首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the differential effect of dimethyl-10,12-benz(a)acridine (DBMAcr) on the synthesis of RNA of chicken or mouse fibroblasts in culture and that of some RNA-containing viruses such as Rous sarcoma virus and Mengovirus. DMBAcr at low concentrations blocks the cell multiplication of both normal and Rous sarcoma virus-transformed chicken fibroblasts in culture; it affects transformed cells more than normal ones. The cell growth inhibiting effect of DMBAcr is reversible after short periods of incubation. DMBAcr depresses the synthesis of cellular DNA and RNA in parallel. Concurrently the synthesis of protein proceedes at a relatively high rate in DMBAcr-treated cultures. Its inhibitory effect on cellular RNA synthesis is mostly due to a block in the formation of 28 S and 18 S ribosomal RNA species; in contrast, the synthesis of 45 S ribosomal RNA precursor is proceeding at almost control rate. Also, the synthesis of heterogeneous nuclear RNA is not blocked by DMBAcr. The production of Rous sarcoma virus in transformed fibroblasts is not affected by DMBAcr. Since this is correlated with persisting high rates of protein and heterogenous nuclear RNA synthesis, the effects of DMBAcr suggest that the synthesis of Rous sarcoma virus-RNA shares the specificity of messenger and heterogeneous nuclear RNA. DMBAcr inhibits the synthesis of viral RNA of Mengovirus under conditions where the synthesis of total cellular RNA is not appreciably depressed, suggesting its differential effect on the DNA-directed and the RNA-directed RNA synthesis.  相似文献   

2.
Protected deoxynucleoside 3'-O-ethyl-N,N-diisopropylphosphoramidite reagents were prepared for use in the automated synthesis of ethyl phosphotriester (Et) modified oligonucleotides. The title diastereomers were separated by reversed-phase HPLC, and chirality at phosphorus was assigned by an improved configurational correlation scheme that was verified by NMR spectroscopic studies (accompanying paper, Part VI). This generally applicable correlation scheme involved enzymatic digestions of each diastereomer to give the corresponding diastereomer of d[A(Et)T]; phosphite triester sulfurization to obtain diastereomeric O-ethyl phosphorothioates, d[AS(Et)T], which were separated by HPLC for stereoretentive oxidation with H2O2 to give d[A(Et)T], and stereoretentive de-ethylation with PhSH-Et3N to give diastereomeric phosphorothioates, d[AST], whose configurations at phosphorus had been assigned previously. Neither the Rp-Rp nor Sp-Sp duplex, (d[GGAA(Et)TTCC])2, was cleaved by EcoRI endonuclease under conditions that led to cleavage of both the unmodified duplex, [d(GGAATTCC)]2, and the mixture of diastereomeric phosphorothioate-modified duplexes, [d(GGAASTTCC)]2. Cleavage of the latter substrates was Sp-selective.  相似文献   

3.
4.
Extract of saffron (Crocus sativis) has previously been shown to inhibit colony formation and cellular DNA and RNA synthesis by HeLa cells in vitro. In order to compare the sensitivity of malignant and non-malignant cells to saffron, we examined the effect of the extract on macromolecular synthesis in three human cell lines: A549 cells (derived from a lung tumor), WI-38 cells (normal lung fibroblasts) and VA-13 cells (WI-38 cells transformed in vitro by SV40 tumor virus). We found that the malignant cells were more sensitive than the normal cells to the inhibitory effects of saffron on both DNA and RNA synthesis. There was no effect on protein synthesis in any of the cells.  相似文献   

5.
Factors inhibiting cell growth have been isolated from different cell types. However, little information is available concerning their mode of action. A novel growth inhibitory factor of 45 kDa (IDF45) was recently purified to homogeneity from medium conditioned by 3T3 cells. This molecule was able to inhibit DNA synthesis and the growth of chick embryo fibroblasts (CEF) in a reversible manner. By contrast, DNA synthesis stimulated by v-src expression in CEF was poorly inhibited by IDF45. In order to gain further insight into the IDF45 mode of action in normal and transformed CEF, we compared the effects of IDF45 on early stimulation of RNA synthesis induced in CEF by different mitogenic factors and by v-src gene expression. Stimulation, by serum, of RNA synthesis was inhibited by IDF45; however, inhibition increased when cells were preincubated with IDF45 before addition of serum and cell labeling for 2 h. IDF45 was also able to inhibit partially the stimulation of RNA synthesis induced by PMA and PDGF but was unable to inhibit stimulation of RNA synthesis induced by insulin and v-src expression. By contrast, stimulation of RNA synthesis induced by IGF-I was rapidly 100% inhibited by IDF45. The effect of IDF45 on DNA synthesis stimulated by the different mitogens was also determined and was correlated with the effect of IDF45 on RNA synthesis. These results suggest that the modes of action of IDF45 on stimulation of RNA synthesis by v-src and by insulin are similar. Our present results agree with others showing the bifunctional activity of IDF45 as an IGF-binding protein and as an inhibitory molecule in DNA stimulation induced by serum.  相似文献   

6.
S C Wittelsberger  K Kleene  S Penman 《Cell》1981,24(3):859-866
The modulation of cell metabolism by cell shape and external surface contact has been studied by suspension culture of anchorage-dependent fibroblasts. The suspended cells shut down protein synthesis and nuclear RNA metabolism and cease replicating DNA. However, these responses to suspension are lost or modified as cells become progressively transformed in behavior. We compare the metabolic consequences of suspension culture in five related types of fibroblasts: the well regulated mouse diploid fibroblast; the spontaneously immortalized and progressively less well regulated lines 3T3, 3T6 and HDP3T6; and the fully transformed anchorage-independent SVPy3T3. Protein synthesis is inhibited rapidly following suspension in diploid fibroblasts and more slowly in the less well regulated cells. In contrast, the response of hnRNA synthesis to suspension is lost completely when cells adopt the 3T6 phenotype, and message regulation is lost in HDP3T6. The prompt inhibition of ribosomal RNA precursor is modified to a slow decline in HDP3T6. The metabolism of fully transformed SVPy3T3 cells is indifferent to suspension. The progressive loss of shape-responsive controls may be related to tumor progression.  相似文献   

7.
We have recently described a cell type-specific surface (SF) antigen that is deleted in chick fibroblasts transformed by Rous sarcoma virus. SF antigen is a major surface component and makes up about 0.5% of the total protein on normal cultured fibroblasts. The antigen is shed from normal cells and is present in circulation (serum, plasma), and in vivo, also, in tissue boundary membranes. The molecular equivalents of both cellular and serum SF antigen are distinct, large polypeptides, one of which (SF210, MW 210,000) is glycosylated and, on the cell surface, highly susceptible to proteases and accessible to surface iodination. Immunofluorescence and scanning electron microscopy have indicated that the antigen is located in fibrillar structures of the cell surface, membrane ridges, and processes. Human SF antigen is present in human fibroblasts and in human serum. We have recently shown that human SF antigen is identical to what has been known as the “cold-insoluble globulin” and that it shows affinity toward fibrin and fibrinogen. Our results also indicate that loss of the transformation-sensitive surface proteins is due not to loss of synthesis but to lack of insertion of the protein in the neoplastic cell surface. Both normal and transformed cells produce the SF antigen, but the latter do not retain it in the cell surface. The loss of SF antigen, a major cell surface component, from malignant cells creates an impressive difference between the surface properties of normal and malignant cells. The possible significance of SF antigen to the integrity of the normal membrane and its interaction to surrounding structures is discussed.  相似文献   

8.
Infection of mammalian cells by Sindbis virus (SINV) profoundly blocks cellular mRNA translation. Experimental evidence points to viral non‐structural proteins (nsPs), in particular nsP2, as the mediator of this inhibition. However, individual expression of nsP1, nsP2, nsP3 or nsP1‐4 does not block cellular protein synthesis in BHK cells. Trans‐complementation of a defective SINV replicon lacking most of the coding region for nsPs by the co‐expression of nsP1‐4 propitiates viral RNA replication at low levels, and inhibition of cellular translation is not observed. Exit of nuclear proteins including T‐cell intracellular antigen and polypyrimidine tract‐binding protein is clearly detected in SINV‐infected cells, but not upon the expression of nsPs, even when the defective replicon was complemented. Analysis of a SINV variant with a point mutation in nsP2, exhibiting defects in the shut‐off of host protein synthesis, indicates that both viral RNA replication and the release of nuclear proteins to the cytoplasm are greatly inhibited. Furthermore, nucleoside analogues that inhibit cellular and viral RNA synthesis impede the blockade of host mRNA translation, in addition to the release of nuclear proteins. Prevention of the shut‐off of host mRNA translation by nucleoside analogues is not due to the inhibition of eIF2α phosphorylation, as this prevention is also observed in PKR?/? mouse embryonic fibroblasts that do not phosphorylate eIF2α after SINV infection. Collectively, our observations are consistent with the concept that for the inhibition of cellular protein synthesis to occur, viral RNA replication must take place at control levels, leading to the release of nuclear proteins to the cytoplasm.  相似文献   

9.
Syrian hamster embryo fibroblasts transformed by 4-nitroquinoline-1-oxide (NQT-SHE cells) failed to synthesize the pro-alpha 1(I) subunit of type I procollagen but continued to synthesize altered forms of the other subunit, pro-alpha 2(I) (Peterkofsky, B., and Prather, W. (1986) J. Biol. Chem. 261, 16818-16826). This was unusual, since synthesis of the two subunits generally is coordinately regulated. Present experiments using cell-free translation and hybridization of RNA from normal and transformed Syrian hamster fibroblasts with labeled pro-alpha 1(I) DNA probes show that mRNA for pro-alpha 1(I) is absent from the transformant. In contrast, dot-blot and Southern blot hybridizations of cellular DNAs with pro-alpha 1(I) DNA probes demonstrated that the transformed cells contained pro-alpha 1(I) gene sequences and that the gross structure of the gene was unchanged by transformation. mRNA for the other type I procollagen subunit, pro-alpha 2(I), was present in transformed cells and the major collagenous polypeptide translated from this RNA migrated like the normal pro-alpha 2 subunit during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The translated procollagen chain was cleaved to an alpha 2(I)-sized collagen chain by pepsin at 4 degrees C. These studies provide a molecular basis for the observed collagen phenotype of NQT-SHE cells.  相似文献   

10.
Synthetic analogs of (2'-5')oligo(A) were assayed for endonuclease activation in cell extracts and for inhibition of protein synthesis in intact cells. The analogs are triadenylates: (i) methylated in the terminal 3'-OH; (ii) methylated at all three 3'-OH groups; (iii) with different numbers of phosphate groups at the 5' terminus or with a methylene group between the beta- and gamma-phosphate. Only 5'-phosphorylated monomethylated analogs activate an endonuclease in cell extracts and are powerful inhibitors of protein synthesis in intact cells. The analogs with only one 5'-terminal phosphate may require addition of another phosphate for activity since the kinase inhibitor 2-aminopurine prevents endonuclease activation by this compound but not by the di- and triphosphate-terminated triadenylates. These results suggest that two terminal phosphates and one or two free 3'-OH are required for endonuclease activation and inhibition of protein synthesis. The monomethylated analogs are more active than (2'-5')pppA3 because of their resistance to degradation by cellular enzymes. Accordingly, the monomethylated analogs cause a prolonged inhibition of protein synthesis in human fibroblasts treated with nanomolar concentrations of these compounds.  相似文献   

11.
Rapamycin is an immunosuppressive drug, which inhibits the mammalian target of rapamycin (mTOR) kinase activity inducing changes in cell proliferation. Synthesis of poly(ADP-ribose) (PAR) is an immediate cellular response to genotoxic stress catalyzed mostly by poly(ADP-ribose) polymerase 1 (PARP-1), which is also controlled by signaling pathways. Therefore, we investigated whether rapamycin affects PAR production. Strikingly, rapamycin inhibited PAR synthesis in living fibroblasts in a dose-dependent manner as monitored by immunofluorescence. PARP-1 activity was then assayed in vitro, revealing that down-regulation of cellular PAR production by rapamycin was apparently not due to competitive PARP-1 inhibition. Further studies showed that rapamycin did not influence the cellular NAD pool and the activation of PARP-1 in extracts of pretreated fibroblasts. Collectively, our data suggest that inhibition of cellular PAR synthesis by rapamycin is mediated by formation of a detergent-sensitive complex in living cells, and that rapamycin may have a potential as therapeutic PARP inhibitor.  相似文献   

12.
13.
The sequence of matrix biosyntheses of DNA, RNA and various proteins in normal and transformed human fibroblasts in the first mitotic cycle after synchronization of cells by double thymidine block was studied. Two important regularities of synthesis of acid-soluble histone-like and acid-insoluble proteins in normal and transformed cells were established. In normal fibroblasts, the synthesis of both acid-soluble and acid-insoluble proteins is minimal before DNA replication and maximal in the G2-phase; that in transformed cells is maximal after removal of the thymidine block and decreased in the G2-phase. In normal fibroblasts, the synthesis of acid-insoluble proteins is maximal before, while that of acid-soluble ones--after the maximum of DNA synthesis. In transformed cells the situation is opposite. RNA synthesis in normal and transformed cells is stimulated at the end of the G2-phase. In normal cells, protein synthesis is coupled with the activation of RNA synthesis, whereas in transformed fibroblasts protein synthesis occurs, in all probability, in the next mitotic cycle. These differences are especially well-pronounced in the expression of some LMG proteins. It is concluded that in transformed cells the regulatory control over the coupling of matrix biosyntheses is impaired.  相似文献   

14.
15.
Inhibition of protein synthesis by streptomycin was tested in extracts from a strain of Escherichia coli sensitive to streptomycin. Three kinds of messenger ribonucleic acid (RNA) were employed: endogenous cellular RNA, extracted cellular RNA, and phage R17 RNA. Protein synthesis directed by extracted cellular RNA was inhibited three- to fourfold more than protein synthesis directed by endogenous RNA. With R17 RNA as messenger, nearly total inhibition of protein synthesis at initiation was again observed. The greater inhibition of function of extracted RNA, which must initiate new polypeptide chains in vitro, is in accord with the observation that in whole cells streptomycin blocks ribosomes at an early stage in protein synthesis. When streptomycin was added at successively later times during protein synthesis, the subsequent inhibition was progressively less. This was observed with either extracted cellular RNA or phage R17 RNA. A model is presented that can explain the less drastic inhibition by streptomycin of messenger RNA that is already functioning on ribosomes.  相似文献   

16.
In CHO cell line and primary human diploid fibroblasts culture an incorporation of protein, RNA and DNA biosyntheses precursors was investigated under different conditions of inhibition of translation by cycloheximide (CHM). Both CHO and human fibroblasts transitory treatment by CHM in the serumfree medium resulted in inhibition of protein and DNA syntheses during S-period while RNA synthesis increased up to 130% (CHM concentration from 0.003 to 2 Mg/ml), as well as in Go--an incorporation of 3H-U increased to 200% (CHM concentration-100 Mg/ml). Long-term treatment (48 hours) in the serum-free medium resulted in decreased uptake of 3H-T and 3H-L during first 6 hours of experiment, while incorporation of 3H-U increased to 160%. By 16-th hour of treatment characters of protein, RNA and DNA syntheses came back to control levels.  相似文献   

17.
To establish the relation of glycosaminoglycan synthesis to cell proliferation, we investigated the synthesis of individual glycosaminoglycan species by intact cells and in a cell-free system, using normal and transformed human fibroblasts under differing culture conditions. Reducing serum concentration brought about a marked decline in the synthesis of hyaluronate (HA) as well as cell proliferation on both normal and transformed cells. Both HA synthesis and proliferation decreased with increasing cell densities markedly (in inverse proportion to cell density) in normal cells but gradually in transformed cells. This noticeable congruity of the changes in HA synthesis and proliferation indicates that the change in HA synthesis is related primarily to cell proliferation rather than to cell density or cellular transformation. Examination of HA synthesis in a cell-free system demonstrated that the activity of HA synthetase also fluctuated in conjunction with cell proliferation. Furthermore, growth-reduced cells (except crowded transformed cells) inhibited cell-free HA synthesis and this inhibition was induced coincidentally with a decrease in both HA synthetase activity and proliferation. These findings suggest that the change in HA synthesis is significant in the regulation of cell proliferation.  相似文献   

18.
In chick embryo fibroblasts transformed by Rous sarcoma virus (RSV) the tyrosine phosphorylation of a cellular protein of 34,000 daltons mol. wt. (34 kd) is greatly enhanced; this was shown to be catalyzed by the phosphotransferase activity of RSV transforming protein pp60src. We report here that in cytoplasmic extracts of both normal and transformed cells, in the presence of magnesium ions, the majority of the 34-kd protein is associated with large structures and that a fraction of 34 kd appears to be associated with ribonucleoprotein particles (RNPs). In addition, upon u.v. light cross-linking of RNA to protein in normal or transformed cells, an anti-34 kd serum immunoprecipitates RNA fragments of apparent low sequence complexity as detected by T1 fingerprint analysis. Our results indicate that the 34-kd protein may play a role in the cell at the level of RNPs.  相似文献   

19.
The effect of hydroxyurea and 5-fluorodeoxyuridine (FdUrd) on the course of growth (RNA and protein synthesis) and reproductive (DNA replication and nuclear and cellular division) processes was studied in synchronous cultures of the chlorococcal alga Scenedesmus quadricauda (Turp.) Bréb. The presence of hydroxyurea (5 mg·L?1)from the beginning of the cell cycle prevented growth and further development of the cells because of complete inhibition of RNA synthesis. In cells treated later in the cell cycle at the time when the cells were committed to division, hydroxyurea present in light affected the cells in the same way as a dark treatment without hydroxyurea; i. e. RNA synthesis was immediately inhibited followed after a short time period by cessation of protein synthesis. Reproductive processes including DNA replication to which the commitment was attained, however, were initiated and completed. DNA synthesis continued until the constant minimal ratio of RNA to DNA was reached. FdUrd (25 mg·L?1) added before initiation of DNA replication in control cultures prevented DNA synthesis in treated cells. Addition of FdUrd at any time during the cell cycle prevented or immediately stopped DNA replication. However, by adding excess thymidine (100 mg·L?1), FdUrd inhibition of DNA replication could be prevented. FdUrd did not affect synthesis of RNA, protein, or starch for at least one cell cycle. After removal of FdUrd, DNA synthesis was reinitiated with about a 2-h delay. The later in the cell cycle FdUrd was removed, the longer it took for DNA synthesis to resume. At exposures to FdUrd longer than two or three control cell cycles, cells in the population were gradually damaged and did not recover at all.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号