首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salom D  Hill BR  Lear JD  DeGrado WF 《Biochemistry》2000,39(46):14160-14170
The M2 proton channel from the influenza A virus is a small protein with a single transmembrane helix that associates to form a tetramer in vivo. This protein forms proton-selective ion channels, which are the target of the drug amantadine. Here, we propose a mechanism for the pH-dependent association, and amantadine binding of M2, based on studies of a peptide representing the M2 transmembrane segment in dodecylphosphocholine micelles. Using analytical ultracentrifugation, we find that the sedimentation curves for the peptide depend on its concentration in the micellar phase. The data are well-described by a monomer-tetramer equilibrium, and the binding of amantadine shifts the monomer-tetramer equilibrium toward tetrameric species. Both tetramerization and the binding of amantadine lead to increases in the magnitude of the ellipticity at 223 nm in the circular dichroism spectrum of the peptide. The tetramerization and binding of amantadine are more favorable at elevated pH, with a pK(a) that is assigned to a His side chain, the only ionizable residue within the transmembrane helix. Our results, interpreted quantitatively in terms of a reversible monomer and tetramer protonation equilibrium model, suggest that amantadine competes with protons for binding to the deprotonated tetramer, thereby stabilizing the tetramer in a slightly altered conformation. This model accounts for the observed inhibition of proton flux by amantadine. Additionally, our measurements suggest that the M2 tetramer is substantially protonated at neutral pH and that both singly and doubly protonated states could be involved in M2's proton conduction at more acidic pHs.  相似文献   

2.
The M2 proton channel of influenza A is the target of the antiviral drugs amantadine and rimantadine, whose effectiveness has been abolished by a single-site mutation of Ser31 to Asn in the transmembrane domain of the protein. Recent high-resolution structures of the M2 transmembrane domain obtained from detergent-solubilized protein in solution and crystal environments gave conflicting drug binding sites. We present magic-angle-spinning solid-state NMR results of Ser31 and a number of other residues in the M2 transmembrane peptide (M2TMP) bound to lipid bilayers. Comparison of the spectra of the membrane-bound apo and complexed M2TMP indicates that Ser31 is the site of the largest chemical shift perturbation by amantadine. The chemical shift constraints lead to a monomer structure with a small kink of the helical axis at Gly34. A tetramer model is then constructed using the helix tilt angle and several interhelical distances previously measured on unoriented bilayer samples. This tetramer model differs from the solution and crystal structures in terms of the openness of the N-terminus of the channel, the constriction at Ser31, and the side-chain conformations of Trp41, a residue important for channel gating. Moreover, the tetramer model suggests that Ser31 may interact with amantadine amine via hydrogen bonding. While the apo and drug-bound M2TMP have similar average structures, the complexed peptide has much narrower linewidths at physiological temperature, indicating drug-induced changes of the protein dynamics in the membrane. Further, at low temperature, several residues show narrower lines in the complexed peptide than the apo peptide, indicating that amantadine binding reduces the conformational heterogeneity of specific residues. The differences of the current solid-state NMR structure of the bilayer-bound M2TMP from the detergent-based M2 structures suggest that the M2 conformation is sensitive to the environment, and care must be taken when interpreting structural findings from non-bilayer samples.  相似文献   

3.
(19)F NMR probes were used to follow interactions between ligands in the aminoadamantane series, amantadine (Am) 1 and 3-F-Am 2, and the 5-F-Trp20 transmembrane fragment of the influenza A M2 proton channel (F-M2TM 3) in dodecylphosphocholine micelles over the pH range 5-8. Above pH 7, when the peptide adopts a tetrameric state that is able to bind channel blocking ligands, (19)F-Trp signals from both the free and bound states of the M2TM tetramer are resolved. This differentiation of bound and unbound states of the M2TM receptor by (19)F NMR may provide a system for SAR studies.  相似文献   

4.
The M2 protein from influenza A virus is a 97-amino-acid protein with a single transmembrane helix that forms proton-selective channels essential to virus function. The hydrophobic transmembrane domain of the M2 protein (M2TM) contains a sequence motif that mediates the formation of functional tetramers in membrane environments. A variety of structural models have previously been proposed which differ in the degree of helix tilt, with proposed tilts ranging from approximately 15 degrees to 38 degrees . An important issue for understanding the structure of M2TM is the role of peptide-lipid interactions in the stabilization of the lipid bilayer bound tetramer. Here, we labeled the N terminus of M2TM with a nitroxide and studied the tetramer reconstituted into lipid bilayers of different thicknesses using EPR spectroscopy. Analyses of spectral changes provide evidence that the lipid bilayer does influence the conformation. The structural plasticity displayed by M2TM in response to membrane composition may be indicative of functional requirements for conformational change. The various structural models for M2TM proposed to date--each defined by a different set of criteria and in a different environment--might provide snapshots of the distinct conformational states sampled by the protein.  相似文献   

5.
Membrane proteins change their conformations to respond to environmental cues, thus conformational plasticity is important for function. The influenza A M2 protein forms an acid-activated proton channel important for the virus lifecycle. Here we have used solid-state NMR spectroscopy to examine the conformational plasticity of membrane-bound transmembrane domain of M2 (M2TM). (13)C and (15)N chemical shifts indicate coupled conformational changes of several pore-facing residues due to changes in bilayer thickness, drug binding, and pH. The structural changes are attributed to the formation of a well-defined helical kink at G34 in the drug-bound state and in thick lipid bilayers, nonideal backbone conformation of the secondary-gate residue V27 in the presence of drug, and nonideal conformation of the proton-sensing residue H37 at high pH. The chemical shifts constrained the (?, ψ) torsion angles for three "basis" states, the equilibrium among which explains the multiple resonances per site in the NMR spectra under different combinations of bilayer thickness, drug binding, and pH conditions. Thus, conformational plasticity is important for the proton conduction and inhibition of M2TM. The study illustrates the utility of NMR chemical shifts for probing the structural plasticity and folding of membrane proteins.  相似文献   

6.
A structure-function analysis of the influenza A virus M2 ion channel protein was performed. The M2 protein of human influenza virus A/Udorn/72 and mutants containing changes on one face of the putative alpha helix of the M2 transmembrane (TM) domain, several of which lead to amantadine resistance when found in virus, were expressed in oocytes of Xenopus laevis. The membrane currents of oocytes expressing mutant M2 ion channels were measured at both normal and low pH, and the amantadine-resistant mutant containing the change of alanine at residue 30 to threonine was found to have a significantly attenuated low pH activation response. The specific activity of the channel current of the amantadine-resistant mutants was investigated by measuring the membrane current of individual oocytes followed by quantification of the amount of M2 protein expressed in these single oocytes by immunoblotting analysis. The data indicate that changing residues on this face of the putative alpha helix of the M2 TM domain alters properties of the M2 ion channel. Some of the M2 proteins containing changes in the TM domain were found to be modified by addition of an N-linked carbohydrate chain at an asparagine residue that is membrane proximal and which is not modified in the wild-type M2 protein. These N-linked carbohydrate chains were further modified by addition of polylactosaminoglycan. A glycosylated M2 mutant protein (M2 + V, A30T) exhibited an ion channel activity with a voltage-activated, time-dependent kinetic component. Prevention of carbohydrate addition did not affect the altered channel activity. The ability of the M2 protein to tolerate deletions in the TM domain was examined by expressing three mutants (del29-31, del28-31, and del27-31) containing deletions of three, four, and five residues in the TM domain. No ion channel activity was detected from expression of M2 del29-31 and del27-31, whereas expression of M2 del28-31 resulted in an ion channel activity that was activated by hyperpolarization (and not low pH) and was resistant to amantadine block. Examination of the oligomeric form of M2 del28-31 indicated that the oligomer is different from wild-type M2, and the data were consistent with M2 del28-31 forming a pentamer.  相似文献   

7.
Abstract

The role of histidine in channel-forming transmembrane (TM) helices was investigated by comparing the TM helices from Virus protein ‘u' (Vpu) and the M2 proton channel. Both proteins are members of the viroporin family of small membrane proteins that exhibit ion channel activity, and have a single TM helix that is capable of forming oligomers. The TM helices from both proteins have a conserved tryptophan towards the C-terminus. Previously, alanine 18 of Vpu was mutated to histidine in order to artificially introduce the same HXXXW motif that is central to the proton channel activity of M2. Interestingly, the mutated Vpu TM resulted in an increase in helix tilt angle of 11° in lipid bilayers compared to the wild-type Vpu TM. Here, we find the reverse, when histidine 37 of the HXXXW motif in M2 was mutated to alanine, it decreased the helix tilt by 10° from that of wild-type M2. The tilt change is independent of both the helix length and the presence of tryptophan. In addition, compared to wild-type M2, the H37A mutant displayed lowered sensitivity to proton concentration. We also found that the solvent accessibility of histidine-containing M2 is greater than without histidine. This suggests that the TM helix may increase the solvent exposure by changing its tilt angle in order to accommodate a polar/charged residue within the hydrophobic membrane region. The comparative results of M2, Vpu and their mutants demonstrated the significance of histidine in a transmembrane helix and the remarkable plasticity of the function and structure of ion channels stemming from changes at a single amino acid site.  相似文献   

8.

Background

M2 proton channel of H1N1 influenza A virus is the target protein of anti-flu drugs amantadine and rimantadine. However, the two once powerful adamantane-based drugs lost their 90% bioactivity because of mutations of virus in recent twenty years. The NMR structure of the M2 channel protein determined by Schnell and Chou (Nature, 2008, 451, 591–595) may help people to solve the drug-resistant problem and develop more powerful new drugs against H1N1 influenza virus.

Methodology

Docking calculation is performed to build the complex structure between receptor M2 proton channel and ligands, including existing drugs amantadine and rimantadine, and two newly designed inhibitors. The computer-aided drug design methods are used to calculate the binding free energies, with the computational biology techniques to analyze the interactions between M2 proton channel and adamantine-based inhibitors.

Conclusions

1) The NMR structure of M2 proton channel provides a reliable structural basis for rational drug design against influenza virus. 2) The channel gating mechanism and the inhibiting mechanism of M2 proton channel, revealed by the NMR structure of M2 proton channel, provides the new ideas for channel inhibitor design. 3) The newly designed adamantane-based inhibitors based on the modeled structure of H1N1-M2 proton channel have two pharmacophore groups, which act like a “barrel hoop”, holding two adjacent helices of the H1N1-M2 tetramer through the two pharmacophore groups outside the channel. 4) The inhibitors with such binding mechanism may overcome the drug resistance problem of influenza A virus to the adamantane-based drugs.  相似文献   

9.
The amantadine-sensitive ion channel activity of influenza A virus M2 protein was discovered through understanding the two steps in the virus life cycle that are inhibited by the antiviral drug amantadine: virus uncoating in endosomes and M2 protein-mediated equilibration of the intralumenal pH of the trans Golgi network. Recently it was reported that influenza virus can undergo multiple cycles of replication without M2 ion channel activity (T. Watanabe, S. Watanabe, H. Ito, H. Kida, and Y. Kawaoka, J. Virol. 75:5656-5662, 2001). An M2 protein containing a deletion in the transmembrane (TM) domain (M2-del(29-31)) has no detectable ion channel activity, yet a mutant virus was obtained containing this deletion. Watanabe and colleagues reported that the M2-del(29-31) virus replicated as efficiently as wild-type (wt) virus. We have investigated the effect of amantadine on the growth of four influenza viruses: A/WSN/33; N31S-M2WSN, a mutant in which an asparagine residue at position 31 in the M2 TM domain was replaced with a serine residue; MUd/WSN, which possesses seven RNA segments from WSN plus the RNA segment 7 derived from A/Udorn/72; and A/Udorn/72. N31S-M2WSN was amantadine sensitive, whereas A/WSN/33 was amantadine resistant, indicating that the M2 residue N31 is the sole determinant of resistance of A/WSN/33 to amantadine. The growth of influenza viruses inhibited by amantadine was compared to the growth of an M2-del(29-31) virus. We found that the M2-del(29-31) virus was debilitated in growth to an extent similar to that of influenza virus grown in the presence of amantadine. Furthermore, in a test of biological fitness, it was found that wt virus almost completely outgrew M2-del(29-31) virus in 4 days after cocultivation of a 100:1 ratio of M2-del(29-31) virus to wt virus, respectively. We conclude that the M2 ion channel protein, which is conserved in all known strains of influenza virus, evolved its function because it contributes to the efficient replication of the virus in a single cycle.  相似文献   

10.
M2 protein of influenza A virus is a proton channel spanning the viral envelope. Activity of this proton channel is required for uncoating of viral particles and equilibrating the pH across the trans Golgi apparatus, which prevents conformational change in hemagglutinin. Amantadine, an anti‐influenza A virus drug, inhibits M2 proton channel activity by binding to the channel pore; however, most currently circulating influenza A viruses are amantadine‐resistant. The most prevalent resistant mutation is a substitution from Ser31 to Asn31 in M2. Further atomistic analysis of ligand‐M2 complexes is needed to provide new approaches for the design of novel M2 channel blockers. Here, the free energy profiles of the binding kinetics of M2 channel blockers were examined by well‐tempered metadynamics simulations and it was found that amantadine first binds to Asp24 of S31 M2 and forms a metastable conformation. In contrast, the free energy profiles of adamantyl bromothiophene dual inhibitor with either S31 M2 or N31 M2 are broad funnel‐shaped curves, suggesting that adamantyl bromothiophene does not form metastable complexes with M2. The trajectory of well‐tempered metadynamics simulations revealed that steric hindrance between adamantyl bromothiophene and S31 M2 interrupts formation of a metastable conformation at Asp24 and that a halogen bond between the bromine atom and N31 is responsible for pulling down the ligand to the channel pore of N31 M2 in the absence of a metastable state. Binding pathways of M2 channel blockers to M2 are here proposed on the basis of these findings; they may provide new approaches to designing further M2 channel blockers.  相似文献   

11.
The transmembrane (TM) domain of the M2 channel protein from influenza A is a homotetrameric bundle of α-helices and provides a model system for computational approaches to self-assembly of membrane proteins. Coarse-grained molecular dynamics (CG-MD) simulations have been used to explore partitioning into a membrane of M2 TM helices during bilayer self-assembly from lipids. CG-MD is also used to explore tetramerization of preinserted M2 TM helices. The M2 helix monomer adopts a membrane spanning orientation in a lipid (DPPC) bilayer. Multiple extended CG-MD simulations (5 × 5 μs) were used to study the tetramerization of inserted M2 helices. The resultant tetramers were evaluated in terms of the most populated conformations and the dynamics of their interconversion. This analysis reveals that the M2 tetramer has 2× rotationally symmetrical packing of the helices. The helices form a left-handed bundle, with a helix tilt angle of ∼16°. The M2 helix bundle generated by CG-MD was converted to an atomistic model. Simulations of this model reveal that the bundle's stability depends on the assumed protonation state of the H37 side chains. These simulations alongside comparison with recent x-ray (3BKD) and NMR (2RLF) structures of the M2 bundle suggest that the model yielded by CG-MD may correspond to a closed state of the channel.  相似文献   

12.
Hu J  Fu R  Cross TA 《Biophysical journal》2007,93(1):276-283
The M(2) proton channel plays a vital role in the life cycle of the influenza A virus. His(37), the key residue in the M(2) transmembrane domain (M(2)-TMD), plays a central role in the proton conductance mechanism. The anti-influenza drug, amantadine, inhibits the channel activity through binding to the pore of the M(2) channel. The nuclear spin relaxation data and polarization inversion spin exchange at the magic angle spectra show that both the polypeptide backbone and His(37) side chain are more constrained in the presence of amantadine. Using (15)N cross polarization magic-angle spinning NMR spectroscopy, the protonation of His(37) of M(2)-TMD in lipid bilayers was monitored in the absence and presence of amantadine as a function of pH. Binding amantadine lowers the His(37) pK(a) values by approximately three orders of magnitude compared with the first pK(a) of histidine in amantadine-free M(2)-TMD. Amantadine's influence on the His(37) chemical properties suggests a novel mechanism by which amantadine may inhibit proton conductance.  相似文献   

13.
Structures of truncated versions of the influenza A virus M2 proton channel have been determined recently by x-ray crystallography in the open conformation of the channel, and by NMR in the closed state. The structures differ in the position of the bound inhibitors. The x-ray structure shows a single amantadine molecule in the middle of the channel, whereas in the NMR structure four drug molecules bind at the channel's outer surface. To study this controversy we applied computational solvent mapping, a technique developed for the identification of the most druggable binding hot spots of proteins. The method moves molecular probes—small organic molecules containing various functional groups—around the protein surface, finds favorable positions using empirical free energy functions, clusters the conformations, and ranks the clusters on the basis of the average free energy. The results of the mapping show that in both structures the primary hot spot is an internal cavity overlapping the amantadine binding site seen in the x-ray structure. However, both structures also have weaker hot spots at the exterior locations that bind rimantadine in the NMR structure, although these sites are partially due to the favorable interactions with the interfacial region of the lipid bilayer. As confirmed by docking calculations, the open channel binds amantadine at the more favorable internal site, in good agreement with the x-ray structure. In contrast, the NMR structure is based on a peptide/micelle construct that is able to accommodate the small molecular probes used for the mapping, but has a too narrow pore for the rimantadine to access the internal hot spot, and hence the drug can bind only at the exterior sites.  相似文献   

14.
Ion channels can be gated by various extrinsic cues, such as voltage, pH, and second messengers. However, most ion channels display extrinsic cue-independent transitions as well. These events represent spontaneous conformational changes of the channel protein. The molecular basis for spontaneous gating and its relation to the mechanism by which channels undergo activation gating by extrinsic cue stimulation is not well understood. Here we show that the proximal pore helix of inwardly rectifying (Kir) channels is partially responsible for determining spontaneous gating characteristics, affecting the open state of the channel by stabilizing intraburst openings as well as the bursting state itself without affecting K(+) ion-channel interactions. The effect of the pore helix on the open state of the channel is qualitatively similar to that of two well-characterized mutations at the second transmembrane domain (TM2), which stabilize the channel in its activated state. However, the effects of the pore helix and the TM2 mutations on gating were additive and independent of each other. Moreover, in sharp contrast to the two TM2 mutations, the pore helix mutation did not affect the functionality of the agonist-responsive gate. Our results suggest that in Kir channels, the bottom of the pore helix and agonist-induced conformational transitions at the TM2 ultimately stabilize via different pathways the open conformation of the same gate.  相似文献   

15.
The M2 protein of influenza A virus forms homotetrameric helix bundles, which function as proton-selective channels. The native form of the protein is 97 residues long, although peptides representing the transmembrane section display ion channel activity, which (like the native channel) is blocked by the antiviral drug amantadine. As a small ion channel, M2 may provide useful insights into more complex channel systems. Models of tetrameric bundles of helices containing either 18 or 22 residues have been simulated while embedded in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidylcholine bilayer. Several different starting models have been used. These suggest that the simulation results, at least on a nanosecond time scale, are sensitive to the exact starting structure. Electrostatics calculations carried out on a ring of four ionizable aspartate residues at the N-terminal mouth of the channel suggest that at any one time, only one will be in a charged state. Helix bundle models were mostly stable over the duration of the simulation, and their helices remained tilted relative to the bilayer normal. The M2 helix bundles form closed channels that undergo breathing motions, alternating between a tetramer and a dimer-of-dimers structure. Under these conditions either the channel forms a pocket of trapped waters or it contains a column of waters broken predominantly at the C-terminal mouth of the pore. These waters exhibit restricted motion in the pore and are effectively "frozen" in a way similar to those seen in previous simulations of a proton channel formed by a four-helix bundle of a synthetic leucine-serine peptide (, Biophys. J. 77:2400-2410).  相似文献   

16.
Influenza A virus is capable of rapidly infecting large human populations, warranting the development of novel drugs to efficiently inhibit virus replication. A transmembrane ion channel formed by the M2 protein plays an important role in influenza virus replication. A reasonable approach to designing an effective antivirus drug is constructing a molecule that binds in the M2 transmembrane proton channel, blocks H+ proton diffusion through the channel, and thus the influenza A virus cycle. The known anti-influenza drugs amantadine and rimantadine have a weak effect on influenza A virus replication. A new class of positively charged molecules, diazabicyclooctane derivatives with a constant charge of +2, was proposed to block proton diffusion through the M2 ion channel. Molecular dynamics simulations were performed to study the temperature fluctuations in the M2 structure, and ionization states of histidine residues were established at physiological pH values. Two types of diazabicyclooctane derivatives were analyzed for binding with the M2 ion channel. An optimal structure was determined for a blocker to most efficiently bind with the M2 ion channel and block proton diffusion. The new molecule is advantageous over amantadine and rimantadine in having a positive charge of +2, which creates a positive electrostatic potential barrier to proton transport through the M2 ion channel in addition to a steric barrier.  相似文献   

17.
The influenza M2 protein forms an acid‐activated and drug‐sensitive proton channel in the virus envelope that is important for the virus lifecycle. The functional properties and high‐resolution structures of this proton channel have been extensively studied to understand the mechanisms of proton conduction and drug inhibition. We review biochemical and electrophysiological studies of M2 and discuss how high‐resolution structures have transformed our understanding of this proton channel. Comparison of structures obtained in different membrane‐mimetic solvents and under different pH using X‐ray crystallography, solution NMR, and solid‐state NMR spectroscopy revealed how the M2 structure depends on the environment and showed that the pharmacologically relevant drug‐binding site lies in the transmembrane (TM) pore. Competing models of proton conduction have been evaluated using biochemical experiments, high‐resolution structural methods, and computational modeling. These results are converging to a model in which a histidine residue in the TM domain mediates proton relay with water, aided by microsecond conformational dynamics of the imidazole ring. These mechanistic insights are guiding the design of new inhibitors that target drug‐resistant M2 variants and may be relevant for other proton channels.  相似文献   

18.
Chen H  Wu Y  Voth GA 《Biophysical journal》2007,93(10):3470-3479
The structural properties of the influenza A virus M2 transmembrane channel in dimyristoylphosphatidylcholine bilayer for each of the four protonation states of the proton-gating His-37 tetrad and their effects on proton transport for this low-pH activated, highly proton-selective channel are studied by classical molecular dynamics with the multistate empirical valence-bond (MS-EVB) methodology. The excess proton permeation free energy profile and maximum ion conductance calculated from the MS-EVB simulation data combined with the Poisson-Nernst-Planck theory indicates that the triply protonated His-37 state is the most likely open state via a significant side-chain conformational change of the His-37 tetrad. This proposed open state of M2 has a calculated proton permeation free energy barrier of 7 kcal/mol and a maximum conductance of 53 pS compared to the experimental value of 6 pS. By contrast, the maximum conductance for Na(+) is calculated to be four orders of magnitude lower, in reasonable agreement with the experimentally observed proton selectivity. The pH value to activate the channel opening is estimated to be 5.5 from dielectric continuum theory, which is also consistent with experimental results. This study further reveals that the Ala-29 residue region is the primary binding site for the antiflu drug amantadine (AMT), probably because that domain is relatively spacious and hydrophobic. The presence of AMT is calculated to reduce the proton conductance by 99.8% due to a significant dehydration penalty of the excess proton in the vicinity of the channel-bound AMT.  相似文献   

19.
We have explored the role of a proline residue located at position 87 in the second transmembrane segment (TM2) of gap junctions in the mechanism of voltage-dependent gating of connexin32 (Cx32). Substitution of this proline (denoted Cx32P87) with residues G, A, or V affects channel function in a progressive manner consistent with the expectation that a proline kink (PK) motif exists in the second transmembrane segment (TM2) of this connexin. Mutations of the preceding threonine residue T86 to S, A, C, V, N, or L shift the conductance-voltage relation of wild-type Cx32, such that the mutated channels close at smaller transjunctional voltages. The observed shift in voltage dependence is consistent with a reduction in the open probability of the mutant hemichannels at a transjunctional voltage (Vj) of 0 mV. In both cases in which kinetics were examined, the time constants for reaching steady state were faster for T86N and T86A than for wild type at comparable voltages, suggesting that the T86 mutations cause the energetic destabilization of the open state relative to the other states of the channel protein. The structural underpinnings of the observed effects were explored with Monte Carlo simulations. The conformational space of TM2 helices was found to differ for the T86A, V, N, and L mutants, which produce a less bent helix ( approximately 20 degrees bend angle) compared to the wild type, which has a approximately 37 degrees bend angle. The greater bend angle of the wild-type helix reflects the propensity of the T86 residue to hydrogen bond with the backbone carbonyl of amino acid residue I82. The relative differences in propensity for hydrogen bonding of the mutants relative to the wild-type threonine residue in the constructs we studied (T86A, V, N, L, S, and C) correlate with the shift in the conductance-voltage relation observed for T86 mutations. The data are consistent with a structural model in which the open conformation of the Cx32 channel corresponds to a more bent TM2 helix, and the closed conformation corresponds to a less bent helix. We propose that the modulation of the hydrogen-bonding potential of the T86 residue alters the bend angle of the PK motif and mediates conformational changes between open and closed channel states.  相似文献   

20.
Bu L  Im W  Brooks CL 《Biophysical journal》2007,92(3):854-863
The assembly of simple transmembrane helix homo-oligomers is studied by combining a generalized Born implicit membrane model with replica exchange molecular dynamics simulations to sample the conformational space of various oligomerization states and the native oligomeric conformation. Our approach is applied to predict the structures of transmembrane helices of three proteins--glycophorin A, the M2 proton channel, and phospholamban--using only peptide sequence and the native oligomerization state information. In every case, the methodology reproduces native conformations that are in good agreement with available experimental structural data. Thus, our method should be useful in the prediction of native structures of transmembrane domains of other peptides. When we ignore the experimental constraint on the native oligomerization state and attempt de novo prediction of the structure and oligomerization state based only on sequence and simple energetic considerations, we identify the pentamer as the most stable oligomer for phospholamban. However, for the glycophorin A and the M2 proton channels, we tend to predict higher oligomers as more stable. Our studies demonstrate that reliable predictions of the structure of transmembrane helical oligomers can be achieved when the observed oligomerization state is imposed as a constraint, but that further efforts are needed for the de novo prediction of both structure and oligomeric state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号