首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aromatase inhibitor CGS-16949A was used to determine whether CGS-16949A altered secretion of progesterone, estradiol-17beta, PGE (PGE1 + PGE2), PGF2alpha and PSPB. Ninety day pregnant ewes were ovariectomized and received vehicle, PGF2alpha, CGS-16949A or PGF2alpha+CGS-16949A. None of the ewes treated with PGF2alpha, CGS-16949A or PGF2alpha+CGS-16949A aborted (P > or = 0.05) during the 108-h experimental period. Treatment with CGS-16949A lowered (P < or = 0.05) progesterone in jugular venous plasma but concentrations of progesterone were not affected (P > or = 0.05) by treatment with PGF2alpha. Concentrations of estradiol-17beta and PSPB in jugular venous plasma and PGE in inferior vena cava plasma were decreased (P < or = 0.05) by treatment with CGS-16949A. Concentrations of PGF2alpha in inferior vena cava plasma were not affected (P > or = 0.05) by treatment with CGS-16949A. Decreases in estradiol-17beta occurred before decreases in PSPB, which was then followed by decreases in PGE (P < or = 0.05). It is concluded that these data support the hypothesis that estradiol-17beta regulates placental secretion of PSPB; PSPB regulates placental secretion of PGE; and PGE regulates placental secretion of progesterone during mid-pregnancy in ewes.  相似文献   

2.
One objective of this experiment was to evaluate our hypotheses that estradiol-17beta regulates secretion of pregnancy specific protein B (PSPB) and that secretion of progesterone during pregnancy is regulated by a prostanoid by examining the effects of prostaglandin F2alpha (PGF2alpha), a luteolyic agent; indomethacin, a prostanoid synthesis inhibitor; tamoxifen, an estrogen receptor antagonist; estradiol 17-beta; and interaction of these factors on the incidence of abortion and progesterone and PSPB secretion. Another objective was to determine if there is a luteal source of PSPB. Weights of corpora lutea were decreased (P < or = 0.05) by PGF2alpha, indomethacin, PGF2alpha + tamoxifen, PGF2alpha + indomethacin, and PGF2alpha + estradiol-17beta but not (P > or = 0.05) by tamoxifen or estradiol-17beta alone. No ewe treated with PGF2alpha alone aborted (P > or = 0.05). Forty percent of ewes treated with PGF2alpha + estradiol-17beta aborted (P < or = 0.05), but ewes were not aborted by any other treatment within the 72-h sampling period. Profiles of progesterone in jugular venous blood differed (P < or = 0.05) among control, indomethacin-, tamoxifen-, and PGF2alpha + indomethacin-treated ewes. Progesterone in jugular venous blood of control ewes decreased (P < or = 0.05) by 24 h, followed by a quadratic increase (P < or = 0.05) from 24 to 62 h. Progesterone in jugular venous blood of indomethacin-, PGF2alpha-, PGF2alpha- + tamoxifen-, PGF2alpha + indomethacin-, PGF2alpha + estradiol-17beta-, and tamoxifen-treated ewes was reduced (P < or = 0.05) by 18 h and did not vary (P > or = 0.05) for the remainder of the 72-h sampling period. Progesterone in vena cava and in uterine venous blood was reduced (P < or = 0.05) at 72 h in PGF2alpha-, indomethacin-, tamoxifen-, PGF2alpha + indomethacin-, PGF2alpha + tamoxifen-, and PGF2alpha + estradiol-17beta-treated ewes. Weights of placentomes did not differ among treatment groups (P > or = 0.05). Profiles of PSPB in inferior vena cava blood differed (P < or = 0.05) among control, estradiol-17beta-, indomethacin-, tamoxifen-, PGF2alpha + indomethacin-, and PGF2alpha + tamoxifen-treated 88- to 90-day pregnant ewes. Concentrations of PSPB in inferior vena cava blood were increased (P < or = 0.05) in indomethacin-, estradiol-17beta-, tamoxifen-, PGF2alpha + tamoxifen-, and PGF2alpha + indomethacin-treated 88- to 90-day pregnant ewes within 6 h and did not vary (P > or = 0.05) for the remainder of the 72-h sampling period. Concentrations of PSPB in uterine venous blood of indomethacin-, tamoxifen-, PGF2alpha + tamoxifen-, and PGF2alpha + indomethacin-treated ewes were greater (P < or = 0.05) at 72 h than at 0 h. PSPB in ovarian venous blood did not differ (P > or = 0.05) adjacent or opposite to the ovary with the corpus luteum. It is concluded from these data that estrogen regulates placental secretion of PSPB and that a prostanoid, presumably prostaglandin E, regulates placental secretion of progesterone during 88-90 days of gestation in sheep and that there is no luteal source of PSPB.  相似文献   

3.
Ninety-day pregnant sheep were ovariectomized and received vehicle or trilostane every 12 h through 132 h, starting at 72 h postovariectomy. All trilostane-treated ewes aborted (P < or = 0.05) between 36 and 50 h after initiation of treatment. Profiles of progesterone in jugular venous blood differed (P < or = 0.05) and was lower (P < or = 0.05) in trilostane-treated ewes. Profiles of estradiol-17beta in jugular venous plasma of trilostane-treated ewes differed (P < or = 0.05) from controls. Estradiol-17beta increased after the first two treatments, followed by a return 2 h later to pretreatment levels (P > or = 0.05), which was followed by a sustained increase (P < or = 0.05) in estradiol-17beta. Profiles of PGF2alpha in inferior vena cava plasma of trilostane-treated ewes differed and were greater (P < or = 0.05) and occurred with the sustained increase in estradiol-17beta and the onset of most of the abortions. Profiles of PGE in inferior vena cava plasma between control and trilostane-treated 90-day pregnant ewes did not differ (P > or = 0.05). It is concluded that abortions occur at midpregnancy in sheep when the estradiol-17beta : progesterone ratio changes sufficiently to cause a sustained increase in estradiol-17beta and PGF2alpha but without changing placental secretion of PGE.  相似文献   

4.
By day-90, the placenta secretes half of the circulating progesterone and 85% of the circulating estradiol-17beta [Weems YS, Vincent D, Tanaka Y, et al. Effects of prostaglandin F(2alpha) on sources of progesterone and pregnancy in intact, ovariectomized, and hysterectomized 90-100 day pregnant ewes. Prostaglandins 1992;43:203-22; Weems YS, Vincent DL, Nusser K, et al. Effects of prostaglandin F(2alpha) (PGF(2alpha)) on secretion of estradiol-17beta and cortisol in 90-100 day hysterectomized, intact, or ovariectomized pregnant ewes. Prostaglandins 1994;48:139-57]. Ovariectomy (OVX) or prostaglandin (PG) F(2alpha) (PGF(2alpha)) does not abort intact or OVX 90-day pregnant ewes and PGF(2alpha) regresses the corpus luteum, but does not affect placental progesterone secretion in vivo [Weems YS, Vincent D, Tanaka Y, et al. Effects of prostaglandin F(2alpha) on sources of progesterone and pregnancy in intact, ovariectomized, and hysterectomized 90-100 day pregnant ewes. Prostaglandins 1992;43:203-22]. Luteal progesterone secretion in vitro at day-90 of pregnancy in ewes is regulated by PGE(1)and/or PGE(2), not by ovine luteinizing hormone (LH; 3). Concentrations of PGE in uterine or ovarian venous plasma averaged 6 ng/ml at 90-100 days of pregnancy in ewes [Weems YS, Vincent DL, Tanaka Y, Nusser K, Ledgerwood KS, Weems CW. Effect of prostaglandin F(2alpha) on uterine or ovarian secretion of prostaglandins E and F(2alpha) (PGE; PGF(2alpha)) in vivo in 90-100 day hysterectomized, intact or ovariectomized pregnant ewes. Prostaglandins. 1993;46:277-96]. Ovine placental PGE secretion is regulated by LH up to day-50 and by pregnancy specific protein B (PSPB) after day-50 of pregnancy [Weems YS, Kim L, Humphreys V, Tsuda V, Weems CW. Effect of luteinizing hormone (LH), pregnancy specific protein B (PSPB), or arachidonic acid (AA) on ovine endometrium of the estrous cycle or placental secretion of prostaglandins E(2) (PGE(2)) and F(2alpha) (PGF(2alpha)), and progesterone in vitro. Prostaglandins Other Lipid Mediators 2003;71:55-73]. Indomethacin (INDO), a prostaglandin synthesis inhibitor [Lands WEM. The biosynthesis and metabolism of prostaglandins. Annu Rev Physiol 1979;41:633-46], lowers jugular venous progesterone [Bridges PJ, Weems YS, Kim L, et al. Effect of prostaglandin F(2alpha) (PGF(2alpha)), indomethacin, tamoxifen or estradiol-17beta on pregnancy, progesterone and pregnancy specific protein B (PSPB) secretion in 88-90 day pregnant ewes. Prostaglandins Other Lipid Mediators 1999;58:113-24] and inferior vena cava PGE of pregnant ewes with ovaries by half at day-90 [Bridges PJ, Weems YS, Kim L, LeaMaster BR, Vincent DL, Weems CW. Effect of prostaglandin F(2alpha) (PGF(2alpha)), indomethacin, tamoxifen or estradiol-17beta on prostaglandin E (PGE), PGF(2alpha) and estradiol-17beta secretion in 88-90 day pregnant sheep. Prostaglandins Other Lipid Mediators 1999;58:167-78]. In addition, treatment of 90 day ovine diced placental slices with androstenedione in vitro increased placental estradiol-17beta, but treatment with PGF(2alpha)in vitro did not decrease placental progesterone secretion, which indicates that ovine placenta progesterone secretion is resistant to the luteolytic action of PGF(2alpha) [Weems YS, Bridges PJ, LeaMaster BR, Sasser RG, Vincent DL, Weems CW. Secretion of progesterone, estradiol-17beta, prostaglandins (PG) E (PGE), F(2alpha) (PGF(2alpha)), and pregnancy specific protein B (PSPB) by day 90 intact or ovariectomized pregnant ewes. Prostaglandins Other Lipid Mediators 1999;58:139-48]. This also explains why ovine uterine secretion of decreased around day-50 [Weems YS, Kim L, Humphreys V, Tsuda V, Weems CW. Effect of luteinizing hormone (LH), pregnancy specific protein B (PSPB), or arachidonic acid (AA) on ovine endometrium of the estrous cycle or placental secretion of prostaglandins E(2) (PGE(2)) and F(2alpha) (PGF(2alpha)), and progesterone in vitro. Prostaglandins Other Lipid Mediators 2003;71:55-73], when placental estradiol-17beta secretion is increasing [Weems C, Weems Y, Vincent D. Maternal recognition of pregnancy and maintenance of gestation in sheep. In: Reproduction and animal breeding: advances and strategies. Enne G, Greppi G, Lauria A, editors, Elsevier Pub., Amsterdam 1995. p. 277-93]. Treatment of 90 day pregnant ewes with estradiol-17beta+ PGF(2alpha), but not either treatment alone, caused a linear increase in both estradiol-17beta and PGF(2alpha) and ewes were aborting [Bridges PJ, Weems YS, Kim L, Sasser RG, LeaMaster BR, Vincent DL, Weems CW. Effect of prostaglandin F(2alpha) (PGF(2alpha)), indomethacin, tamoxifen or estradiol-17beta on pregnancy, progesterone and pregnancy specific protein B (PSPB) secretion in 88-90 day pregnant ewes. Prostaglandins Other Lipid Mediators 1999;58:113-24; Bridges PJ, Weems YS, Kim L, LeaMaster BR, Vincent DL, Weems CW. Effect of prostaglandin F(2alpha) (PGF(2alpha)), indomethacin, tamoxifen or estradiol-17beta on prostaglandin E (PGE), PGF(2alpha) and estradiol-17beta secretion in 88-90 day pregnant sheep. Prostaglandins Other Lipid Mediators 1999;58:167-78]. Pregnant ewes OVX on day 83 of pregnancy and placental slices cultured in vitro secretes 2-3-fold more estradiol-17beta, PSPB, PGE, and progesterone than placental slices from 90 day intact pregnant ewes, but placental PGF(2alpha) secretion by placental slices from intact or OVX ewes did not change [Denamur R, Kann G, Short R V. How does the corpus luteum of the sheep know that there is an embryo in the uterus? In: Pierrepont G, editor. Endocrinology of pregnancy and parturition, vol. 2. Cardiff, Wales, UK: Alpha Omega Pub Co.; 1973. p. 4-38]. The objective of these experiments was to determine what regulates ovine placental progesterone and estradiol-17beta secretion at day-90 of pregnancy, since the hypophysis [Casida LE, Warwick J. The necessity of the corpus luteum for maintenance of pregnancy in the ewe. J Anim Sci 1945;4:34-9] or ovaries [Weems CW, Weems YS, Randel RD. Prostaglandins and reproduction in female farm animals. Vet J 2006;171:206-28] are not necessary after day-55 to maintain pregnancy. In Experiment 1, diced placental slices from day-90 intact or OVX pregnant ewes that were ovariectomized or laparotomized and ovaries were not removed on day 83 were collected on day-90 and incubated in vitro in M-199 with Vehicle, ovine luteinizing hormone (oLH), ovine follicle stimulating hormone (oFSH), ovine placental lactogen (oPL), PGE(l), PGE(2), PGD(2), PGI(2), insulin-like growth factor (IGF) 1 or 2 (IGF(l); IGF(2)), leukotriene C(4) (LTC(4)), platelet activating factor (PAF) 16 or 18 (PAF-16; PAF-18) at doses of 0, 1, 10, or 100ng/ml for 4h. In Experiment 2, placental slices from day-90 intact and OVX (intact or OVX laporotomized 7 days earlier) pregnant ewes were incubated in vitro with vehicle, INDO, Meclofenamate (MECLO), PGE(l), PGE(2), INDO+PGE(1), MECLO+PGE(l), INDO+PGE(2), or MECLO+PGE(2) for 4h. Media were analyzed for progesterone, estradiol-17beta, PGE, or PGF(2alpha) by RIA. Hormone data in media were analyzed in Experiment 1 by a 2x3x13 and in Experiment 2 by a 2x9 Factorial Design for ANOVA. In Experiment 1, placental progesterone, PGE, or estradiol-17beta secretion were increased (P< or =0.05) two-fold by OVX. Progesterone was not increased (P> or =0.05) by any treatment other than OVX and only FSH increased (P< or =0.05) estradiol-17beta secretion by placental slices in both OVX and intact ewes 90-day pregnant ewes. In Experiment 2, INDO or MECLO decreased (P< or =0.05) placental progesterone secretion by 88% but did not decrease (P> or =0.05) placental estradiol-17beta secretion from intact or OVX ewes. PGE(l) or PGE(2) increased (P< or =0.05) progesterone secretion only in ewes treated with INDO or MECLO. It is concluded that FSH probably regulates day-90 ovine placental estradiol-17beta secretion, while PGE(l) or PGE(2) regulates day-90 placental progesterone secretion.  相似文献   

5.
Treatment with PGF2alpha plus estradiol-17beta aborts 90-day pregnant ewes, whereas PGF2alpha or estradiol-17beta alone does not abort ewes. The objective of this experiment was to evaluate whether tamoxifen, an estrogen receptor antagonist, estradiol-17beta, prostaglandin F2alpha (PGF2alpha), indomethacin, or some of their interactions affected ovine uterine/placental secretion of PGF2alpha, estradiol-17beta or prostaglandins E (PGE), because a single treatment with PGF2alpha and estradiol-17beta given every 6 h aborts 90-day pregnant ewes. Concentrations of PGF2alpha in uterine venous blood were increased (P < or = 0.05) by estradiol-17beta, PGF2alpha + estradiol-17beta, and PGF2alpha + tamoxifen, and decreased (P < or = 0.05) by indomethacin or PGF2alpha + indomethacin at 72 h when compared to the 0 h samples. Concentrations of PGE in uterine venous blood were decreased (P < or = 0.05) by indomethacin and PGF2alpha + indomethacin and increased (P < or = 0.05) by PGF2alpha + estradiol-17beta at 72 h when compared to the 0 h samples. Concentrations of PGF2alpha in inferior vena cava blood at 6 h were increased (P < or = 0.05) by PGF2alpha either alone or in combination with indomethacin, tamoxifen, or estradiol-17beta, which is due to the PGF2alpha injected. Concentrations of PGF2alpha in inferior vena cava blood in PGF2alpha + estradiol-17beta-treated 88- to 90-day pregnant ewes increased (P < or = 0.05) linearly over the 72-h sampling period and averaged 4.0 + 0.4 ng/ml. Concentrations of PGF2alpha in inferior vena cava blood of control, PGF2alpha, tamoxifen, PGF2alpha + indomethacin, PGF2alpha + tamoxifen, and estradiol-17beta-treated ewes did not differ (P > or = 0.05) and averaged 0.4 + 0.04 ng/ml. Profiles of PGE in inferior vena cava blood of 88- to 90-day pregnant ewes treated with vehicle, PGF2alpha, estradiol-17beta, tamoxifen, tamoxifen + PGF2alpha, or estradiol-17beta + PGF2alpha did not differ (P > or = 0.05). Concentrations of PGE in inferior vena cava blood of 88- to 90-day pregnant ewes treated with indomethacin or PGF2alpha + indomethacin were lower (P < or = 0.05) than in control ewes. Concentrations of estradiol-17beta in jugular venous plasma of PGF2alpha + estradiol-17beta-treated 88- to 90-day pregnant ewes increased linearly and differed (P < or = 0.05) from controls. Profiles of estradiol-17beta in jugular venous plasma of PGF2alpha, indomethacin, tamoxifen, and PGF2alpha + tamoxifen and PGF2alpha + indomethacin, estradiol-17beta, and controls did not differ (P > or = 0.05). It is concluded that treatment with a single injection of PGF2alpha and estradiol-17beta given every 6 h causes a linear increase in PGF2alpha and estradiol-17beta.  相似文献   

6.
The objective of this experiment was to determine the effect of mifepristone, a progesterone receptor antagonist, on pregnancy and secretion of steroids, pregnancy-specific protein B (PSPB) and prostaglandins at mid-pregnancy in ewes. Ninety-day pregnant ewes were ovariectomized (OVX) and treatments were initiated 72 h post-OVX. Ewes received (1) vehicle, (2) prostaglandin F2alpha (PGF2alpha, 8 mg/58 kg/bw, i.m.) 84 h post-OVX, (3) mifepristone (50 mg intrajugular at 72, 84, 96, and 108 h post-OVX), (4) mifepristone (50mg) + PGF2alpha, (5) mifepristone (100 mg intrajugular at 72, 84, 96, and 108 h), and (6) mifepristone (100 mg) + PGF2alpha. Ewes treated with vehicle or PGF2alpha alone did not abort (P > or = 0.05). But, 60, 80, 60, and 100% of ewes treated with mifepristone (50 mg), mifepristone (50 mg) + PGF2alpha, mifepristone (100 mg), and mifepristone (100 mg) + PGF2alpha, respectively, aborted (P < or = 0.05). Profiles of progesterone, estradiol-17beta, prostaglandin E (PGE), or PSPB did not differ (P > or = 0.05) among treatment groups. Profiles of PGF2alpha of treatment groups receiving mifepristone with or without PGF2alpha differed (P < 0.05) from vehicle or PGF2alpha alone-treated ewes. It is concluded that progesterone actions are necessary to suppress uterine/placental secretion of PGF2alpha and that maintenance of critical progesterone: estradiol-17beta and PGE:PGF2alpha ratios are necessary for maintenance of pregnancy.  相似文献   

7.
LH regulates luteal progesterone secretion during the estrous cycle in ewes and cows. However, PGE, not LH, stimulated ovine luteal progesterone secretion in vitro at day 90 of pregnancy and at day 200 in cows. The hypophysis is not obligatory after day 50 nor the ovaries after day 55 to maintain pregnancy in ewes. LH has been reported to regulate ovine placental PGE secretion up to day 50 of pregnancy and by pregnancy-specific protein B (PSPB) after day 50 of pregnancy. The objective of this experiment was to determine if and when a switch from LH to PGE occurred as the luteotropin regulating luteal progesterone secretion during pregnancy in ewes. Ovine luteal tissue slices of the estrous cycle (days 8, 11, 13, and 15) or pregnancy (days 8, 11, 13, 15, 20, 30, 40, 50, 60, and 90) were incubated in vitro with vehicle, LH, AA (precursor to PGE(2) and PGF(2alpha) synthesis), or PSPB in M199 for 4 h and 8 h. Concentrations of progesterone in jugular venous plasma of bred ewes increased (P< or =0.05) after day 50 and continued to increase through day 90. Secretion of progesterone by luteal tissue of non-bred ewes on days 8, 11, 13 and 15 and by bred ewes on days 8, 11, 13, 15, 20, 30, 40, and 50 was increased (P< or =0.05) by LH, but not by luteal tissue from pregnant ewes after day 50 (P> or =0.05). LH-stimulated progesterone secretion by luteal tissue from day 15 bred ewes was greater (P< or =0.05) than day 15 luteal tissue from non-bred ewes. Concentrations of progesterone in media were increased (P< or =0.05) when luteal tissue from pregnant ewes on day 50, 60, or 90 were incubated with AA or PSPB. Concentrations of PGE in media of non-bred ewes on days 8, 11, 13, or 15 and bred ewes on days 8 and 11 did not differ (P> or =0.05). Concentrations of PGE were increased (P< or =0.05) in media by luteal slices from bred ewes on days 13, 15, 20, 30, 40, 50, 60, and 90 of vehicle, LH, AA or PSPB-treated ewes. In addition, PSPB increased (P< or =0.05) PGE in media by luteal slices from pregnant ewes only on days 40, 50, 60, and 90. Concentrations of PGF(2alpha) were increased in media (P<0.05) of vehicle, AA, LH, or PSPB-treated luteal tissue from non-bred ewes and bred ewes on day 15 and by luteal tissue from bred ewes on days 20 and 30 after which concentrations of PGF(2alpha) in media declined (P< or =0.05) and did not differ (P> or =0.05) from non-bred or bred ewes on days 8, 11, or 13. It is concluded that LH regulates luteal progesterone secretion during the estrous cycle of non-bred ewes and up to day 50 of pregnancy, while only PGE regulates luteal progresterone secretion by ovine corpora lutea from days 50 to 90 of pregnancy. In addition, PSPB appears to regulate luteal secretion of progesterone from days 50 to 90 of pregnancy through stimulation of PGE secretion by ovine luteal tissue.  相似文献   

8.
The objective of this experiment was to determine the effect of AA, LH, or PSPB on secretion of PGE2, PGF2alpha, or progesterone by ovine caruncular endometrium of the estrous cycle or placental tissue of pregnancy in vitro. Ovine caruncular endometrium of the estrous cycle (days 8, 11, 13, and 15) or caruncular/placental tissue on days 8, 11, 13, 15, 20, 30, 40, 50, 60, and 90 postbreeding were incubated in vitro with vehicle, AA, LH, or PSPB in M-199 for 4 and 8 h. Secretion of PGF2alpha by caruncular endometrium of non-bred ewes on days 13 and 15 and by caruncular/placental tissue of bred ewes on days 13, 15, 20, 30, and 40 was increased (P < or = 0.05) when incubated with vehicle and declined (P < or = 0.05) after day-40 in bred ewes. Secretion of PGF2alpha by day-15 caruncular endometrium of non-bred ewes and bred ewes was increased (P < or = 0.05) by AA on days 13 and 15 and by LH on day-15. Secretion of PGF2alpha by caruncular/placental tissue from bred ewes was (P < or = 0.05) by AA on days 13, 15, 20, 30, and 40 and by LH on days 15, 20, 30, and 40, after which the response decreased (P < or = 0.05). Secretion of PGF2alpha by caruncular endometrium of non-bred ewes during the estrous cycle or by caruncular/placental tissue of bred ewes during the first trimester was not affected by PSPB (P > or = 0.05). Secretion of PGE2 by caruncular endometrium of non-bred ewes did not change (P > or = 0.05) and was increased (P < or = 0.05) by caruncular/placental tissue on days 13-90 from bred ewes when incubated with vehicle. Secretion of PGE2 by endometrium from non-bred ewes was not affected (P > or = 0.05) by AA, LH, or PSPB, but was increased (P < or = 0.05) by AA or LH on days 13-50 and by PSPB on days 60 and 90 when incubated with caruncular/placental tissue from bred ewes. Secretion of progesterone by placental tissue of bred ewes increased (P < or = 0.05) on day-50 and continued to increase through day-90. In summary, uterine/placental tissue secretion of PGF2alpha is not reduced until the end of the first trimester of pregnancy in ewes. In addition, LH appears to play a role in luteolysis of non-bred ewes by stimulating caruncular endometrial secretion of PGF2alpha and on day-5 postbreeding to prevent luteolysis during early pregnancy by stimulating caruncular/placental secretion of PGE2 throughout the first trimester of pregnancy in sheep. Secretion of PGE2 by caruncular/placental tissue after day-50 of pregnancy appears to be regulated by PSPB, not LH.  相似文献   

9.
A single dose of 8 or 16 mg of PGF2 alpha per 58 kg body weight was injected intramuscular into intact, ovariectomized or hysterectomized 90-100 day pregnant sheep in three separate experiments. Both doses of PGF2 alpha decreased the weights of the corpora lutea (P less than or equal to 0.05) and the concentration of progesterone in ovarian venous plasma at 72 hr (P less than or equal to 0.05) compared to the 0 hr sample within treatment groups and to control ewes at 72 hr in intact and hysterectomized pregnant ewes. In hysterectomized pregnant ewes, progesterone in jugular plasma declined (P less than or equal to 0.05) from 0 to 72 hr but never fell below 4 mg/ml and this decrease in progesterone after 8 or 16 mg PGF2 alpha was greater than in control hysterectomized ewes (P less than or equal to 0.05). There was a significant decrease in progesterone over time in jugular or uterine venous plasma in the presence of absence of the ovaries in 90-100 day pregnant ewes (P less than or equal to 0.05) but the profiles of progesterone were not different between vehicle and PGF2 alpha-treated ewes (P greater than or equal to 0.05). Uterine venous progesterone never declined below 30 ng/ml in the presence or absence of the ovaries and there was a significant quadratic increase (P less than or equal to 0.05) in uterine venous progesterone toward the end of the 72 hr sampling period indicating an increase in steroidogenic activity of the placenta. PGF2 alpha did not affect the number of abortions in intact or ovariectomized pregnant ewes (P greater than 0.05). Thus, the corpus luteum of sheep at 90-100 days of pregnancy is functional and responsive to PGF2 alpha, placentomes are functional but do not appear to be responsive to the doses of PGF2 alpha tested and PGF2 alpha was not an abortifacient over the 72 hr treatment period.  相似文献   

10.
Myometrial activity and plasma progesterone (P) and oxytocin (OT) were measured in early pregnant (n = 5) and cycling (n = 5) ewes. Electromyography (EMG) leads and jugular and inferior vena cava (IVC) catheters were surgically placed in ewes about 1 wk before data collection. When ewes returned to estrus, they were bred to either an intact or vasectomized ram. Continuous EMG data were collected, and blood samples were collected twice daily from day of estrus (Day 0) until Day 18. Ewes bred with an intact ram were checked surgically for pregnancy on Day 20. Computerized, quantitative analysis of EMG events showed no difference in signal from the right to left uterine horns, and no differences between pregnant and cycling ewes (p less than 0.05) until Days 14-18 when nonpregnant ewes returned to estrus and had increased EMG activity. The mean number of EMG events 180-900 s in length decreased in pregnant ewes, but this difference was not significant (p less than 0.05). Jugular plasma progesterone (P) levels confirmed corpus luteum (CL) formation in all ewes, and no differences in P between pregnant and nonpregnant ewes were measured until Days 14-18, when cycling ewes underwent luteolysis and pregnant ewes maintained CL. IVC plasma oxytocin concentrations were increased in pregnant ewes compared to concentrations in nonpregnant ewes on Days 5-13 (p less than 0.05), and the difference was largest at Day 6 (means +/- SEM pg/ml: pregnant = 68.7 +/- 13.9, nonpregnant = 30.9 +/- 19.9).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Vehicle or 8 or 16 mg of PGF per 58 kg body weight was given intramuscularly to intact, hysterectomized or ovariectomized 90–100 day pregnant ewes in three separate experiments. Both doses of PGF increased PGF in ovarian venous plasma compared with controls at 72 hr post treatment in intact (P≤0.05) but did not in hysterectomized (P≥0.05) 90–100 day pregnant ewes. Concentrations of PGE in ovarian venous blood of intact ewes did not differ (P≥0.05) between treatment groups and were equivalent to concentrations of PGE determined in uterine venous plasma. PGE was decreased in ovarian venous plasma by PGF in hysterectomized ewes (P≤0.07). PGE in uterine venous plasma averaged 6 ng/ml over the 72-hr treatment period in intact and ovariectomized 90–100 day pregnant ewes and was 12 fold greater (P≤0.05) than PGF which averaged 500 pg/ml in uterine venous plasma. Both PGF and PGE increased (P≤0.05) by 64 hr in uterine venous plasma of the 8 mg PGF — treated intact pregnant ewes. A significant quadratic increase (P≤0.05) was observed for PGF and PGE in the vehicle and both PGF treatment groups of intact ewes at the end of the 72-hr sampling period. It is concluded that the uterus and ovaries secrete significant quantities of PGE but little PGF during midgestation. In addition, PGF increased uterine secretion of PGE . PGE may be a placental stimulator of ovine placental secretion of progesterone or PGE may protect placental steroidogenesis from actions of PGF.  相似文献   

12.
Two experiments were conducted to determine the luteotropin of pregnancy in sheep and to examine autocrine and paracrine roles of progesterone and estradiol-17 beta on progesterone secretion by the ovine corpus luteum (CL). Secretion of progesterone per unit mass by day-8 or day-11 CL of the estrous cycle was similar to day-90 CL of pregnancy (P > or = 0.05). In experiment 1, secretion of progesterone in vitro by slices of CL from ewes on day-8 of the estrous cycle was increased (P < or = 0.05) by LH or PGE2. Secretion of progesterone in vitro by CL slices from day-90 pregnant ewes was not affected by LH (P > or = 0.05) while PGE2 increased (P < or = 0.05) secretion of progesterone. Day 8 ovine CL of the estrous cycle did not secrete (P > or = 0.05) detectable quantities of PGF2alpha or PGE while day-90 ovine CL of pregnancy secreted PGE (P < or = 0.05) but not PGF2alpha. Secretion of progesterone and PGE in vitro by day-90 CL of pregnancy was decreased (P < or = 0.05) by indomethacin. The addition of PGE2, but not LH, in combination with indomethacin overcame the decreases in progesterone by indomethacin (P < or = 0.05). In experiment 2, secretion of progesterone in vitro by day-11 CL of the estrous cycle was increased at 4-h (P < or = 0.05) in the absence of treatments. Both day-11 CL of the estrous cycle and day-90 CL of pregnancy secreted detectable quantities of PGE and PGF2alpha (P < or = 0.05). In experiment 1, PGF2alpha secretion by day-8 CL of the estrous cycle and day-90 ovine CL of pregnancy was undetectable, but was detectable in experiment 2 by day-90 CL. Day 90 ovine CL of pregnancy also secreted more PGE than day-11 CL of the estrous cycle (P < or = 0.05), whereas day-8 CL of the estrous cycle did not secrete detectable quantities of PGE (P > or = 0.05). Trilostane, mifepristone, or MER-25 did not affect secretion of progesterone, PGE, or PGF2alpha by day- 11 CL of the estrous cycle or day-90 CL of pregnancy (P > or = 0.05). It is concluded that PGE2, not LH, is the luteotropin at day-90 of pregnancy in sheep and that progesterone does not modify the response to luteotropins. Thus, we found no evidence for an autocrine or paracrine role for progesterone or estradiol-17 36 on luteal secretion of progesterone, PGE or PGF2alpha.  相似文献   

13.
Nitric oxide (NO) has been reported to be luteolytic in vitro and in vivo in cows. However, an NO donor reversed PGF2alpha-induced inhibition of rat luteal progesterone secretion in vitro and an NO donor or endothelin-1 stimulated bovine luteal tissue secretion of prostaglandins E (PGE; PGE1, PGE2) in vitro without affecting progesterone or PGF2alpha secretion. In addition, chronic infusion of an NO donor into the interstitial tissue of the ovarian vascular pedicle adjacent the luteal-containing ovary prevented the decline in circulating progesterone, while a nitric oxide synthase (NOS) inhibitor did not affect luteolysis. The objective of this experiment was to determine whether an NO donor or NOS inhibitor infused chronically intrauterine adjacent to the luteal-containing ovary during the ovine estrous cycle was luteolytic or antiluteolytic. Ewes were treated either with vehicle (N=5), diethylenetriamine (DETA-control for DETANONOate; N=5), (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETANONOate-long acting NO donor; N=6), l-arginine (N=5), l-nitro-arginine methyl ester (l-NAME-NOS inhibitor; N=6), or NG-monomethyl-l-arginine acetate (l-NMMA; NOS inhibitor; N=5) every 6h from 2400h (0h) on day 8 through 1800h on day 18 of the estrous cycle. Jugular venous blood and inferior vena cava plasma via a saphenous vein cathether 5cm anterior to the juncture of the ovarian vein and inferior vena cava were collected every 6h for analysis for progesterone and PGF2alpha and PGE, respectively, by RIA. Corpora lutea were collected at 1800h on day 18 and weighed. Weights of corpora lutea were heavier (P< or =0.05) in DETANONOate-treated ewes when compared to vehicle, DETA, l-arginine, l-NAME, or l-NMMA-treated ewes, l-arginine luteal weights were heavier than vehicle, DETA, l-arginine, l-NAME, or l-NMMA-treated ewes, and luteal weights of vehicle, DETA, l-NAME, or l-NMMA-treated ewes did not differ amongst each other (P> or =0.05). Profiles of progesterone in jugular venous blood on days 8-18 differed (P< or =0.05) in DETANONOate-treated ewes when compared to vehicle, DETA, l-arginine, l-NMMA or l-NAME-treated ewes, which did not differ (P> or =0.05) amongst each other. The PGE:PGF2alpha ratio profile in inferior vena cava plasma of DETANONOate-treated ewes was increased (P< or =0.05) when compared to all other treatment groups. In a second experiment, conversion of [3H PGE2] to [3H PGF2alpha] by day 15 ovine caruncular endometrium in vitro was determined in vehicle, DETA, or DETANONOate-treatment groups. Conversion of [3H PGE2] to [3H PGF2alpha] was decreased (P< or =0.05) only by DETANONOate. It is concluded that NO is not luteolytic during the ovine estrous cycle, but may instead be antiluteolytic and prevent luteolysis by altering the PGE:PGF2alpha ratio secreted by the uterus.  相似文献   

14.
The major objective of this experiment was to determine whether the bovine placenta could be stimulated to secrete progesterone, since the bovine placenta secretes little progesterone when the corpus luteum is functional. Secondly, we wanted to determine whether reported abortifacients or progesterone or estrogen receptor antagonists affected bovine placental prostaglandin secretion. The ovine placenta secretes half of the circulating progesterone at day 90 of pregnancy and PGE2 appears to regulate ovine placental progesterone secretion. Calcium has been reported to regulate placental progesterone secretion in cattle. Diced 186-245-day placental slice explants from six Brahman and six Angus cows were incubated in vitro at 39.5 degrees C under 95% air: 5% CO2 at pH 7.2 in 5 ml of M-199 for 1 h in the absence of treatments and for 4 and 8 h in the presence of treatments. Treatments were: vehicle; R24571; compound 48/80; IP3; PGE2; CaCl2; cyclosporin A; lipopolysaccharide (endotoxin) from Salmonella abortus equi., enteriditis, and typhimurium; monensin; ionomycin; arachidonic acid; mimosine; palmitic acid; progesterone, androstenedione; estradiol-17beta; A23187; RU-486; or MER-25. Jugular and uterine venous plasma and culture media were analyzed for progesterone, PGE2 and PGF2alpha by radioimmunoassay (RIA). Plasma hormone data were analyzed by a One-Way Analysis of Variance (ANOVA). Hormone data in culture media were analyzed for breed and treatment effects by a Factorial Design (2 breeds, 2-range of days, 21 treatments) for ANOVA (2 x 2 x 21). Since hormone data secreted by placental tissue in vitro did not differ (P > or = 0.05) by breed or range of days of pregnancy, data were pooled and analyzed by a One-Way ANOVA. Concentrations of PGE2 in uterine venous blood were two-fold greater (P < or = 0.05) in Angus than Brahman cows. PGE2 and PGF2alpha in vehicle controls increased from 4 to 8h (P < or = 0.05), but not progesterone (P > or = 0.05) Progesterone in culture media treated with RU-486 increased (P < or = 0.05) at 4 and 8 h compared to vehicle controls and was not affected by other treatments (P > or = 0.05). Concentrations of PGE2 in media at 4 and 8 h were lower (P < or = 0.05) when compared to controls except treatment with PGE2 at 4 and 8h and RU-486 at 8h (P > or = 0.05). PGF2alpha was increased (P < or = 0.05) by RU-486 at 8h and no other treatment affected PGF2alpha at 4 or 8 h (P < or = 0.05). In conclusion, modulators of cellular calcium signalling pathways given alone do not affect bovine placental progesterone secretion at the days studied and progesterone receptor-mediated events appear to suppress placental progesterone, PGF2alpha, and PGE2 secretion in cattle. In addition, PGE2 does not appear to regulate bovine placental progesterone secretion when the corpus luteum is functional and bacterial endotoxin does not appear to affect bovine placental secretion of PGF2alpha or PGE2.  相似文献   

15.
Serum gonadotropin concentrations were high and variable and fluctuated episodically in short and long term ovariectomized ewes. Treatment with solid silastic implants releasing progesterone (serum levels 1.81 +/- 0.16 ng/ml) had no consistent effect. Treatment with implants releasing estradiol-17beta significantly depressed mean serum gonadotropin concentrations and peak height to values usually seen in intact ewes. This occurred regardless of implant size and serum estradiol-17beta concentrations (range 11 +/- 0.3 pg/ml to 98 +/- 12.8 pg/ml). Progesterone and estradiol-17beta together significantly depressed the frequency of peaks in LH concentration. Following progesterone removal, 95% of the ewes treated with progesterone and estradiol-17beta implants experienced a transient increase in serum LH concentrations similar to the preovulatory surge in intact ewes. Eighty-four percent of the LH surges were accompanied by a surge in serum FSH concentrations. However, following progesterone removal, 5.1 +/- 2.1 FSH surges were observed over six days. Gonadotropin surges occurred regardless of estradiol-17beta implant size and with or without the influence of supplemental estradiol-17beta.  相似文献   

16.
Ewes were lutectomized and treatments were started 72 h later. Pregnant ewes were treated with vehicle; prostaglandin F2alpha (PGF2alpha); cortisol (C); trilostane (TR), a 3beta-hydroxy-steroid dehydrogenase inhibitor; PGF2alpha + C; TR + PGF2alpha; TR + C, or TR + PGF2 + C. TR, TR + PGF2alpha, TR + C, and TR + PGF2alpha + C aborted (P < or = 0.05) all ewes receiving TR. One ewe treated with PGF2alpha aborted (P > or = 0.05). The average time to abortion of TR-treated ewes was 50.8 h (P < or = 0.05) after initiation of treatments. All aborted ewes had retained placentas (P < or = 0.05) except one ewe in the TR + PGF2alpha, treatment group. TR was given every 12 h starting at 72 h postlutectomy until 96 h postlutectomy. TR reduced (P < or = 0.05) progesterone. Estradiol-17beta was increased (P < or = 0.05) 2 h after the first two TR treatments and declined 2 h later and was followed by a sustained increase (P < or = 0.05) in estradiol-17beta, which was coincident with the onset of abortions. Estradiol-17beta was increased (P < or = 0.05) by PGF2alpha but did not decrease (P > or = 0.05) placental secretion of progesterone. It is concluded that TR but not PGF2alpha is an abortifacient in 90-day-pregnant lutectomized ewes and that abortion occurs only when there is a decrease in circulating progesterone and an increase in circulating estradiol-17beta.  相似文献   

17.
B Rao 《Prostaglandins》1979,18(1):93-100
In vitro synthesis of progesterone and estradiol-17 beta from endogenous precursors was studied in the placenta from women in early stage of gestation (less than 7 weeks). Radioimmunoassay techniques were used to measure progesterone and estradiol-17 beta. It was shown that placental tissue from as early as six weeks of gestation can synthesize both progesterone and estradiol-17 beta in vitro. Prostaglandins F2 alpha and E2 in concentration of 100 micrograms/ml of the incubation media did not have any significant effect on the in vitro synthesis of progesterone and estradiol-17 beta in the placental tissue. It seems unlikely that the abortifacient effect of natural prostaglandins PGE2 and PGF2 alpha is due to their direct action on the synthesis of progesterone and estradiol-17 beta in the placenta.  相似文献   

18.
Two separate experiments were conducted to determine whether prostaglandin (PG) E2 stimulates the secretion of progesterone by 270- or 200-day Brahman placentas in vitro. Secretion of progesterone, PGF2alpha, pregnancy specific protein B, or estradiol-17beta by 270-day Brahman placentas was not affected (p > or = 0.05) by PGE2, during the 4-h incubation period at the doses tested. Indomethacin or meclofenamic acid decreased (p < or = 0.05) 270-day Brahman placental secretion of PGE and PGF2alpha by 98 and 60%, respectively. However, PGE2 induced (p < or = 0.05) its own secretion, but not the secretion of PGF2alpha (p > or = 0.05), by 270-day Brahman placentas, even in the presence of indomethacin or meclofenamic acid at a dose of 100 ng/mL. Also, secretion of 8-Epi-PGE2 by Day 270 Brahman placentas was increased (p < or = 0.05) by PGE2. Secretion of progesterone, estradiol-17beta, or pregnancy specific protein B by 200-day Brahman placentas was not affected by PGE2, 8-Epi-PGE2, PGF2alpha, estradiol-17beta, or trichosanthin during the 4- or 8-h incubation period (p > or = 0.05). Secretion of estradiol-17beta at 8 h was lower (p < or = 0.05) in all treatment groups and did not differ (p > or = 0.05) among the 8-h incubation treatment groups. Secretion of PGE by 200-day Brahman placentas was reduced (p < 0.05) by indomethacin 72 and 82% and by meclofenamic acid 72 and 96%, respectively, at 4 and 8 h when compared to controls. Secretion of PGF2alpha was reduced (p < or = 0.05) 71 and 86% by indomethacin or 89 and 89% by meclofenamic acid at 4 and 8 h, respectively, and did not differ (p > or = 0.05) between 4 and 8 h of incubation. PGE2 did not (p > or = 0.05) induce secretion of PGE above what was added in any treatment group. PGE in culture media was increased (p < or = 0.05) by 8-Epi-PGE2, pregnancy specific protein B, and the 100 ng/mL PGF2alpha dose (p < or = 0.05), but not by PGE2, progesterone, estradiol-17beta, 8-Epi-PGF2alpha, or trichosanthin. Secretion of PGF2alpha by 200-day Brahman placentas was not affected (p > or = 0.05) by 8-Epi-PGE2, progesterone, or estradiol-17beta, but PGF2alpha secretion was increased (p < or = 0.05) by trichosanthin or PGE2, even in the presence of indomethacin or meclofenamic acid. It is concluded that PGE does not affect secretion of progesterone by 200- or 270-day bovine placentas, but, pregnancy specific protein B may regulate placental secretion of PGE. Also, indomethacin and meclofenamic may affect enzymes converting PGH to PGE rather than acting only on cyclooxygenase because indomethacin and meclofenamic acid lowered PGE secretion by 270-day Brahman placentas more than they lowered PGF2alpha. In addition, it is concluded that PGE2 can induce bovine placental secretion of PGE, but this is dependent upon the stage of gestation.  相似文献   

19.
Two experiments were conducted to determine the luteotropin of pregnancy in sheep and to examine autocrine and paracrine roles of progesterone and estradiol-17 beta on progesterone secretion by the ovine corpus luteum (CL). Secretion of progesterone per unit mass by day-8 or day-11 CL of the estrous cycle was similar to day-90 CL of pregnancy (P >/= 0.05). In experiment 1, secretion of progesterone in vitro by slices of CL from ewes on day-8 of the estrous cycle was increased (P /= 0.05) while PGE(2) increased (P /= 0.05) detectable quantities of PGF(2alpha) or PGE while day-90 ovine CL of pregnancy secreted PGE (P /= 0.05). Trilostane, mifepristone, or MER-25 did not affect secretion of progesterone, PGE, or PGF(2alpha) by day-11 CL of the estrous cycle or day-90 CL of pregnancy (P >/= 0.05). It is concluded that PGE(2), not LH, is the luteotropin at day-90 of pregnancy in sheep and that progesterone does not modify the response to luteotropins. Thus, we found no evidence for an autocrine or paracrine role for progesterone or estradiol-17 36 on luteal secretion of progesterone, PGE or PGF(2alpha).  相似文献   

20.
The objective of this study was to determine whether prostaglandin E1 (PGE1) or prostaglandin E2 (PGE2) prevents premature luteolysis in ewes when progesterone is given during the first 6 days of the estrous cycle. Progesterone (3 mg in oil, im) given twice daily from Days 1 to 6 (estrus = Day 0) in ewes decreased (P < 0.05) luteal weights on Day 10 postestrus. Plasma progesterone concentrations differed (P < 0.05) among the treatment groups; toward the end of the experimental period, concentrations in jugular venous blood decreased (P < 0.05) compared with the other treatment groups. Plasma progesterone concentrations in ewes receiving PGE1 or PGE1 + progesterone were greater (P < 0.05) than in vehicle controls or in ewes receiving PGE2 or PGE2 or PGE2 + progesterone. Chronic intrauterine treatment with PGE1 or PGE2 prevented (P < 0.05) decreases in plasma progesterone concentrations, luteal weights, and the proportion of luteal unoccupied and occupied LH receptors on Day 10 postestrus in ewes given exogenous progesterone, but did not affect (P > 0.05) concentrations of PGF in inferior vena cava blood. Progesterone given on Days 1 to 6 in ewes advanced (P < 0.05) increases in PGF in inferior vena cava blood. We concluded that PGE1 or PGE2 prevented progesterone-induced premature luteolysis by suppressing loss of luteal LH receptors (both unoccupied and occupied).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号