determining the probability of the appearance of the discharge of one neurone after the impulse of the other one. For groups of neurones in both investigated cortical areas, three-neurones microsystems were singled out and their activity was analyzed by temporal parameters of interaction between neurones at the interval of 120 ms, both within one microarea (intraanalyzer connections) and between microareas of two cortical zones. The correlation of temporal parameters of interneuronal connections (temporal delays in the activity of neuronal pairs) changed depending on spatial localization of neurones and functional condition of the animals. The existence is suggested of "informational" (1-30 ms) and "motivational" (90-120 ms) values of interneuronal relations for interanalyser connections.  相似文献   

18.
Transcranial magnetic theta burst stimulation (TBS) differs from other high-frequency rTMS protocols because it induces plastic changes up to an hour despite lower stimulus intensity and shorter duration of stimulation. However, the effects of TBS on neuronal oscillations remain unclear. In this study, we used electroencephalography (EEG) to investigate changes of neuronal oscillations after continuous TBS (cTBS), the protocol that emulates long-term depression (LTD) form of synaptic plasticity. We randomly divided 26 healthy humans into two groups receiving either Active or Sham cTBS as control over the left primary motor cortex (M1). Post-cTBS aftereffects were assessed with behavioural measurements at rest using motor evoked potentials (MEPs) and at active state during the execution of a choice reaction time (RT) task in combination with continuous electrophysiological recordings. The cTBS-induced EEG oscillations were assessed using event-related power (ERPow), which reflected regional oscillatory activity of neural assemblies of θ (4-7.5 Hz), low α (8-9.5 Hz), μ (10-12.5 Hz), low β (13-19.5 Hz), and high β (20-30 Hz) brain rhythms. Results revealed 20-min suppression of MEPs and at least 30-min increase of ERPow modulation, suggesting that besides MEPs, EEG has the potential to provide an accurate cortical readout to assess cortical excitability and to investigate the interference of cortical oscillations in the human brain post-cTBS. We also observed a predominant modulation of β frequency band, supporting the hypothesis that cTBS acts more on cortical level. Theta oscillations were also modulated during rest implying the involvement of independent cortical theta generators over the motor network post cTBS. This work provided more insights into the underlying mechanisms of cTBS, providing a possible link between synchronised neural oscillations and LTD in humans.  相似文献   

19.
Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR). The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence). The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.  相似文献   

20.
Characterizing how different cortical rhythms interact and how their interaction changes with sensory stimulation is important to gather insights into how these rhythms are generated and what sensory function they may play. Concepts from information theory, such as Transfer Entropy (TE), offer principled ways to quantify the amount of causation between different frequency bands of the signal recorded from extracellular electrodes; yet these techniques are hard to apply to real data. To address the above issues, in this study we develop a method to compute fast and reliably the amount of TE from experimental time series of extracellular potentials. The method consisted in adapting efficiently the calculation of TE to analog signals and in providing appropriate sampling bias corrections. We then used this method to quantify the strength and significance of causal interaction between frequency bands of field potentials and spikes recorded from primary visual cortex of anaesthetized macaques, both during spontaneous activity and during binocular presentation of naturalistic color movies. Causal interactions between different frequency bands were prominent when considering the signals at a fine (ms) temporal resolution, and happened with a very short (ms-scale) delay. The interactions were much less prominent and significant at coarser temporal resolutions. At high temporal resolution, we found strong bidirectional causal interactions between gamma-band (40–100 Hz) and slower field potentials when considering signals recorded within a distance of 2 mm. The interactions involving gamma bands signals were stronger during movie presentation than in absence of stimuli, suggesting a strong role of the gamma cycle in processing naturalistic stimuli. Moreover, the phase of gamma oscillations was playing a stronger role than their amplitude in increasing causations with slower field potentials and spikes during stimulation. The dominant direction of causality was mainly found in the direction from MUA or gamma frequency band signals to lower frequency signals, suggesting that hierarchical correlations between lower and higher frequency cortical rhythms are originated by the faster rhythms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号