首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The objective of this work was to describe the relationship between elongation rate and diameter of maize roots and to estimate the length and growth duration of lateral roots of maize. Diameters and elongation rates of roots were measuredin situ on plants grown 5 weeks in small rhizotrons under greenhouse conditions. At the end of the experimental period the roots were harvested and diameters of axile and lateral roots were measured. The frequency distribution of diameters of harvested roots was bimodal with a minimum at 0.6 mm; 97% of axile roots were larger than this value and 98% of the lateral roots were smaller. Root elongation per day increased as diameter increased but the slope of the relationship with lateral roots was about 2.5 times that with axile roots when separate linear regressions were fitted to the two populations. The length of lateral roots found on axillary roots between the base and about 30 cm from the apex was approximately 2.2 cm. All of the data was consistent with the hypothesis that the lateral roots grew for about 2.5 days and then ceased growing. The axillary roots continued to grow throughout the experimental period at a rate of about 3 cm day−1. Contribution from the Department of Agronomy, New York State College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853. Agronomy paper No. 1661. This research is part of the program of the Center for Root-Soil Research.  相似文献   

2.
The relative importance of root system structure, plant carbon status and soil environment in the determination of lateral root diameter remains unclear, and was investigated in this study. Banana (Musa acuminata) plants were grown at various moderate levels of soil compaction in two distinct experiments, in a field experiment (FE) and in a glasshouse experiment (GE). Radiant flux density was 5 times lower in GE. The distribution of root diameter was measured for several root branching orders. Root diameters ranged between 0.09 and 0.52 mm for secondary roots and between 0.06 and 0.27 mm for tertiary roots. A relationship was found between the diameter of the parent bearing root and the median diameter of its laterals, which appears to be valid for a wide range of species. Mean lateral root diameter increased with distance to the base of the root and decreased with branching density [number of lateral roots per unit length of bearing root (cm(-1))]. Typical symptoms of low light availability were observed in GE. In this case, lateral root diameter variability was reduced. Although primary root growth was affected by soil compaction, no effects on lateral root diameter were observed.  相似文献   

3.
Jie Wu  Yan Guo 《Annals of botany》2014,114(4):841-851

Background and Aims

A number of techniques have recently been developed for studying the root system architecture (RSA) of seedlings grown in various media. In contrast, methods for sampling and analysis of the RSA of field-grown plants, particularly for details of the lateral root components, are generally inadequate.

Methods

An integrated methodology was developed that includes a custom-made root-core sampling system for extracting intact root systems of individual maize plants, a combination of proprietary software and a novel program used for collecting individual RSA information, and software for visualizing the measured individual nodal root architecture.

Key Results

Example experiments show that large root cores can be sampled, and topological and geometrical structure of field-grown maize root systems can be quantified and reconstructed using this method. Second- and higher order laterals are found to contribute substantially to total root number and length. The length of laterals of distinct orders varies significantly. Abundant higher order laterals can arise from a single first-order lateral, and they concentrate in the proximal axile branching zone.

Conclusions

The new method allows more meaningful sampling than conventional methods because of its easily opened, wide corer and sampling machinery, and effective analysis of RSA using the software. This provides a novel technique for quantifying RSA of field-grown maize and also provides a unique evaluation of the contribution of lateral roots. The method also offers valuable potential for parameterization of root architectural models.  相似文献   

4.
5.
The spatial distribution of root length density (RLD) is important because it affects water and nutrient uptake. It is difficult to obtain reliable estimates of RLD because root systems are very variable and heterogeneous. We identified systematic trends, clustering, and anisotropy as geometrical properties of root systems, and studied their consequences for the sampling and observation of roots. We determined the degree of clustering by comparing the coefficient of variation of a simulated root system with that of a Boolean model. We also present an alternative theoretical derivation of the relation between RLD and root intersection density (RID) based on the theory of random processes of fibres. We show how systematic trends, clustering and anisotropy affect the theoretical relation between RLD and RID, and the consequences this has for measurement of RID in the field. We simulated the root systems of one hundred maize crops grown for a thermal time of 600 K d, and analysed the distribution of RLD and root intersection density RID on regular grids of locations throughout the simulated root systems. Systematic trends were most important in the surface layers, decreasing with depth. Clustering and anisotropy both increased with depth. Roots at depth had a bimodal distribution of root orientation, causing changes in the ratio of RLD/RID. The close proximity of the emerging lateral roots and the parent axis caused clustering which increased the coefficient of variation.  相似文献   

6.
施肥对日本落叶松人工林细根直径、根长和比根长的影响   总被引:16,自引:0,他引:16  
以辽宁东部山区16年生日本落叶松人工林为研究对象,探讨施肥对日本落叶松1~5级根序中细根直径、根长和比根长的影响.结果表明:随着根序等级的增加,日本落叶松细根平均直径和根长显著增加(P<0。05,P<0。01)、比根长则显著下降(P<0。01).在日本落叶松的5级根序中,1级根的平均直径最细、根长最短、比根长最高,而5级根则相反;随着根序等级的增加,日本落叶松细根平均直径、根长和比根长的变异系数逐渐增大.除1级根外,土层对细根的平均直径、根长和比根长没有显著影响(P>0。05).与对照样地相比,施肥对各级细根平均直径、根长和比根长的影响主要表现在1~2级根上,对3级根序以上的细根影响不显著(P>0.05).其中,施氮肥显著降低了1~2级根的平均直径(P<0.05),施氮肥以及氮磷肥显著降低了表层土壤(0~10 cm)中1级根的平均根长(P<0.05),表层土壤中细根的比根长在施氮肥的条件下显著增加(P<0.05).  相似文献   

7.
How much ABA can be supplied by the roots is a key issue for modelling the ABA-mediated influence of drought on shoot physiology. We quantified accumulation rates of ABA ( S ABA) in maize roots that were detached from well-watered plants and dehydrated to various extents by air-drying. S ABA was estimated from changes in ABA content in root segments incubated at constant relative water content (RWC). Categories of root segments, differing in age and branching order, were compared (root branches, and nodal roots subdivided into root tips, subapical unbranched sections, and mature sections). All categories of roots accumulated ABA, including turgid and mature tissues containing no apex. S ABA measured in turgid roots changed with root age and among root categories. This variability was largely accounted for by differences in water content among different categories of turgid roots. The response of S ABA to changes in root water potential ( Ψ root) induced by dehydration was common to root tips, nodal roots and branches of several ages, while this was not the case if root dehydration was expressed in terms of RWC. Differences among root categories in the response of S ABA to RWC were due to different RWC values among categories at a given Ψ root, and not to differences in the response of S ABA to Ψ root.  相似文献   

8.
To understand soil colonization by a root system, information is needed on the architecture of the root system. In monocotyledons, soil exploration is mainly due to the growth of adventitious primary roots. Primary root emergence in banana was quantified in relation to shoot and corm development. Root emergence kinetics were closely related to the development of aerial organs. Root position at emergence on the corm followed an asymptotic function of corm dry weight, so that the age of each root at a given time could be deduced from its position. Root diameter at emergence was related to the position of the roots on the corm, with younger roots being thicker than older ones. However, root diameters were not constant along a given root, but instead decreased with the distance to the base; roots appear to be conical in their basal and apical parts. Root growth directions at emergence were variable, but a high proportion of the primary roots emerged with a low angle to the horizontal. Further research is needed to evaluate whether these initial trajectories are conserved during root development. Results presented in this study are in good agreement with those reported for other monocotyledons such as maize and rice. They give quantitative information that will facilitate the development of models of root system architecture in banana.  相似文献   

9.
The objective of this work was to study elongation curves of maize axile roots throughout their elongation period under field conditions. Relationships between their elongation rate and the extension rate of their branched region were also studied. Maize, early-maturing cultivar Dea, was grown on a deep, barrier-free clay loam (depth 1.80m). Trenches were dug during four periods until after silking and axile roots were excavated. Parameters measured were total length and the lengths of basal and apical unbranched zones. The rank of the bearing phytomer and general data about the carrying plant were also recorded. Results showed that axile roots from lower phytomers had similar elongation rates irrespective of the rank of the carrying phytomer. This elongation rate declined with root age. A monomolecular elongation model was fitted to the experimental data. Elongation was much slower in roots from upper phytomers. A rough linear relationship was found between the elongation rate of axile roots and the length of the apical unbranched zone. This result suggests that laterals appeared on a root segment a constant time after it was formed. Possible mechanisms with may account for the declining elongation rate with root age (increasing distance from aerial parts or adverse environmental conditions in deep soil layers) and variability between individual roots are also discussed.  相似文献   

10.
根毛和共生真菌增加了吸收面积,提高了植物获取磷等土壤资源的能力。由于野外原位观测根表微观结构较为困难,吸收细根、根毛、共生真菌如何相互作用并适应土壤资源供应,缺乏相应的数据和理论。该研究以受磷限制的亚热带森林为对象,选取了21种典型树种,定量了根毛存在情况、属性变异,分析了根毛形态特征与共生真菌侵染率、吸收细根功能属性之间的关系,探讨了根表结构对低磷土壤的响应和适应格局。结果表明:1)在亚热带森林根毛不是普遍存在的, 21个树种中仅发现7个树种存有根毛, 4个为丛枝菌根(AM)树种, 3个为外生菌根(ECM)树种。其中,马尾松(Pinus massoniana)根毛出现率最高,为86%;2)菌根类型是理解根-根毛-共生真菌关系的关键,AM树种根毛密度与共生真菌侵染率正相关,但ECM树种根毛直径与共生真菌侵染率负相关; 3) AM树种根毛长度和根毛直径、ECM树种根毛出现率与土壤有效磷含量呈负相关关系。该研究揭示了不同菌根类型树种根毛-共生真菌-根属性的格局及相互作用,为精细理解养分获取策略奠定了基础。  相似文献   

11.
Fine root tumover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors.Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past,our understanding of it remains limited.This is because the dynamics processes associated with soil resources availability are still poorly understood.Soil moisture,temperature,and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level.In temperate forest ecosystems,seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground.Therefore,fine root biomass,root length density(RLD)and specific root length(SRL)vary during the growing season.Studying seasonal changes of fine root biomass,RLD,and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover.The objective of this study was to understand whether seasonal variations of fine root biomass,RLD and SRL were associated with soil resource availability,such as moisture,temperature,and nitrogen,and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation.We used a soil coring method to obtain fine root samples(≤2 mm in diameter)every month from Mav to October in 2002 from a 17-year-old L.gmelinii plantation in Maoershan Experiment Station,Northeast Forestry University,China.Seventy-two soil cores(inside diameter 60 mm;depth intervals:0-10 cm,10-20 cm,20-30 cm)were sampled randomly from three replicates 25 m×30 m plots to estimate fine root biomass(live and dead),and calculate RLD and SRL.Soil moisture,temperature,and nitrogen(ammonia and nitrates)at three depth intervals were also analyzed in these plots.Results showed that the average standing fine root biomass(live (32.2 g.m-2.a-1)in the middle(10-20 cm)and deep layer (20-30cm),respectively.Live and dead fine root biomass was the highest from May to July and in September,but lower in August and October.The live fine root biomass decreased and dead biomass increased during the growing soil layer.RLD and SRL in May were the highestthe other months,and RLD was the lowest in Septemberdynamics of fine root biomass,RLD,and SRL showed a close relationship with changes in soil moisture,temperature,and nitrogen availability.To a lesser extent,the temperature could be determined by regression analysis.Fine roots in the upper soil layer have a function of absorbing moisture and nutrients,while the main function of deeper soil may be moisture uptake rather than nutrient acquisition.Therefore,carbon allocation to roots in the upper soil layer and deeper soil layer was different.Multiple regression analysis showed that variation in soil resource availability could explain 71-73% of the seasonal variation of RLD and SRL and 58% of the variation in fine root biomass.These results suggested a greater metabolic activity of fine roots living in soil with higher resource availability,which resulted in an increased allocation of carbohydrate to these roots,but a lower allocation of carbohydrate to those in soil with lower resource availability.  相似文献   

12.
水曲柳和落叶松细根形态及母根与子根比例关系   总被引:7,自引:0,他引:7  
细根(直径〈2mm)的分枝是根系重要的结构特征,不同根序等级的细根在养分和水分吸收、C的消耗和寿命方面具有较大的差异,定量研究各根序等级之间的比例关系对认识细根死亡的顺序具有重要的理论意义。根据Pregitzer等2002年提供的方法,研究了17年生水曲柳(Fraxinus mandshurica Rupr.)和落叶松(Larix gmelinii Rupr.)人工纯林1-5级细根的直径、长度、比根长、生物量和数量。结果表明,两树种细根中1级根序的数量占总根系数量80%-90%,它们直径小、长度短、比根长高。随着根序等级(1级-5级)的增加细根直径增粗和长度增加、比根长减小。细根的数量和生物量在上下土层的分布受土壤资源有效性的影响。水曲柳5级根序-2级根序之间母根与子根的数量关系是1:3,落叶松是1:2-3。2级根序与1级根序之间母根与子根的数量关系,水曲柳是1:10—12,落叶松是1:8。如果当年生长的1级细根当中保持1:3的比例,将有65%-75%的1级细根死亡,占根系总数的55%~65%,总长度的40%-50%,以及总生物量的20%-30%。  相似文献   

13.
青杨人工林根系生物量、表面积和根长密度变化   总被引:6,自引:1,他引:5  
燕辉  刘广全  李红生 《应用生态学报》2010,21(11):2763-2768
在植物生长季节,采用钻取土芯法对秦岭北坡50年生青杨人工林根径≤2 mm和2~5 mm根系的生物量、表面积和根长密度进行测定.结果表明:在青杨人工林根系(<5 mm)中,根径≤2 mm根系占总生物量的77.8%,2~5 mm根系仅占22.2%;根径≤2 mm根系表面积和根长密度占根系总量的97%以上,而根径2~5 mm根系不足3%.随着土层的加深,根径≤2 mm根系生物量、表面积和根长密度数量减少,根径2~5 mm根系生物量、表面积和根长密度最小值均分布在20~30 cm土层.≤2 mm根系生物量、表面积和根长密度与土壤有机质、有效氮呈极显著相关,而根径2~5 mm根系的相关性不显著.  相似文献   

14.
Background and AimsLessons from above-ground trait ecology and resource economics theory may not be directly translatable to below-ground traits due to differences in function, trade-offs and environmental constraints. Here we examine root functional traits within and across species along a fine-scale hydrological gradient. We ask two related questions: (1) What is the relative magnitude of trait variation across the gradient for within- versus among-species variation? (2) Do correlations among below-ground plant traits conform with predictions from resource-economic spectrum theory?MethodsWe sampled four below-ground fine-root traits (specific root length, branching intensity, root tissue density and root dry matter content) and four above-ground traits (specific leaf area, leaf size, plant height and leaf dry matter content) in vascular plants along a fine-scale hydrological gradient within a wet heathland community in south-eastern Australia. Below-ground and above-ground traits were sampled both within and among species.Key ResultsRoot traits shifted both within and among species across the hydrological gradient. Within- and among-species patterns for root tissue density showed similar declines towards the wetter end of the gradient. Other root traits showed a variety of patterns with respect to within- and among-species variation. Filtering of species has a stronger effect compared with the average within-species shift: the slopes of the relationships between soil moisture and traits were steeper across species than slopes of within species. Between species, below-ground traits were only weakly linked to each other and to above-ground traits, but these weak links did in some cases correspond with predictions from economic theory.ConclusionsOne of the challenges of research on root traits has been considerable intraspecific variation. Here we show that part of intraspecific root trait variation is structured by a fine-scale hydrological gradient, and that the variation aligns with among-species trends in some cases. Patterns in root tissue density are especially intriguing and may play an important role in species and individual response to moisture conditions. Given the importance of roots in the uptake of resources, and in carbon and nutrient turnover, it is vital that we establish patterns of root trait variation across environmental gradients.  相似文献   

15.
T. Tani  H. Kudoh  N. Kachi 《Plant and Soil》2003,255(1):227-237
The understory evergreen perennial Pteridophyllum racemosum Sieb. et Zucc. (Papaveraceae) has the ability to increase root mass per unit transpiring leaf area (RMA) if irradiance increases gradually over several years. In this study, we examined how P. racemosum changes its root length/leaf area ratio and specific root length when the species encounters abrupt increases in irradiance, such as sudden and unexpected canopy openings. Plants were transplanted from a low light condition in a subalpine wave-regenerating forest (photon flux density on the forest floor relative to the full sun (RPFD) was 2.7%) to a high light condition in a glasshouse (30% RPFD) (LH treatment). Transplantation from the low light condition in the forest to a low light condition in the glasshouse (LL) and transplantation from a high light condition in the forest (33% RPFD) to a high light condition in the glasshouse (HH) were also conducted as controls. Compared to the LL plants, the LH plants exhibited significant increases in RMA and root length/leaf area ratio from 30 to 70 days after transplantation. On the other hand, the effect of increased irradiance on specific root length (SRL) was weak, and both the LL and LH plants showed increased SRL from 30 to 70 days after transplantation. Increased SRL results from longer root length per unit construction cost. We concluded that increased root length/leaf area ratio of P. racemosum in response to abrupt increases in irradiance was caused by a combination of enhanced carbon allocation to roots with increased SRL.  相似文献   

16.
The objective of this study was to investigate the effect of cyclic soil wetting and drying on maize (Zea mays L.) root hair growth. Three soils, Chalmers silty clay loam (Typic Haplaquolls), Raub silt loam (Aquic Argiudolls) and Aubbeenaubbee sandy loam (Aric Ochraqualfs) and two soil moisture contents, −175 (M0) and −7.5 kPa (M1), were used to study root hair growth in a controlled-climate chamber. Increasing soil moisture after 7d from M0 and M1 resulted in a cessation of root hair growth behind the root cap while drying the soil after 7d from M1 and M0 promoted root hair growth on new but not old or existing roots. By maintaining liquid continuity under cyclic wetting and drying of a soil, root hairs may be of far greater significance to the nutrition of the plant than originally thought. Journal Paper No. 11023, Purdue Univ. Agric. Exp. Stn., W. Lafayette, IN 47907. Contribution from the Dep. of Agron.  相似文献   

17.
18.
Before the late 1980s, although the majority of Agrobacterium-mediated gene transfer experiments have been performed with A. tumefaciens[1―3], some work has also been done with its close relative, Agro-bacterium rhizogene. It has been considered that onl…  相似文献   

19.
Differences between observed and simulated vertical root maps were studied in an attempt to evaluate the predictive ability of a simulation model of root system architecture under field conditions on mature plants, and to identify avenues for improvement. Some methodological problems associated with root mapping in the field are considered with a sensitivity analysis.Comparisons were made on a maize crop (early maturing hybrid F1 cultivar Dea) 15 days after silking. Four vertical root maps, perpendicular to the row and midway between two successive plants, were observed. Simulated root maps for different locations along the row showed essentially the same pattern, attesting of an approximately two-dimensional distribution of the roots in such a crop. Simulation of the intesection of roots with thin layers (thickness from 0 to 20 mm) instead of a perfect plane allowed us to assess effects due to the roughness of actual trench walls, and possible artefacts in the observation of root intersections. The simulated root profiles were very sensitive to this thickness, especially in the 0–5 mm range, in both average values, and overall shape. Actual data were close to the 3 mm thick simulations. This value seems plausible under our field conditions.Differences between simulated and actual root maps were shown to be mostly accounted for by the variations in soil bulk density. Thus, this environmental parameter appears as the most important one to include into the model for improving its predictions.  相似文献   

20.
Field and growth chamber studies were used to determine the effect of in-furrow application of PGR-IV on root and shoot development, and yield of cotton. In the field study, an in-furrow application of PGR-IV @ 73 mL ha–1 at planting increased yield by 18% compared to the untreated control, and by 11% compared to 2-foliar applications of 292 mL/ha–1 each at pinhead square stage of flower development and at first flower appearance. Growth chamber studies revealed that the in-furrow applications of PGR-IV @ 1.131L/plant dramatically increased root length (+47%), root dry weight (+29%), number of lateral roots per plant (+75%), and nutrient uptake one week after planting. These differences were still apparent five weeks later at pinhead square but to a lesser degree. The yield enhancement from the foliar applications was associated with increases in leaf growth, nutrient uptake, and boll number, whereas the yield enhancement from the soil application was associated with enhanced root growth and nutrient uptake. The positive effect of PGR-IV on root growth and accelerated early-season growth could have very substantial benefits in cotton production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号