首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human parechoviruses (HPeVs) belonging to the family Picornaviridae are widely spread pathogens among young children. We report the complete genome sequence of a novel HPeV isolated from the stool sample of a hospitalized child with diarrhea in China. The genome consists of 7,305 nucleotides, excluding the 3′ poly(A) tail, and has an open reading frame that maps between nucleotide positions 675 and 7217 and encodes a 2,180-amino-acid polyprotein. The genome sequence of the virus was sufficiently distinct from the 8 known HPeV types. Phylogenetic analysis based on the complete genome indicated that the HPeV strain represents a new genotype.  相似文献   

2.
We report here the complete genome sequence of pestivirus strain Aydin/04-TR, which is the prototype of a group of similar viruses currently present in sheep and goats in Turkey. Sequence data from this virus showed that it clusters separately from the established and previously proposed tentative pestivirus species.  相似文献   

3.
The porcine parvovirus JT strain (PPV-JT) was isolated from a piglet showing nonsuppurative myocarditis in Shandong, China, in 2010. The complete genomic sequence of PPV-JT, 4,941 bp long, was determined from clones made from replicative form (RF) DNA. The genomic analysis demonstrated that the PPV-JT might be involved in a recombination event, which will help us understand the molecular characteristics and evolutionary of PPV in China.  相似文献   

4.
The main Borrelia species causing Lyme borreliosis in Europe and Asia are Borrelia afzelii, B. garinii, B. burgdorferi and B. bavariensis. This is in contrast to the United States, where infections are exclusively caused by B. burgdorferi. Until to date the genome sequences of four B. afzelii strains, of which only two include the numerous plasmids, are available. In order to further assess the genetic diversity of B. afzelii, the most common species in Europe, responsible for the large variety of clinical manifestations of Lyme borreliosis, we have determined the full genome sequence of the B. afzelii strain K78, a clinical isolate from Austria. The K78 genome contains a linear chromosome (905,949 bp) and 13 plasmids (8 linear and 5 circular) together presenting 1,309 open reading frames of which 496 are located on plasmids. With the exception of lp28-8, all linear replicons in their full length including their telomeres have been sequenced. The comparison with the genomes of the four other B. afzelii strains, ACA-1, PKo, HLJ01 and Tom3107, as well as the one of B. burgdorferi strain B31, confirmed a high degree of conservation within the linear chromosome of B. afzelii, whereas plasmid encoded genes showed a much larger diversity. Since some plasmids present in B. burgdorferi are missing in the B. afzelii genomes, the corresponding virulence factors of B. burgdorferi are found in B. afzelii on other unrelated plasmids. In addition, we have identified a species specific region in the circular plasmid, cp26, which could be used for species determination. Different non-coding RNAs have been located on the B. afzelii K78 genome, which have not previously been annotated in any of the published Borrelia genomes.  相似文献   

5.
Endornaviruses have large double-stranded RNA (dsRNA) genomes that carry a single open reading frame (ORF). Here we report the complete genome of a novel endornavirus, assembled from next-generation sequence data generated from Vitis vinifera-extracted dsRNA. Two different fungal hosts have been identified for this virus, suggesting that horizontal transmission of the virus is possible.  相似文献   

6.
7.
比较基因组学和人类基因组研究   总被引:1,自引:0,他引:1  
在人类基因组计划突飞猛进地开展的同时,模式生物基因组计划也在轰轰烈烈地进行,并取得许多实质性的进展,是人类对于模式生物基因组有了更广泛更深刻的认识。这些知识的积累,从根本上推动了人类基因组计划的进行。  相似文献   

8.
Bacteriophage phAPEC8 is an Escherichia coli-infecting myovirus, isolated on an avian pathogenic Escherichia coli (APEC) strain. APEC strains cause colibacillosis in poultry, resulting in high mortality levels and important economic losses. Genomic analysis of the 147,737-bp double-stranded DNA phAPEC8 genome revealed that 53% of the 269 encoded proteins are unique to this phage. Its closest relatives include the Salmonella phage PVP-SE1 and the coliphage rv5, with 19% and 18% similar proteins, respectively. As such, phAPEC8 represents a novel, phylogenetically distinct clade within the Myoviridae, with molecular properties suitable for phage therapy applications.  相似文献   

9.
Highly pathogenic porcine reproductive and respiratory syndrome (HP-PRRS) emerged in China in 2006, and HP-PRRS virus (HP-PRRSV) has evolved continuously. Here, the complete genomic sequence of a novel HP-PRRSV field strain, JX, is reported. The present finding will contribute to further studies focusing on the evolutionary mechanism of PRRSV.  相似文献   

10.
Astroviruses have been widely described in mammalian and avian species. Here, we report a complete genome sequence of a novel porcine astrovirus (PoAstV) isolated from a porcine fecal sample in China. The genome consists of 6,611 nucleotides, excluding the 3′ poly(A) tail, and has two open reading frames (ORFs). ORF1 maps between nucleotide positions 19 and 4211 and encodes a 1,396-amino-acid (aa) polyprotein precursor consisting of nonstructural protein and putative RNA-dependent RNA polymerase, and ORF2 maps between nucleotide positions 4202 and 6531 and encodes a 775-aa polyprotein which is a capsid precursor protein. The genome sequence of the virus was distinct enough from those of the known PoAstVs to be considered a novel sequence. Phylogenetic analysis based on the predicted amino acid sequence of the complete capsid region showed that this strain may be a novel porcine astrovirus.  相似文献   

11.
Bacteriophages of the C3 morphotype, characterized by very long heads that exceed their width several times, are extremely rare among the Podoviridae family members and constitute only 0.5% of over 5,500 phages that have been examined by the electron microscope (H. W. Ackermann, Arch. Virol. 152:227-243, 2007; H. W. Ackermann, Arch. Virol. 146:843-857, 2001). To date, among those phages proven to be C3, only coliphage phiEco32, Lactococcus phage KSY1, Vibrio phage 71A-6, and Salmonella enterica phage 7-11, but no avian pathogenic Escherichia coli (APEC) bacteriophages, have been completely sequenced (A. Chopin, H. Deveau, S. D. Ehrlich, S. Moineau, and M. C. Chopin, Virology 365:1-9, 2007; S. A. Khan, et al., Mol. Cell Probes 15:61-69, 2001; A. M. Kropinski, E. J. Lingohr, H. W. Ackermann, Arch. Virol. 156:149-151, 2011; D. Savalia, et al., J. Mol. Biol. 377:774-789, 2008) and are available in public databases. We isolated a bacteriophage from a scale duck market in Nanjing, Jiangsu province, named NJ01, that infects APEC. Sequence and morphological analyses revealed that phage NJ01 is a C3-like bacteriophage and belongs to the Podoviridae family. Here, we announce the complete genome sequence of phage NJ01 and submit the results of our analysis.  相似文献   

12.
Mycobacterium massiliense is a rapidly growing bacterium associated with opportunistic infections. The genome of a representative isolate (strain GO 06) recovered from wound samples from patients who underwent arthroscopic or laparoscopic surgery was sequenced. To the best of our knowledge, this is the first announcement of the complete genome sequence of an M. massiliense strain.  相似文献   

13.
Objective: The Complete Sequence of a Plant Genome   总被引:3,自引:0,他引:3       下载免费PDF全文
Bevan M 《The Plant cell》1997,9(4):476-478
  相似文献   

14.
We report the complete genome sequence of a novel calicivirus isolated from a diseased mink in China. The complete viral genome is approximately 8.4 kb in length and consists of three open reading frames. The availability of the complete genome sequence is helpful for further investigation into the molecular characteristics and epidemiology of calicivirus in mink.  相似文献   

15.
<正>近日,美国罗切斯特大学生物学教授John H.Werren和贝勒医学院基因组测序中心的Stephen Richards领导完成了3种寄生性金小蜂(Nasonia vitripennis,N.giraulti和N.longicornis)的基因组测序。这一成果揭示  相似文献   

16.
《PLoS biology》2003,1(2):e45
The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs) known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp) and C. elegans (100.3 Mbp) genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C. briggsae, we found strong evidence for 1,300 new C. elegans genes. In addition, comparisons of the two genomes will help to understand the evolutionary forces that mold nematode genomes.  相似文献   

17.
18.
Virus particles of approximately 740–760 nm in length and 13 nm in diameter were observed from a diseased Nicotiana tabacum (tobacco) plant in Sichuan Province, China. The complete genomic sequence of the virus isolate XC1 was determined to contain 9659 nucleotides without 3′ terminal poly(A) tail. XC1 has a genome typical of members of the genus Potyvirus, encoding a large polyprotein of 3075 amino acids. Putative proteolytic cleavage sites and a number of well characterized functional motifs were identified by sequence comparisons with those of known potyviruses. Sequence comparison revealed that XC1 shared the highest level of nucleotide sequence identity (76.5%) with Wild tomato mosaic virus (WTMV). Phylogenetic analysis showed that XC1 was closely related to the WTMV Guangdong isolate with an identity of 94.3% between CP gene sequence of the two viruses. We thus named XC1 WTMV‐XC‐1 as a novel isolate of WTMV. The full sequence of WTMV‐XC‐1 may serve as a basis for future investigations on the gene diversity of WTMV.  相似文献   

19.
J Chen  F Chen  Q Zhou  W Li  Y Song  Y Pan  X Zhang  C Xue  Y Bi  Y Cao 《Journal of virology》2012,86(19):10898
Sapelovirus is a member of the family Picornaviridae and is emerging as an enteric porcine, simian, and avian pathogen. Here, we report the genome sequence of a novel porcine sapelovirus strain YC2011 isolated from piglets with severe diarrhea. The availability of the genome sequence is helpful to further investigations of molecular characteristics and epidemiology of porcine sapelovirus.  相似文献   

20.
The genome sequence analysis of a clinical Vibrio cholerae VC35 strain from an outbreak case in Malaysia indicates multiple genes involved in host adaptation and a novel Na+-driven multidrug efflux pump-coding gene in the genome of Vibrio cholerae with the highest similarity to VMA_001754 of Vibrio mimicus VMA223.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号