首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Chu C  Xu B  Huang W 《Tissue & cell》2010,42(6):370-375
Studies indicate that many tissues could express follicle-stimulating hormone (FSH) besides pituitary. New functions of FSH are also been recognized beyond reproduction regulation. However, no report has been made about the expression and function of FSH in rat pancreas yet. Dual-labeled immunofluorescence stain, in situ hybridization and dual-labeled immunohistochemistry stain in adjacent sections were used to study the expression of FSH and its receptor, and co-localization of FSH with gonadotropin-releasing hormone (GnRH) receptor in rat pancreas. Tissue incubation and enzyme-linked immunosorbant assay (ELISA) were used to study the effects of FSH on the secretion of insulin and glucagon in rat pancreas in vitro. The results showed that rat pancreas could express FSH and its receptor, some of islet cells co-expressed FSH and its receptor, some of islet cells co-expressed FSH and GnRH receptor. FSH has the same bidirectional regulation effects on insulin and glucagon in vitro. These data suggested that rat pancreas is a target organ of FSH, and GnRH might regulate FSH through GnRH receptor in rat pancreas. FSH might regulate the endocrine function of rat pancreas through FSH receptor.  相似文献   

2.
It has been known that GnRH, LH and their receptors exist in hippocampal neurons. However, whether FSH and its receptor also exist in hippocampal neurons remained unknown yet. In situ hybridization, double-labeled immunofluorescence stain and double-labeled immunohistochemistry stain in adjacent sections were used in our research to study the distribution, co-localization of FSH and its receptor and co-localization of FSH and GnRH receptor in rat hippocampus. The result found that pyramidal neurons from CA1 to CA4 region and granule neurons in dentate gyrus could express FSH and its receptor, majority of hippocampal neurons co-expressed FSH and its receptor, FSH and GnRH receptor. These suggested that hippocampal neurons not only express FSH but also act as FSH target cells. FSH may regulate the function of hippocampal neurons by ways of paracrine or autocrine. At the same time, GnRH may regulate the function of FSH neuron in hippocampus through GnRH receptor.  相似文献   

3.
Studies indicated that many tissues could express FSH. New functions of FSH have been recognized beyond reproduction regulation. However, no report has been made about the expression and function of FSH in rat spinal cord. Double-labeled immunofluorescence stain and in situ hybridization were used to study the co-localization of FSH with its receptor and co-localization of FSH with GnRH receptor in rat spinal cord. Spinal cord ischemia injury models were built, TUNEL stain and Fas immunostaining were made to observe the anti-apoptotic effects of FSH to neurons induced by spinal cord ischemia injury. The results found that some neurons and glias of rat spinal cord showed both FSH immunoreactivity and FSH mRNA positive signals; not only FSH and its receptor but also FSH and GnRH receptor co-located in cells of both gray matter and white matter; treatment with certain concentration of FSH before ischemia–reperfusion injury, less TUNEL positive cells and Fas positive cells were found in motor neurons of ventral gray matter in FSH experiment group than that in control group. These suggested that rat spinal cord could express FSH, it is also a target organ of FSH; FSH might exert functions through its receptor by paracrine or autocrine effects; GnRH in spinal cord might regulate FSH positive neurons through GnRH receptor; FSH might inhibit ischemia induced neuron apoptosis by down-regulating Fas expression in spinal cord.  相似文献   

4.
Ghrelin, the endogenous ligand for the growth hormone secretagogue receptor, has been found in the cerebellum of many vertebrates and in the gastrointestinal tract of African ostrich chicks, but little is known about its distribution in the cerebellum of the African ostrich. In the present study, the distribution and morphological characteristics of ghrelin-producing cells in the cerebellum of the African ostrich were investigated using immunohistochemistry. The results indicate that the cerebellum is divided into two sections: the outer cerebellar cortex and the inner medulla of cerebellum. The cerebellar cortex comprises a molecular layer, a Purkinje cell layer and a granular layer; ghrelin-immunopositive (ghrelin-ip) cells were localized throughout the entire cerebellum, but sparsely in the medulla. The greatest number of ghrelin-ip cells was found in the stratum granulosum, and the density decreased gradually from the molecular layer to the Purkinje cell layer in the cerebellar cortex. The ghrelin-ip cells were fusiform or irregular polygons and their cytoplasm was stained intensely. These results clearly demonstrate the presence of ghrelin-ip cells in the cerebellum of the African ostrich. It is speculated that ghrelin may have a physiological function in the cerebellum.  相似文献   

5.
An antiserum raised against an enriched preparation of isolated rat cerebellar Purkinje cells has been studied with the indirect immunofluorescence technique to establish its specificity and localisation. On cryostat sections, the unabsorbed IgG fraction stained large and small neurons in all brain regions. This staining was greatly reduced in the forebrain after the serum was absorbed on heart and liver membranes, and abolished after additional absorption on cerebral membranes. In the cerebellum, these absorptions also removed background staining in the internal granular layer, while the perikarya and dendrites of the Purkinje cells remained positive. Large neurons in the deep cerebellar nuclei and the brain stem were also stained, but further absorption on membranes prepared from the brain stem removed staining in both these areas without affecting that of the Purkinje cells. Thus, using immunohistochemical screening, it was possible through a series of absorptions to obtain a serum that is specific to cerebellar Purkinje cells.  相似文献   

6.
宋海燕  刘再群  郑磊 《四川动物》2012,31(2):232-235,239,337
采用普通染色及免疫组化SABC染色法研究皖西白鹅小脑皮质的发育和多巴胺受体1(DRD1)阳性细胞在其发育中的表达.结果表明,小脑皮质在胚龄13 d(E13)由外向内分为外颗粒层(EGL)、浦肯野细胞层(PCL)和内颗粒层(IGL),E19由外向内分为EGL、分子层(ML)、PCL和IGL.随发育天数的增加,EGL的厚度和细胞层次呈先升后降的变化趋势,细胞密度逐渐下降;ML厚度逐渐增大,在E24到E28时增值最大;浦肯野细胞(PC)在E13、E19、E24和E28时随胚龄增大逐渐增大,在E28后趋于稳定,细胞密度随着发育天数的增加逐渐下降,在小脑皮质发育中还发现有一部分PC呈多层排列,且细胞层次逐渐变少;IGL厚度呈先升后降的变化趋势,细胞密度呈上升趋势.外颗粒层和内颗粒层在E13、E19、E24和E28时有DRD1阳性细胞表达,分子层在E24、E28、日龄7 d(P7)和15d(P15)有阳性细胞表达,PC在所检测的6个时段均有阳性表达.研究表明,小脑皮质的发育主要与细胞增殖、迁移和凋亡有关,外颗粒层的逐渐消失是以细胞迁移和凋亡为主,多层PC逐渐退化成单层是与细胞凋亡和正常突触联系的建立有关;DRD1在皖西白鹅小脑皮质发育中对外颗粒层细胞和PC起着重要作用.  相似文献   

7.
Time-of-flight secondary-ion-mass-spectrometry (TOF-SIMS) was utilized to address the issue of co-localization of cholesterol, phosphocholine and galactosylceramide in rat cerebellar cortex. Rat cerebellum was fixed, freeze-protected by sucrose, frozen and sectioned by cryoultramicrotomy and dried at room temperature. The samples were analyzed in an imaging TOF-SIMS instrument equipped with a Bi(1-7)+-source. The cholesterol signal (m/z 369 and 385) was localized in Purkinje cells and in nuclei of granular layer cells. The phosphocholine headgroup of phosphatidylcholine and sphingomyelin was localized by imaging a specific fragment (m/z 86). This signal was localized in the molecular layer of cerebellar cortex, in Purkinje cells and in parts of the granular layer probably representing the synapse-rich glomeruli. The galactosylceramide was localized by imaging the quasi-molecular ions at m/z 835 and 851, showed a clear colocalization with cholesterol, but also a specific localization in dots (diameter 相似文献   

8.
A monoclonal antibody designated M2 arose from the fusion of mouse myeloma cells with splenocytes from a rat immunized with particulate fraction from early postnatal mouse cerebellum. Expression of M2 antigen was examined by indirect immunofluorescence on frozen sections of developing and adult mouse cerebellum and on monolayer cultures of early postnatal mouse cerebellar cells. In adult cerebellum, M2 staining outlines the cell bodies of granule and Purkinje cells. A weaker, more diffuse staining is seen in the molecular layer and white matter. In sections of newborn cerebellum, M2 antigen is weakly detectable surrounding cells of the external granular layer and Purkinje cells. The expression of M2 antigen increases during development in both cell types, reaching adult levels by postnatal day 14. At all stages of postnatal cerebellar development, granule cells that have completed migration to the internal granule layer are more heavily stained by M2 antibodies than are those before and in process of migration. In monolayer cultures, M2 antigen is detected on the cell surface Of all GFA protein-positive astrocytes and on more immature oligodendrocytes, that express 04 antigen but not 01 antigen. After 3 days in culture, tetanus toxinpositive neurons begin to express M2 antigen. The same delayed expression of M2 antigen on neurons is observed in cultures derived from mice ranging in age from postnatal day 0 to 10.  相似文献   

9.
目的探讨生长休止特定蛋白7(Gas7)在大鼠小脑中的表达定位。方法应用Gas7抗血清,对大鼠小脑组织切片进行免疫组织化学染色。结果在小脑皮质分子层可见大量的Gas7阳性神经纤维;蒲氏细胞层中,Gas7主要表达在神经元胞膜和部分胞质处;颗粒层中可见Gas7阳性神经纤维。结论Gas7主要在小脑神经元的定位特征可能与Gas7促进神经元和神经突起发育的调节功能有关。  相似文献   

10.
为了解小熊猫(Ailurus fulgens)小脑皮层的结构特征,观察神经丝蛋白抗体RT-97、角质细胞生长因子(KGF)及Bax蛋白在小脑皮层中的表达,利用组织学方法和免疫组织化学方法观察了小熊猫小脑皮层的显微结构,检测了RT-97、KGF和Bax蛋白的表达.结果表明,小脑皮层从外向内依次可分为分子层、Purkinje细胞层、颗粒层3层.RT-97在小熊猫小脑皮层Purkinje细胞层、颗粒层中神经细胞的轴突、分子层中颗粒细胞的轴突及小脑髓质中有阳性表达;KGF在小脑皮层分子层、Purkinje细胞层和颗粒细胞层及髓质中均有阳性表达;Bax蛋白在小脑皮层分子层、Purkinje细胞层和颗粒细胞层中有阳性表达.RT-97、KGF和Bax蛋白在小脑皮层神经结构的构筑中可能发挥着不同的功能.  相似文献   

11.
Summary The expression of epidermal growth factor receptor (EGFR) was determined in cryosections of 42 human gliomas using biotinylated epidermal growth factor (B-EGF) and two monoclonal antibodies (mAb) against EGFR. All gliomas were found to express EGFR when examined with B-EGF, whereas 33 expressed EGFR when examined with the two mAbs. The highly malignant gliomas (glioblastomas and anaplastic astrocytomas) had a more heterogeneous staining pattern and a larger proportion of tumour cells staining strongly with B-EGF than did the low-grade gliomas (astrocytomas, oligodendrogliomas, mixed gliomas, and ependymomas). This indicates that high-grade gliomas contain more tumour cells rich in EGFR than do the low-grade gliomas. Reactive astrocytes, ependymal cells, and many types of nerve cells (cerebral cortical pyramidal cells, pyramidal and granular hippocampal cells, Purkinje cells, cerebellar granular cells and neurons in the molecular layer of the cerebellum) expressed EGFR, whereas small neurons and normal glial cells were not found to express EGFR.  相似文献   

12.
Modifications of glycosaminoglycans at neuropile of rat and chicken cerebellum during development were histochemically studied. The application of Alcian Blue staining techniques and enzymatic degradations permitted to reveal in both species that in earlier stages of cerebellar development hyaluronic acid is present throughout neuropile of entire cerebellum but it accumulated preferentially at the medullary region and around precursory Purkinje cells where it showed a mucoid-like appearance. This substance was related with cell migration and aligning processes. At the middle of cerebellar development, around 2nd postnatal week in rat and 12-16 embryonary days in chick, a new polyanionic transient accumulation, presumably chondroitinsulphate, became present at the medullary region following the longitudinal axis of folium and limiting the forming granular layer, being this substance mainly related with polarity processes by controlling or guiding the growing cones of afferent fibers, which enter massively to cerebellar cortex. It disappeared as myelination progressed. Also from the middle stage of development onward, beside glycosaminoglycans, other polyanionic substances were present at the molecular and granular layer neuropile and at the cytoplasm of some nerve cells. These macromolecules were rather related with nerve cell differentiation and maturation.  相似文献   

13.
THE DEVELOPMENT OF D-AMINO ACID OXIDASE IN RAT CEREBELLUM   总被引:1,自引:0,他引:1  
D-Amino acid oxidase (D-amino acid: O2 oxidoreductase (deaminating), EC 1.4.3.3; D-AAO) activity is biochemically undetected in rat brain stem, cerebellum and forebrain until 14 days after birth. Adult levels are attained by day 30 in the brain stem, and by day 36 in the cerebellum. At adulthood, forebrain D-AAO activity per g wet weight of tissue is less than 2% that of the cerebellum. In contrast to the pattern in the CNS, substantial D-AAO activity is present in both liver and kidney 2 days before birth and adult levels are approached within 2 weeks of birth. Nonetheless, D-AAO activities in rat liver, kidney, brain stem and cerebellum are likely to be due to a single enzyme which has properties very similar to the purified hog D-AAO. The late ontogenesis of D-AAO activity in cerebellum and brain stem relative to that in liver and kidney parallels reported phylogenetic data. Histochemical staining for D-AAO in rat cerebellar cortex is absent until 15 days after birth when activity is first observed in some cells of the external germinal zone and adjacent molecular layer. These cells appear to migrate to a final destination around the Purkinje cell soma and leave processes at the pial surface. By 21 days of age an adult pattern of staining is manifest throughout the cerebellum but it is of weak intensity. The adult pattern includes some staining in the granular layer which seems to be associated with mossy fibers and certain cerebellar glomeruli, and strong staining at the pial surface, in the molecular layer, and in cells surrounding, but not within, the Purkinje cell soma. The data suggest that the biochemical appearance of D-AAO in developing cerebellum derives from two sources: one associated with differentiation of one of the last cell types to form from the external germinal zone, and the other with maturation of mossy fibers and their synapses (cerebellar glomeruli).  相似文献   

14.
15.
The cerebellum has long been recognized as the primary center of motor coordination in the central nervous system. Cerebellar neuropeptides have been postulated to be involved in such motor coordination, though this role is not fully understood. We herein investigated the localization of novel neuropeptide, “manserin” in the adult rat cerebellum. Punctate signals of manserin immunoreactivity were observed in the granular layer of the rat cerebellum. Manserin signals were also observed in the fibers and fiber terminals in the granular layer as well as the molecular layer. Manserin did not localize in Purkinje cells. Interestingly, cerebellar manserin was preferentially colocalized with unipolar brush cells, a class of excitatory granular layer interneuron, which are known to be involved in vestibullocerebellar functions. These results indicate that manserin plays pivotal roles in the cerebellar functions.  相似文献   

16.
A comparative study of the distribution of a simple esterase and acetylcholinesterase in the cerebellar cortex of mouse and bat has been made. The Purkinje layer is intensely positive for simple esterase in both species. The granular and molecular layers showed mild to moderate activity in mouse and intense activity in bat. Acetylcholinesterase in cerebellar layers of bat is more intense than in mouse. In bat cerebellum, acetylcholinesterase is observed in the dendrites of Purkinje cells, but not in their cell bodies. Acetylcholinesterase was not found in Purkinje cells of mouse.  相似文献   

17.
ROR alpha is an orphan nuclear receptor. A deletion mutation in the ROR alpha gene leads to severe cerebellar defects, known as the staggerer mutant mouse. Although previous in situ hybridization (ISH) studies have shown that ROR alpha is highly expressed in the cerebellum, especially in Purkinje cells, and in the thalamus, sufficient immunohistochemical (IHC) study has not yet been presented. I demonstrate here the IHC analysis of ROR alpha using a specific anti-ROR alpha antibody, in adult and developing mouse nervous system. ROR alpha immunoreactivity was observed in the Purkinje cell and molecular layers of the cerebellum. The co-localization of ROR alpha with calbindin D(28K) (CaBP) and parvalbumin indicates that ROR alpha-positive cells were Purkinje cells, stellate cells, and basket cells. In addition to the cerebellum, strong to medium ROR alpha immunoreactivity was found in the thalamus, cerebral cortex (mainly in the layer IV), dorsal cochlear nucleus (DCN), suprachiasmatic nucleus (SCN), superior colliculus, spinal trigeminal nucleus, and retina. The immunostaining was restricted in nuclei of neurons. Developmentally, ROR alpha immunoreactivity was observed in the cerebellum and thalamus from embryonal day 16 (E16). The distribution of ROR alpha immunoreactivity and ROR alpha mRNA hybridization signal was almost coincident. However, the intensity of hybridization signal was not always parallel to that of immunoreactivity.  相似文献   

18.
19.
Thyroid hormones are essential for correct brain development, and since vertebrates express two thyroid hormone receptor genes (TR alpha and beta), we investigated TR gene expression during chick brain ontogenesis. In situ hybridization analyses showed that TR alpha mRNA was widely expressed from early embryonic stages, whereas TR beta was sharply induced after embryonic day 19 (E19), coinciding with the known hormone-sensitive period. Differential expression of TR mRNAs was striking in the cerebellum: TR beta mRNA was induced in white matter and granule cells after the migratory phase, suggesting a main TR beta function in late, hormone-dependent glial and neuronal maturation. In contrast, TR alpha mRNA was expressed in the earlier proliferating and migrating granule cells, and in the more mature granular and Purkinje cell layers after hatching, indicating a role for TR alpha in both immature and mature neural cells. Surprisingly, both TR genes were expressed in early cerebellar outgrowth at E9, before known hormone requirements, with TR beta mRNA restricted to the ventricular epithelium of the metencephalon and TR alpha expressed in migrating cells and the early granular layer. The results implicate TRs with distinct functions in the early embryonic brain as well as in the late phase of hormone requirement.  相似文献   

20.
目的:研究人体小脑神经元的发育过程。方法:应用体视学方法,对18例不同时期人体小脑组织Golgi染色后进行观察,观测小脑皮质分层出现的时间,观测并计算神经元的数密度、体密度和表面积密度。结果:6月龄时,小脑皮质出现较明显的分子层、蒲肯野细胞层和颗粒层;星形细胞、篮状细胞、蒲肯野细胞、颗粒细胞和高尔基细胞的的数密度随月龄/年龄的增长而减少,体密度和表面积密度随月龄/年龄的增长而增加,但这些减小和增大是不等速的,6-8月龄变化最明显。结论:人体小脑神经元的发育呈现快慢交替、不均速发展,6~8月是小脑神经元发育的重要时期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号