首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We reported increased water permeability and a low urea reflection coefficient in Xenopus oocytes expressing urea transporter UT-B (former name UT3), suggesting that water and urea share a common aqueous pathway (Yang, B., and Verkman, A. S. (1998) J. Biol. Chem. 273, 9369-9372). Although increased water permeability was confirmed in the Xenopus oocyte expression system, it has been argued (Sidoux-Walter, F., Lucien, N., Olives, B., Gobin, R., Rousselet, G., Kamsteeg, E. J., Ripoche, P., Deen, P. M., Cartron, J. P., and Bailly, P. (1999) J. Biol. Chem. 274, 30228-30235) that UT-B does not transport water when expressed at normal levels in mammalian cells such as erythrocytes. To quantify UT-B-mediated water transport, we generated double knockout mice lacking UT-B and the major erythrocyte water channel, aquaporin-1 (AQP1). The mice had reduced survival, retarded growth, and defective urinary concentrating ability. However, erythrocyte size and morphology were not affected. Stopped-flow light scattering measurements indicated erythrocyte osmotic water permeabilities (in cm/s x 0.01, 10 degrees C): 2.1 +/- 0.2 (wild-type mice), 2.1 +/- 0.05 (UT-B null), 0.19 +/- 0.02 (AQP1 null), and 0.045 +/- 0.009 (AQP1/UT-B null). The low water permeability found in AQP1/UT-B null erythrocytes was also seen after HgCl(2) treatment of UT-B null erythrocytes or phloretin treatment of AQP1 null erythrocytes. The apparent activation energy for UT-B-mediated water transport was low, <2 kcal/mol. Estimating 14,000 UT-B molecules per mouse erythrocyte, the UT-B-dependent P(f) of 0.15 x 10(-4) cm/s indicated a substantial single channel water permeability of UT-B of 7.5 x 10(-14) cm(3)/s, similar to that of AQP1. These results provide direct functional evidence for UT-B-facilitated water transport in erythrocytes and suggest that urea traverses an aqueous pore in the UT-B protein.  相似文献   

2.
The mammalian peripheral lung contains at least three aquaporin (AQP) water channels: AQP1 in microvascular endothelia, AQP4 in airway epithelia, and AQP5 in alveolar epithelia. In this study, we determined the role of AQP4 in airspace-to-capillary water transport by comparing water permeability in wild-type mice and transgenic null mice lacking AQP1, AQP4, or AQP1/AQP4 together. An apparatus was constructed to measure lung weight continuously during pulmonary artery perfusion of isolated mouse lungs. Osmotically induced water flux (J(v)) between the airspace and capillary compartments was measured from the kinetics of lung weight change in saline-filled lungs in response to changes in perfusate osmolality. J(v) in wild-type mice varied linearly with osmotic gradient size (4.4 x 10(-5) cm(3) s(-1) mOsm(-1)) and was symmetric, independent of perfusate osmolyte size, weakly temperature dependent, and decreased 11-fold by AQP1 deletion. Transcapillary osmotic water permeability was greatly reduced by AQP1 deletion, as measured by the same method except that the airspace saline was replaced by an inert perfluorocarbon. Hydrostatically induced lung edema was characterized by lung weight changes in response to changes in pulmonary arterial inflow or pulmonary venous outflow pressure. At 5 cm H(2)O outflow pressure, the filtration coefficient was 4.7 cm(3) s(-1) mOsm(-1) and reduced 1.4-fold by AQP1 deletion. To study the role of AQP4 in lung water transport, AQP1/AQP4 double knockout mice were generated by crossbreeding of AQP1 and AQP4 null mice. J(v) were (cm(3) s(-1) mOsm(-1) x 10(-5), SEM, n = 7-12 mice): 3.8 +/- 0. 4 (wild type), 0.35 +/- 0.02 (AQP1 null), 3.7 +/- 0.4 (AQP4 null), and 0.25 +/- 0.01 (AQP1/AQP4 null). The significant reduction in P(f) in AQP1 vs. AQP1/AQP4 null mice was confirmed by an independent pleural surface fluorescence method showing a 1.6 +/- 0.2-fold (SEM, five mice) reduced P(f) in the AQP1/AQP4 double knockout mice vs. AQP1 null mice. These results establish a simple gravimetric method to quantify osmosis and filtration in intact mouse lung and provide direct evidence for a contribution of the distal airways to airspace-to-capillary water transport.  相似文献   

3.
Aquaporin (AQP) water channel AQP3 has been proposed to be the major glycerol and non-AQP1 water transporter in erythrocytes. AQP1 and AQP3 are also expressed in the kidney where their deletion in mice produces distinct forms of nephrogenic diabetes insipidus. Here AQP1/AQP3 double knockout mice were generated and analyzed to investigate the functional role of AQP3 in erythrocytes and kidneys. 53 double knockout mice were born out of 756 pups from breeding double heterozygous mice. The double knockout mice had reduced survival and impaired growth compared with the single knockout mice. Erythrocyte water permeability was 7-fold reduced by AQP1 deletion but not further reduced in AQP1/AQP3 null mice. AQP3 deletion did not affect erythrocyte glycerol permeability or its inhibition by phloretin. Daily urine output in AQP1/AQP3 double knockout mice (15 ml) was 9-fold greater than in wild-type mice, and urine osmolality (194 mosm) was 8.4-fold reduced. The mice remained polyuric after DDAVP administration or water deprivation. The renal medulla in most AQP1/AQP3 null mice by age 4 weeks was atrophic and fluid-filled due to the severe polyuria and hydronephrosis. Our data provide direct evidence that AQP3 is not functionally important in erythrocyte water or glycerol permeability. The renal function studies indicate independent roles of AQP1 and AQP3 in countercurrent exchange and collecting duct osmotic equilibration, respectively.  相似文献   

4.
Phenotype analysis of aquaporin-8 null mice   总被引:11,自引:0,他引:11  
  相似文献   

5.
Transgenic null mice were used to test the hypothesis that water channel aquaporin-4 (AQP4) is involved in colon water transport and fecal dehydration. AQP4 was immunolocalized to the basolateral membrane of colonic surface epithelium of wild-type (+/+) mice and was absent in AQP4 null (-/-) mice. The transepithelial osmotic water permeability coefficient (P(f)) of in vivo perfused colon of +/+ mice, measured using the volume marker (14)C-labeled polyethylene glycol, was 0.016 +/- 0.002 cm/s. P(f) of proximal colon was greater than that of distal colon (0.020 +/- 0.004 vs. 0. 009 +/- 0.003 cm/s, P < 0.01). P(f) was significantly lower in -/- mice when measured in full-length colon (0.009 +/- 0.002 cm/s, P < 0. 05) and proximal colon (0.013 +/- 0.002 cm/s, P < 0.05) but not in distal colon. There was no difference in water content of cecal stool from +/+ vs. -/- mice (0.80 +/- 0.01 vs. 0.81 +/- 0.01), but there was a slightly higher water content in defecated stool from -/- mice (0.68 +/- 0.01 vs. 0.65 +/- 0.01, P < 0.05). Despite the differences in water permeability with AQP4 deletion, theophylline-induced secretion was not impaired (50 +/- 9 vs. 51 +/- 8 microl. min(-1). g(-1)). These results provide evidence that transcellular water transport through AQP4 water channels in colonic epithelium facilitates transepithelial osmotic water permeability but has little or no effect on colonic fluid secretion or fecal dehydration.  相似文献   

6.
The water and solute transporting properties of the epidermis have been proposed to be important determinants of skin moisture content and barrier properties. The water/small solute-transporting protein aquaporin-3 (AQP3) was found by immunofluorescence and immunogold electron microscopy to be expressed at the plasma membrane of epidermal keratinocytes in mouse skin. We studied the role of AQP3 in stratum corneum (SC) hydration by comparative measurements in wild-type and AQP3 null mice generated in a hairless SKH1 genetic background. The hairless AQP3 null mice had normal perinatal survival, growth, and serum chemistries but were polyuric because of defective urinary concentrating ability. AQP3 deletion resulted in a > 4-fold reduced osmotic water permeability and > 2-fold reduced glycerol permeability in epidermis. Epidermal, dermal, and SC thickness and morphology were not grossly affected by AQP3 deletion. Surface conductance measurements showed remarkably reduced SC water content in AQP3 null mice in the hairless genetic background (165 +/- 10 versus 269 +/- 12 microsiemens (microS), p < 0.001), as well as in a CD1 genetic background (209 +/- 21 versus 469 +/- 11 microS). Reduced SC hydration was seen from 3 days after birth. SC hydration in hairless wild-type and AQP3 null mice was reduced to comparable levels (90-100 microS) after a 24-h exposure to a dry atmosphere, but the difference was increased when surface evaporation was prevented by occlusion or exposure to a humidified atmosphere (179 +/- 13 versus 441 +/- 34 microS). Conductance measurements after serial tape stripping suggested reduced water content throughout the SC in AQP3 null mice. Water sorption-desorption experiments indicated reduced water holding capacity in the SC of AQP3 null mice. The impaired skin hydration in AQP3 null mice provides the first functional evidence for the involvement of AQP3 in skin physiology. Modulation of AQP3 expression or function may thus alter epidermal moisture content and water loss in skin diseases.  相似文献   

7.
Vasopressin-regulated water reabsorption through the water channel aquaporin-2 (AQP2) in renal collecting ducts maintains body water homeostasis. Vasopressin activates PKA, which phosphorylates AQP2, and this phosphorylation event is required to increase the water permeability and water reabsorption of the collecting duct cells. It has been established that the phosphorylation of AQP2 induces its apical membrane insertion, rendering the cell water-permeable. However, whether this phosphorylation regulates the water permeability of this channel still remains unclear. To clarify the role of AQP2 phosphorylation in water permeability, we expressed recombinant human AQP2 in Escherichia coli, purified it, and reconstituted it into proteoliposomes. AQP2 proteins not reconstituted into liposomes were removed by fractionating on density step gradients. AQP2-reconstituted liposomes were then extruded through polycarbonate filters to obtain unilamellar vesicles. PKA phosphorylation significantly increased the osmotic water permeability of AQP2-reconstituted liposomes. We then examined the roles of AQP2 phosphorylation at Ser-256 and Ser-261 in the regulation of water permeability using phosphorylation mutants reconstituted into proteoliposomes. The water permeability of the non-phosphorylation-mimicking mutant S256A-AQP2 and non-phosphorylated WT-AQP2 was similar, and that of the phosphorylation-mimicking mutant S256D-AQP2 and phosphorylated WT-AQP2 was similar. The water permeability of S261A-AQP2 and S261D-AQP2 was similar to that of non-phosphorylated WT-AQP2. This study shows that PKA phosphorylation of AQP2 at Ser-256 enhances its water permeability.  相似文献   

8.
Immunocytochemistry showed expression of aquaporin-1 (AQP1) water channels at sites involved in dietary fat processing, including intrahepatic cholangiocytes, gallbladder, pancreatic microvascular endothelium, and intestinal lacteals. To determine whether AQP1 has a role in dietary fat digestion and/or absorption, mice were placed on a diet that contained 50% fat. Whereas wild-type mice (3-3.5 wk of age, 10-12 g) gained 49 +/- 5% (SE, n = 50) body weight in 8 days, and heterozygous mice gained 46 +/- 4%, AQP1 null mice gained only 4 +/- 3%; weights became similar after return to a 6% fat diet after 6 days. The null mice on a high-fat diet acquired an oily appearance, developed steatorrhea with increased stool triglyceride content, and manifested serum hypotriglyceridemia. Supplementation of the high-fat diet with pancreatic enzymes partially corrected the decreased weight gain in null mice. Absorption of [(14)C]oleic acid from small intestine was not affected by AQP1 deletion, as determined by blood radioactivity after duodenal infusion. Lipase activity in feces and small intestine was remarkably greater in AQP1 null than wild-type mice on low- and high-fat diets. Fluid collections done in older mice (that are less sensitive to a high-fat diet) by ductal cannulation showed threefold increased pancreatic fluid flow in response to secretin/cholecystokinin, but volumes, pH, and amylase activities were affected little by AQP1 deletion, nor were bile flow rates and bile salt concentrations. Together, these results establish a dietary fat misprocessing defect in AQP1 null mice.  相似文献   

9.
Aquaporin-5 (AQP5) is a water-selective transporting protein expressed in epithelial cells of serous acini in salivary gland. We generated AQP5 null mice by targeted gene disruption. The genotype distribution from intercross of founder AQP5 heterozygous mice was 70:69:29 wild-type:heterozygote:knockout, indicating impaired prenatal survival of the null mice. The knockout mice had grossly normal appearance, but grew approximately 20% slower than litter-matched wild-type mice when placed on solid food after weaning. Pilocarpine-stimulated saliva production was reduced by more than 60% in AQP5 knockout mice. Compared with the saliva from wild-type mice, the saliva from knockout mice was hypertonic (420 mosM) and dramatically more viscous. Amylase and protein secretion, functions of salivary mucous cells, were not affected by AQP5 deletion. Water channels AQP1 and AQP4 have also been localized to salivary gland; however, pilocarpine stimulation studies showed no defect in the volume or composition of saliva in AQP1 and AQP4 knockout mice. These results implicate a key role for AQP5 in saliva fluid secretion and provide direct evidence that high epithelial cell membrane water permeability is required for active, near-isosmolar fluid transport.  相似文献   

10.
Two aquaporin (AQP)-type water channels are expressed in mammalian cornea, AQP1 in endothelial cells and AQP5 in epithelial cells. To test whether these aquaporins are involved in corneal fluid transport and transparency, we compared corneal thickness, water permeability, and response to experimental swelling in wild type mice and transgenic null mice lacking AQP1 and AQP5. Corneal thickness in fixed sections was remarkably reduced in AQP1 null mice and increased in AQP5 null mice. By z-scanning confocal microscopy, corneal thickness in vivo was (in microm, mean +/- S.E., n = 5 mice) 123 +/- 1 (wild type), 101 +/- 2 (AQP1 null), and 144 +/- 2 (AQP5 null). After exposure of the external corneal surface to hypotonic saline (100 mosm), the rate of corneal swelling (5.0 +/- 0.3 microm/min, wild type) was reduced by AQP5 deletion (2.7 +/- 0.1 microm/min). After exposure of the endothelial surface to hypotonic saline by anterior chamber perfusion, the rate of corneal swelling (7.1 +/- 1.0 microm/min, wild type) was reduced by AQP1 deletion (1.6 +/- 0.4 microm/min). Base-line corneal transparency was not impaired by AQP1 or AQP5 deletion. However, the recovery of corneal transparency and thickness after hypotonic swelling (10-min exposure of corneal surface to hypotonic saline) was remarkably delayed in AQP1 null mice with approximately 75% recovery at 7 min in wild type mice compared with 5% recovery in AQP1 null mice. Our data indicate that AQP1 and AQP5 provide the principal routes for corneal water transport across the endothelial and epithelial barriers, respectively. The impaired recovery of corneal transparency in AQP1 null mice provides evidence for the involvement of AQP1 in active extrusion of fluid from the corneal stroma across the corneal endothelium. The up-regulation of AQP1 expression and/or function in corneal endothelium may reduce corneal swelling and opacification following injury.  相似文献   

11.
Impaired hearing in mice lacking aquaporin-4 water channels.   总被引:21,自引:0,他引:21  
A role for aquaporins (AQPs) in hearing has been suggested from the specific expression of aquaporins in inner ear and the need for precise volume regulation in epithelial cells involved in acoustic signal transduction. Using mice deficient in selected aquaporins as controls, we localized AQP1 in fibrocytes in the spiral ligament and AQP4 in supporting epithelial cells (Hensen's, Claudius, and inner sulcus cells) in the organ of Corti. To determine whether aquaporins play a role in hearing, auditory brain stem response (ABR) thresholds were compared in wild-type mice and transgenic null mice lacking (individually) AQP1, AQP3, AQP4, and AQP5. In 4-5-week-old mice in a CD1 genetic background, ABR thresholds in response to a click stimulus were remarkably increased by >12 db in AQP4 null mice compared with wild-type mice (p < 0.001), whereas ABR thresholds were not affected by AQP1, AQP3, or AQP5 deletion. In a C57/bl6 background, nearly all AQP4 null mice were deaf, whereas ABRs could be elicited in wild-type controls. ABRs in AQP4 null CD1 mice measured in response to tone bursts (4-20 kHz) indicated a frequency-independent hearing deficit. Light microscopy showed no differences in cochlear morphology of wild-type versus AQP4 null mice. These results provide the first direct evidence that an aquaporin water channel plays a role in hearing. AQP4 may facilitate rapid osmotic equilibration in epithelial cells in the organ of Corti, which are subject to large K(+) fluxes during mechano-electric signal transduction.  相似文献   

12.
BACKGROUND INFORMATION: Mercurials inhibit AQPs (aquaporins), and site-directed mutagenesis has identified Cys(189) as a site of the mercurial inhibition of AQP1. On the other hand, AQP4 has been considered to be a mercury-insensitive water channel because it does not have the reactive cysteine residue corresponding to Cys(189) of AQP1. Indeed, the osmotic water permeability (P(f)) of AQP4 expressed in various types of cells, including Xenopus oocytes, is not inhibited by HgCl2. To examine the direct effects of mercurials on AQP4 in a proteoliposome reconstitution system, His-tagged rAQP4 [corrected] (rat AQP4) M23 was expressed in Saccharomyces cerevisiae, purified with an Ni2+-nitrilotriacetate affinity column, and reconstituted into liposomes with the dilution method. RESULTS: The water permeability of AQP4 proteoliposomes with or without HgCl2 was measured with a stopped-flow apparatus. Surprisingly, the P(f) of AQP4 proteoliposomes was significantly decreased by 5 microM HgCl2 within 30 s, and this effect was completely reversed by 2-mercaptoethanol. The dose- and time-dependent inhibitory effects of Hg2+ suggest that the sensitivity to mercury of AQP4 is different from that of AQP1. Site-directed mutagenesis of six cysteine residues of AQP4 demonstrated that Cys(178), which is located at loop D facing the intracellular side, is a target responding to Hg2+. We confirmed that AQP4 is reconstituted into liposome in a bidirectional orientation. CONCLUSIONS: Our results suggest that mercury inhibits the P(f) of AQP4 by mechanisms different from those for AQP1 and that AQP4 may be gated by modification of a cysteine residue in cytoplasmic loop D.  相似文献   

13.
Deletion of the epidermal water/glycerol transporter aquaporin-3 (AQP3) in mice reduced superficial skin conductance by approximately 2-fold (Ma, T., Hara, M., Sougrat, R., Verbavatz, J. M., and Verkman, A. S. (2002) J. Biol. Chem. 277, 17147-17153), suggesting defective stratum corneum (SC) hydration. Here, we demonstrate significant impairment of skin hydration, elasticity, barrier recovery, and wound healing in AQP3 null mice in a hairless (SKH1) genetic background and investigate the cause of the functional defects by analysis of SC morphology and composition. Utilizing a novel (3)H(2)O distribution method, SC water content was reduced by approximately 50% in AQP3 null mice. Skin elasticity measured by cutometry was significantly reduced in AQP3 null mice with approximately 50% reductions in elasticity parameters Uf, Ue, and Ur. Although basal skin barrier function was not impaired, AQP3 deletion produced an approximately 2-fold delay in recovery of barrier function as measured by transepidermal water loss after tape stripping. Another biosynthetic skin function, wound healing, was also approximately 2-fold delayed by AQP3 deletion. By electron microscopy AQP3 deletion did not affect the structure of the unperturbed SC. The SC content of ions (Na(+), K(+), Ca(2+), Mg(2+)) and small solutes (urea, lactic acid, glucose) was not affected by AQP3 deletion nor was the absolute amount or profile of lipids and free amino acids. However, AQP3 deletion produced significant reductions in glycerol content in SC and epidermis (in nmol/microg protein: 5.5 +/- 0.4 versus 2.3 +/- 0.7 in SC; 0.037 +/- 0.007 versus 0.022 +/- 0.005 in epidermis) but not in dermis or blood. These results establish hydration, mechanical, and biosynthetic defects in skin of AQP3-deficient mice. The selective reduction in epidermal and SC glycerol content in AQP3 null mice may account for these defects, providing the first functional evidence for physiologically important glycerol transport by an aquaporin.  相似文献   

14.
The mechanisms by which fluid moves across the luminal membrane of cholangiocyte epithelia are uncertain. Previous studies suggested that aquaporin-1 (AQP1) is an important determinant of water movement in rat cholangiocytes and that cyclic AMP mediates the movement of these water channels from cytoplasm to apical membrane, thereby increasing the osmotic water permeability. To test this possibility we measured agonist-stimulated fluid secretion and osmotically driven water transport in isolated bile duct units (IBDUs) from AQP1 wild-type (+/+) and null (-/-) mice. AQP1 expression was confirmed in a mouse cholangiocyte cell line and +/+ liver. Forskolin-induced fluid secretion, measured from the kinetics of IBDU luminal expansion, was 0.05 fl/min and was not impaired in -/- mice. Osmotic water permeability (P(f)), measured from the initial rate of IBDU swelling in response to a 70-mosM osmotic gradient, was 11.1 x 10(-4) cm/s in +/+ mice and 11.5 x 10(-4) cm/s in -/- mice. P(f) values increased by approximately 50% in both +/+ and -/- mice following preincubation with forskolin. These findings provide direct evidence that AQP1 is not rate limiting for water movement in mouse cholangiocytes and does not appear to be regulated by cyclic AMP in this species.  相似文献   

15.
Recent reports suggest the expression of aquaporin (AQP)-type water channels in mitochondria from liver (AQP8) (Calamita, G., Ferri, D., Gena, P., Liquori, G. E., Cavalier, A., Thomas, D., and Svelto, M. (2005) J. Biol. Chem. 280, 17149-17153) and brain (AQP9) (Amiry-Moghaddam, M., Lindland, H., Zelenin, S., Roberg, B. A., Gundersen, B. B., Petersen, P., Rinvik, E., Torgner, I. A., and Ottersen, O. P. (2005) FASEB J. 19, 1459-1467), where they were speculated to be involved in metabolism, apoptosis, and Parkinson disease. Here, we systematically examined the functional consequence of AQP expression in mitochondria by measurement of water and glycerol permeabilities in mitochondrial membrane preparations from rat brain, liver, and kidney and from wild-type versus knock-out mice deficient in AQPs -1, -4, or -8. Osmotic water permeability, measured by stopped-flow light scattering, was similar in all mitochondrial preparations, with a permeability coefficient P(f) approximately 0.009 cm/s. Glycerol permeability was also similar ( approximately 5 x 10(-6) cm/s) in the various preparations. HgCl(2) slowed osmotic equilibration comparably in mitochondria from wild-type and AQP-deficient mice, although the slowing was explained by altered mitochondrial size rather than reduced P(f). Immunoblot analysis of mouse liver mitochondria failed to detect AQP8 expression, with liver homogenates from wild-type/AQP8 null mice as positive/negative controls. Our results provide evidence against functionally significant AQP expression in mitochondria, which is consistent with the high mitochondrial surface-to-volume ratio producing millisecond osmotic equilibration, even when intrinsic membrane water permeability is not high.  相似文献   

16.
The aquaporin-4 (AQP4) water channel has been proposed to play a role in gastric acid secretion. Immunocytochemistry using anti-AQP4 antibodies showed strong AQP4 protein expression at the basolateral membrane of gastric parietal cells in wild-type (+/+) mice. AQP4 involvement in gastric acid secretion was studied using transgenic null (-/-) mice deficient in AQP4 protein. -/- Mice had grossly normal growth and appearance and showed no differences in gastric morphology by light microscopy. Gastric acid secretion was measured in anesthetized mice in which the stomach was luminally perfused (0. 3 ml/min) with 0.9% NaCl containing [(14)C]polyethylene glycol ([(14)C]PEG) as a volume marker. Collected effluent was assayed for titratable acid content and [(14)C]PEG radioactivity. After 45-min baseline perfusion, acid secretion was stimulated by pentagastrin (200 microg. kg(-1). h(-1) iv) for 1 h or histamine (0.23 mg/kg iv) + intraluminal carbachol (20 mg/l). Baseline gastric acid secretion (means +/- SE, n = 25) was 0.06 +/- 0.03 and 0.03 +/- 0.02 microeq/15 min in +/+ and -/- mice, respectively. Pentagastrin-stimulated acid secretion was 0.59 +/- 0.14 and 0.70 +/- 0.15 microeq/15 min in +/+ and -/- mice, respectively. Histamine plus carbachol-stimulated acid secretion was 7.0 +/- 1.9 and 8.0 +/- 1.8 microeq/15 min in +/+ and -/- mice, respectively. In addition, AQP4 deletion did not affect gastric fluid secretion, gastric pH, or fasting serum gastrin concentrations. These results provide direct evidence against a role of AQP4 in gastric acid secretion.  相似文献   

17.
It has beenproposed that aquaporin-4 (AQP4), a water channel expressed at theplasmalemma of skeletal muscle cells, is important in normal musclephysiology and in the pathophysiology of Duchenne's musculardystrophy. To test this hypothesis, muscle water permeability andfunction were compared in wild-type and AQP4 knockout mice. Immunofluorescence and freeze-fracture electron microscopy showed AQP4protein expression in plasmalemma of fast-twitch skeletal muscle fibersof wild-type mice. Osmotic water permeability was measured inmicrodissected muscle fibers from the extensor digitorum longus (EDL) and fractionated membrane vesicles from EDLhomogenates. With the use of spatial-filtering microscopy to measureosmotically induced volume changes in EDL fibers, half times(t1/2) for osmotic equilibration (7.5-8.5 s)were not affected by AQP4 deletion. Stopped-flow light-scatteringmeasurements of osmotically induced volume changes in plasmalemmavesicles also showed no significant differences in water permeability.Similar water permeability, yet ~90% decreased AQP4 proteinexpression was found in EDL from mdx mice that lack dystrophin.Skeletal muscle function was measured by force generation in isolatedEDL, treadmill performance time, and in vivo muscle swelling inresponse to water intoxication. No differences were found in EDL forcegeneration after electrical stimulation [42 ± 2 (wild-type) vs. 41 ± 2 (knockout) g/s], treadmill performance time (22 vs. 26 min; 29 m/min, 13° incline), or muscle swelling (2.8 vs. 2.9% increasedwater content at 90 min after intraperitoneal water infusion). Togetherthese results provide evidence against a significant role of AQP4 inskeletal muscle physiology in mice.

  相似文献   

18.
Aquaporin-1 (AQP1) enables greatly enhanced water flux across plasma membranes. The cytosolic carboxy terminus of AQP1 has two acidic motifs homologous to known carbonic anhydrase II (CAII) binding sequences. CAII colocalizes with AQP1 in the renal proximal tubule. Expression of AQP1 with CAII in Xenopus oocytes or mammalian cells increased water flux relative to AQP1 expression alone. This required the amino-terminal sequence of CAII, a region that binds other transport proteins. Expression of catalytically inactive CAII failed to increase water flux through AQP1. Proximity ligation assays revealed close association of CAII and AQP1, an effect requiring the second acidic cluster of AQP1. This motif was also necessary for CAII to increase AQP1-mediated water flux. Red blood cell ghosts resealed with CAII demonstrated increased osmotic water permeability compared with ghosts resealed with albumin. Water flux across renal cortical membrane vesicles, measured by stopped-flow light scattering, was reduced in CAII-deficient mice compared with wild-type mice. These data are consistent with CAII increasing water conductance through AQP1 by a physical interaction between the two proteins.  相似文献   

19.
The aquaporin7 (AQP7) water channel is known to be a member of the aquaglyceroporins, which allow the rapid transport of glycerol and water. AQP7 is abundantly present at the apical membrane of the proximal straight tubules in the kidney. In this paper, we review the physiological functions of AQP7 in the kidney. To investigate this, we generated AQP7 knockout mice. The water permeability of the proximal straight tubule brush border membrane measured by the stopped flow method was reduced in AQP7 knockout mice compared to wild-type mice (AQP7, 18.0+/-0.4 x 10(-3 )cm/s vs. wild-type, 20.0+/-0.3 x 10(-3) cm/s). Although AQP7 solo knockout mice did not show a urinary concentrating defect, AQP1/AQP7 double knockout mice showed reduced urinary concentrating ability compared to AQP1 solo knockout mice, indicating that the contribution of AQP7 to water reabsorption in the proximal straight tubules is physiologically substantial. On the other hand, AQP7 knockout mice showed marked glycerol in their urine (AQP7, 1.7+/-0.34 mg/ml vs. wild-type, 0.005+/-0.002 mg/ml). This finding identified a novel pathway of glycerol reabsorption that occurs in the proximal straight tubules. In two mouse models of proximal straight tubule injury, the cisplatin-induced acute renal failure (ARF) model and the ischemic-reperfusion ARF model, an increase of urine glycerol was observed (pre-treatment, 0.007+/-0.005 mg/ml; cisplatin, 0.063+/-0.043 mg/ml; ischemia, 0.076+/-0.02 mg/ml), suggesting that urine glycerol could be used as a new biomarker for detecting proximal straight tubule injury.  相似文献   

20.
Brain abscess is associated with local vasogenic edema, which leads to increased intracranial pressure and significant morbidity. Aquaporin-4 (AQP4) is a water channel expressed in astroglia at the blood-brain and brain-CSF barriers. To investigate the role of AQP4 in brain abscess-associated edema, live Staphylococcus aureus (10(5) colony-forming units) was injected into the striatum to create a focal abscess. Wild-type and AQP4-deficient mice had comparable immune responses as measured by brain abscess volume (approximately 3.7 mm3 at 3 days), bacterial count and cytokine levels in brain homogenates. Blood-brain barrier permeability was increased comparably in both groups as assessed by extravasation of Evans blue dye. However, at 3 days the AQP4 null mice had significantly higher intracranial pressure (mean +/- SEM 27 +/- 2 vs. 17 +/- 2 mmHg; p < 0.001) and brain water content (81.0 +/- 0.3 vs. 79.3 +/- 0.5 % water by weight in the abscess-containing hemisphere; p < 0.01) than wild-type mice. Reactive astrogliosis was found throughout the abscess-containing hemisphere; however, only a subset of astrocytes in the peri-abscess region of wild-type mice had increased AQP4 immunoreactivity. Our findings demonstrate a protective effect of AQP4 on brain swelling in bacterial abscess, suggesting that AQP4 induction may reduce vasogenic edema associated with cerebral infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号