首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between distributional boundaries and temperature responses of some Northeast American and West European endemic and amphiatlantic rhodophytes was experimentally determined under varying regimes of temperature, light, and daylength. Potentially critical temperatures, derived from open ocean surface summer and winter isotherms, were inferred from distributional data for each of these algae. On the basis of the distributional data the algae fall within the limits of three phytogeographic groups: (1) the Northeast American tropical-to-temperate group; (2) the warm-temperate Mediterranean Atlantic group; and (3) the amphiatlantic tropical-to-warm temperate group. Experimental evidence suggests that the species belonging to the northeast American tropical-to-temperate group(Grinnellia americana, Lomentaria baileyana, andAgardhiella subulata) have their northern boundaries determined by a minimum summer temperature high enough for sufficient growth and/or reproduction. The possible restriction of 2 species (G. americana andL. baileyana) to the tropical margins may be caused by summer lethal temperatures (between 30 and 35 °C) or because the gradual disintegration of the upright thalli at high temperatures (>30 °C) promotes an ephemeral existence of these algae towards their southern boundaries. Each of the species have a rapid growth and reproductive potential between 15–30 °C with a broad optimum between 20–30 °C. The lower limit of survival of each species was at least 0 °C (tested in short days only). Growth and reproduction data imply that the restrictive distribution of these algae to the Americas may be due to the fact that for adequate growth and/or reproduction water temperatures must exceed 20 °C. At temperatures 15 °C reproduction and growth are limited, and the amphiatlantic distribution through Iceland would not be permitted. On the basis of experimental evidence, the species belonging to the warm-temperate Mediterranean Atlantic group(Halurus equisetifolius), Callophyllis laciniata, andHypoglossum woodwardii), have their northern boundaries determined by winter lethal temperatures. Growth ofH. equisetifolius proceeded from 10–25 °C, that ofC. laciniata andH. woodwardii from 5–25 °C, in each case with a narrow range for optimal growth at ca. 15 °C. Tetrasporelings ofH. woodwardii showed limited survival at 0 °C for up to 4 d. For all members of the group tetrasporangia occurred from 10–20 °C. The southern boundary ofH. equisetifolius andC. laciniata is a summer lethal temperature whereas that ofH. woodwardii possibly is a winter growth and reproduction limit. Since each member of this group has a rather narrow growth and survival potential at temperatures <5 °C and >20 °C, their occurrence in northeast America is unlikely. The (irregular) distribution ofSolieria tenera (amphiatlantic tropical-to-warm temperate) cannot be entirely explained by the experimental data (possibly as a result of taxonomic uncertainties).Paper presented at the Seaweed Biogeography Workshop of the International Working Group on Seaweed Biogeography, held from 3–7 April, 1984 at the Department of Marine Biology, University of Groningen (The Netherlands). Convenor: C. van den Hoek.  相似文献   

2.
Synopsis Behavioral responses which allow largemouth bass, Micropterus salmoides, and bluegill, Lepomis macrochirus, to survive under unusually high temperature conditions were examined. Distribution of fish was ascertained by angling. Body temperatures of 4 fish were obtained using radio transmitters. Temperatures of other fish were measured after fish were captured by angling. Both species were restricted in range by lethal water temperatures and therefore inhabited a greater portion of a thermally altered reservoir in winter than in summer. Under unheated conditions (during reactor shutdown), bass occupied shallow areas with an abundance of submerged logs and stumps, a deep area with springs, and a cove where the effluent canal entered the reservoir. Commencement of reactor operation resulted in an increase in water temperature to more than 50°C in summer. Bass and bluegill retreated to three refuges and remained there until the reactor shut down and the reservoir cooled. In the refuges, bass experienced a wide variety of temperatures, but adults generally avoided temperatures above 31°C. Large adult bass (>40 cm) occupied particular positions in a refuge cove, medium size bass (15–40 cm) swam in the open water, and small bass (相似文献   

3.
Synopsis Riffle dwelling fantail darters (Etheostoma flabellare) selected lower temperatures in winter (19.3°C) compared to pool dwelling johnny darters (E. nigrum; 22.0°C. A similar trend was evident in summer tests (fantail darters, 20.3°C; johnny darters, 22.9°C). Summer tested animals selected higher temperatures than winter tested animals maintained at the same acclimation temperature and photoperiod. When tested together in the same gradient, both species appeared not to thermoregulate, but tended to avoid each other. Critical thermal maxima (CTMax) did not differ between seasons for either species (fantail darters, 31.1°C winter, 31.3°C summer; johnny darters, 30.9°C winter, 30.5°C summer). Differences in the thermal responses of these darters correlated with differences in their respective habitats.  相似文献   

4.
Thermoregulatory responses at ambient temperatures of 20 and 10° C in six male subjects wearing two different kinds of clothing were compared between summer and winter. The two different kinds of clothing were one insulating the upper half of the body lightly and the lower half of the body heavily (clothing A, the weight in the upper and lower halves of the body being, respectively, 489 g and 1278 g) and the other insulating the upper half of the body heavily and the lower half of the body lightly (clothing B: 1212 g and 559 g). The major findings are summarized as follow. (i) Rectal temperature was kept significantly higher in clothing B than in clothing A both in summer and winter. (ii) The fall of rectal temperature was significantly greater in summer than in winter in both types of clothing. (iii) Mean skin temperatures and skin temperatures in the face, chest, thigh and leg were significantly lower atT a of 10° C in summer than in winter in clothing A, while skin temperatures in the face and thigh were also significantly lower atT a of 10° C in summer than in winter in clothing B. (iv) Metabolic heat production was higher in summer than in winter at 20 and 10° C in both types of clothing. (v) The subjects felt cooler and colder toT a of 10° C in summer than in winter in both types of clothing. These different responses occurring between summer and winter are discussed mainly in terms of total conductance and dry heat loss.  相似文献   

5.
Microhabitat recordings suggest that the continental Antarctic mite Maudheimia petronia Wall-work experiences temperatures above 0°C for 60% of the time during summer (about 2 months). Summer daily maximum temperatures are, however, often relatively high (the highest recorded temperature was 27.7°C). Because the locomotor activity of this mite is suppressed at freezing temperatures, the time available for activity, and probably also feeding, is restricted. Temperature relations of potential locomotor activity rate suggest alleviation of this time constraint through the maximization of the rate. The locomotor activity rate of M. petronia is positively sensitive to the entire range of above-zero temperatures that it naturally experiences, being particularly accelerated at lower temperatures (Q100°–5°C values were above 13, whereas Q1025°–30°C values were below 2). Also, comparisons between mites acclimated at -15°C and 10°C suggest an inverse temperature acclimation of this rate. We hypothesize that potential feeding rate is similarly related to temperature. A relative enhancement of food intake would seem important, not only for the maintenance of a daily positive energy balance in summer, but also for the building up of energy reserves for the relatively long winter, when feeding is impossible.  相似文献   

6.
The temperature responses for growth and survival have been experimentally tested for 6 species of the green algal genusCladophora (Chlorophyceae; Cladophorales) (all isolated from Roscoff, Brittany, France, one also from Connecticut, USA), selected from 4 distribution groups, in order to determine which phase in the annual temperature regime might prevent the spread of a species beyond its present latitudinal range on the N. Atlantic coasts. For five species geographic limits could be specifically defined as due to a growth limit in the growing season or to a lethal limit in the adverse season. These species were: (1)C. coelothrix (Amphiatlantic tropical to warm temperate), with a northern boundary on the European coasts formed by a summer growth limit near the 12°C August isotherm. On the American coasts sea temperatures should allow its occurrence further north. (2)C. vagabunda (Amphiatlantic tropical to temperate), with a northern boundary formed by a summer growth limit near the 15°C August isotherm on both sides of the Atlantic. (3)C. dalmatica, as forC. vagabunda. (4)C. hutchinsiae (Mediterranean-Atlantic warm temperate), with a northern boundary formed by a summer growth limit near the 12°C August isotherm, and possibly also a winter lethal limit near the 6°C February isotherm; and a southern boundary formed by a southern lethal limit near the 26°C August isotherm. It is absent from the warm temperate American coast because its lethal limits, 5° and 30°C, are regularly reached there. (5) Preliminary data forC. rupestris (Amphiatlantic temperate), suggest the southeastern boundary on the African coast to be a summer lethal limit near the 26°C August isotherm; the southwestern boundary on the American coast lies on the 20°C August isotherm. For one species,C. albida, the experimental growth and survival range was wider than expected from its geographic distribution, and reasons to account for this are suggested.Paper presented at the Seaweed Biogeography Workshop of the International Working Group on Seaweed Biogeography, held from 3–7 April, 1984 at the Department of Marine Biology, University of Groningen (The Netherlands). Convenor: C. van den Hoek.  相似文献   

7.
The proliferation of tench lymphocytes induced by mitogens was studied during the four seasons of the year. Fish were maintained under natural conditions of photoperiod and temperature (mean ± SD: 12±2°C in winter, 22±3°C in spring, 30±3°C in summer and 21±3°C in autumn). Cultures were performed in vitro at 22°C in all seasons and the results were compared. Subsequently, in seasons with extreme water temperatures, cultures in vitro were performed at the same temperature as that of the water (12°C in winter and 30°C in summer) and the results were compared seasonally at the seasonal temperature, i.e. at 22°C in spring, 30°C in summer, 22°C in autumn and 12°C in winter. Phytohemagglutinin, concanavalin A, lipolisaccharide from E. coli and pokeweed mitogen were used as mitogens. Studies performed at 22°C as assay temperature in all seasons showed profound seasonal changes: while in spring, summer and autumn the mitogenic response of lymphocytes to phytohemagglutinin, concanavalin A, lipolisaccharide from E. coli and pokeweed mitogen was very low, during winter the results obtained were significantly higher. However, when the assays were performed at the corresponding seasonal temperature the differences were not as pronounced between the different seasons, and the mitogenic responses of lymphocytes were found to be the lowest during the winter and the highest during the summer with all mitogens used. This fact suggests that immunosuppression occurs in winter and an immunostimulation occurs in summer. However, the higher response found in winter when assaying at 22°C suggests that this property of lymphocytes needs an assay temperature higher than the in vivo temperature in order to observe accurate mitogenic responses.Abbreviations Con A concanavalin A - cpm counts per minute - LPS E. coli lipolisaccharide - MS222 tricainemethane sulphonate - PBS phosphate-buffered saline - PHA phytohemagglutinin - PWM pokeweed mitogen - SI stimulation index  相似文献   

8.
The seasonal variations of bacterial and phytoplanktonic biomass were studied during several pluri-annual surveys in the subantarctic Morbihan Bay (Kerguelen Islands, 49 ° 20 S; 70 ° 10 E). Large interannual variation was observed. Phytoplanktonic biomass showed moderate values during winter and autumn. They increased sharply in spring, reaching a maximum value of about 1 mg C l–1 corresponding to an important depletion of nutrients. A second phytoplanktonic bloom of similar amplitude occurred in late summer. During algal blooms which were roughly associated with optimal values of solar irradiation for the first one and with the highest temperatures for the second one, phytoplanktonic material represented near 100% of particulate and living carbon. Bacteria showed maximal abundance (0.2 to 0.7 mg C l–1) during summer or autumn. Their relative abundance, which represented less than 1% of the living biomass in spring and summer, can reach more than 95% in autumn and winter.  相似文献   

9.
Jost Borcherding 《Oecologia》1991,87(2):208-218
Summary The annual development of the gonads of Dreissena polymorpha was studied at three sampling sites in two lakes over 3 and 1 1/2 years, respectively. A resting stage occurred after the last spawning in summer/autumn. Oogenesis (accompanied by multiplying segmentation of the oogonia and early growth processes of its oocytes) restarted in specimens at least 1 year old at low temperatures (below 10° C) during winter and early spring. At one location (Fühlinger See) the onset of the spawning season was correlated with an increase of water temperatures above 12° C. At 2 m depth, two main spawning periods in May and August were normally recognized, the first at temperatures of 12–16° C, the second at 16–21° C. It was clearly demonstrated for the first time in Dreissena polymorpha that the oocytes became mature in successive cohorts within one gonad. A female mussel may spawn several times during the reproductive season. At 9 m depth, the onset of spawning also started at about 12° C; this occurred in late summer, with two spawning periods within 1 month at a temperature range of 12–16° C. At another location (Heider Bergsee) the size of the gonads and the oocytes was reduced during April of both years studied, when food supply was low simultaneously with rapidly rising water temperatures in this shallow lake. There was no spawning period during spring. The major spawning period was delayed until July (temperatures 19–22°C). This shows (1) the synchronizing influence of low winter temperatures on the annual reproductive cycle and (2) a temperature threshold of at least 12° C for the start of the spawning processes. The results are discussed with regard to the geographical limits of further spread of Dreissena polymorpha.  相似文献   

10.
Summary Synthesis of egg-laying hormone by the neuroendocrine bag cells ofAplysia californica is approximately twofold higher in summer than in winter. To determine whether this seasonal variation in peptide synthesis is triggered by seasonal variations in ocean temperature, animals were obtained at various times of the year and held for prolonged periods at either 15 or 20°C prior to measuring hormone synthesis. Rates of synthesis in winter animals held at 20°C began to increase after two weeks, reaching a level twice that of 15°C animals by six weeks. Cooling to 15°C blocked the rise in hormone synthesis that normally occurs between May and June and reduced synthesis in summer animals to values typical of winter. It is concluded that the seasonal modulation of neurohormone synthesis is due to changes in environmental temperature.  相似文献   

11.
We examined the potential limitation of bacterial growth by temperature and nutrients in a eutrophic lake. Dilution cultures from winter and summer were incubated at both high (>20°C) and low (4°C) temperatures and enriched with various combinations of organic carbon (C), inorganic nitrogen (N), and inorganic phosphorus (P). Bacterial abundance, 3H-thymidine incorporation, and 3H-leucine incorporation were measured over the growth cycle. For both winter and summer assemblages, low temperature limited growth even when resources (C, N, and P) were added. When temperature was adequate, bacterial growth in dilution cultures was co-limited by C, N, and P Additions of either C, P, or N and P alone provide little or only modest stimulation of growth, suggesting that under in situ conditions both nutrients and organic carbon limit bacterial growth. Our results provide little evidence of seasonal adaptation to low temperatures for bacterial communities in temperate lakes. Instead, bacterial growth appears to be temperature limited during winter and resource limited during summer. We propose that, in general, bacterial growth rates are temperature dependent up to a threshold, but that the patterns of change across temperature gradients are resource dependent, such that temperature has little effect on growth in resource-rich environments but a strong effect in resource-poor environments. Correspondence to: Marisol Felip  相似文献   

12.
The night monkeys (Aotus azarai) of Formosa, Argentina provide an opportunity to investigate the influences of ambient temperature and photoperiod on reproduction in a highly seasonal environment: the Chaco. Between 1997 and 2000, we collected data to evaluate the relationship between rainfall, ambient temperature, photoperiod and food availability and the annual distribution of mating behavior and births in 15 groups of monkeys in the forests of the Eastern Argentinean Chaco. Our data show that the area is highly seasonal, characterized by significant fluctuations in rainfall, temperature, photoperiod and food availability. There are two rain peaks in April and November and a dry season lasting from June to August. Monthly mean temperatures were on average 11°C lower during winter months than they were during summer months. Temperatures <10°C and >33°C were also frequent through the year. Days are 3 h longer during the summer than during the winter months. Insect abundance and the percentage of tree species producing fruits, flowers or new leaves reached a low in the coldest winter months. Mating was infrequent, and we only observed it between May and September. Half the births (n = 13) occurred during a 2-week period in October. Infant survival during the first 6 mo of life was high (96%). Our findings suggest an environmental control of reproduction. Changes in photoperiod and temperature may promote reproductive activity in females that might conceive and begin pregnancy at a time void of high temperatures that could be metabolically challenging.  相似文献   

13.
To investigate the effects of age on thermal sensitivity, preferred ambient temperature (T pref) was compared between old (71–76 years) and young (21–30 years) groups, each consisting of six male subjects in summer and winter. The air temperature (T a) was set at either 20° C or 40° C at commencement. The subject was directed to adjust theT a for 45 min by manipulating a remote control switch to the level at which he felt most comfortable. In the older group, theT pref was significantly lower in trials starting at 20° C than that starting at 40° C in summer. The fluctuation ofT pref (temperature difference between maximum and minimumT a during the last 10 min) was significantly wider in the older group in both summer and winter. Repetition of the same experiment on each subject showed a poorer reproducibility ofT pref in the older group than in the younger group in summer. Tympanic and esophageal temperatures of the older group kept falling throughout the trial starting at 20° C in summer. These results suggest that thermal sensitivity is decreased with advancing age and that thermal perception in the elderly, especially to cold, is less sensitive in summer.  相似文献   

14.
The terrestrial isopod, Porcellio scaber, was susceptible to subzero temperature: both freezing and chilling were injurious. The level of cold hardiness against chilling and freezing showed different patterns in their seasonal variation. The lower lethal temperature causing 50% mortality, an indicator of the tolerance to chilling, ranged from-1.37°C in August to-4.58°C in December. The whole body supercooling point, the absolute limit of freeze avoidance, was kept at about-7°C throughout the year. The winter decrease in lower lethal temperature was concomitant with an accumulation of low molecular weight carbohydrates which are possible protective reagents against chilling injury, whereas the less seasonally variable supercooling point seemed to be associated with the year-round presence of gut content. Food derivatives may act as efficient ice nucleators. The different trend in seasonal changes between lower lethal temperature and supercooling point may be related to the microclimate of the hibernacula in subnivean environments, where the winter temperature became lower than the lower lethal temperature in the summer active phase, but remained higher than the summer supercooling point.Abbreviations LLT50 lower lethal temperature inducing 50% mortality - SCP supercooling point - T a ambient air temperature - T s soil surface temperature  相似文献   

15.
In the deserts of northern and southern Africa, respectively, ants of the genera Cataglyphisf oerster (Formicinae) and Ocymyrmexe mery (Myrmicinae) occupy the same ecological niche, which comprises that of a strictly diurnal thermophilic scavenger. Their daily foraging activities exhibit a bimodal pattern in summer and unimodality or complete inactivity in winter. The present study investigates whether these overall patterns are a result of endogenous annual activity rhythms of the colony or are triggered directly by the prevailing ambient temperatures. By exploiting various seasonal temperature regimes and, in particular, by creating near‐nest winter conditions experimentally in summer, it is shown that the latter hypothesis is generally true. However, there are daily and annual variations in the temperature set points at which foraging activities start and finish. These temperatures are lower in the winter than in the summer months and, in summer, they are lower in the morning than in the afternoon. The level of foraging activity in the afternoon reaches maximum values at surface temperatures of 60–63 °C. This means that, in summer months, these thermophilic ants concentrate their foraging activities into a period of almost lethal temperature regimes, during which they have to devote a substantial portion of their time outside the nest to respite (i.e. cooling‐off) behaviour.  相似文献   

16.
Summary The ability of adults and larvae of two species of perimylopid beetles (Hydromedion sparsutum, Perimylops antarcticus) to survive sub-zero temperatures was studied at Husvik, South Georgia in summer during October–December 1990. Experiments determined their survival at constant sub-zero temperatures, their lower lethal temperatures and individual supercooling points. The effects of cooling rates (0.015°, 0.5° and 2.0°C min–1) and starvation on survival were also assessed. Mean supercooling points of field-collected individuals of both species were in the range -3.0° to -5.4°C with Perimylops having a deeper capacity (ca. 1.5°C) for supercooling relative to Hydromedion. The former species also survived freezing temperatures significantly better than the latter and its mean lower lethal temperature was 2.5°C lower. At a constant temperature of -8.5°C, the median survival times for Perimylops adults and larvae were 19 and 26 h respectively, whilst both stages of Hydromedion died within 3 h. The three cooling rates resulted in significantly different median survival temperatures for adult Hydromedion with 0.5°C min–1 producing maximum survival. Prior starvation did not have a significant influence on the survival of either species at sub-zero temperatures although both adults survived less well. The results support field observations on the habitats and distribution of these insects, and suggest differing degrees of freezing tolerance.  相似文献   

17.
Summary Sterilized soil (pH 7.7) seeded withC. neoformans was incubated at different temperatures and under various atmospheric conditions during a summer and winter.Incubated for one year at constant temperatures in atmospheric humidities, the organism survived in greater number and for longer periods of time at 4–6° C. Increased humidity greatly enhanced the survival and proliferation of the organisms incubated at 4–6° C and 20–24° C but had little effect on organisms incubated at 37° C.Summer temperatures in Oklahoma coupled with direct exposure to the sun were lethal to the organism in 100 % humidity. In the winter months, exposure to sunlight had no effect on the viability ofC. neoformans.As incubation time in soil increased the thickness of the capsule decreased.Cryptococcus neoformans probably exists in nature in nearly nonencapsulated state. It survives best in alkaline soils, in areas of high humidity, and where the organisms are protected from high temperatures and direct sunlight.This investigation was partially supported by Public Health Service grants AIO5022 and CC-00081, from the National Institute of Health.This work was done in partial fulfillment for the Ph.D. degree.  相似文献   

18.
Supercooling points, lower lethal temperatures, and the effect of short-term exposures to low temperatures were examined during both winter and summer in the adults of six weevil species from three different habitats on Marion Island. Upper lethal limits and the effects of short-term exposure to high temperatures were also examined in summer-acclimatized adult individuals of these species. Bothrometopus elongatus, B. parvulus, B. randi, Ectemnorhinus marioni, and E. similis were freeze tolerant, but had high lower lethal temperatures (−7 to −10°C). Seasonal variation in these parameters was not pronounced. Physical conditions of the habitat appeared to have little effect on cold hardiness parameters because the Ectemnorhinus species occur in very wet habitats, whereas the Bothrometopus species inhabit drier areas. The adults of these weevil species are similar to other high southern latitude insects in that they are freeze tolerant, but with high lower lethal temperatures. In contrast, Palirhoeus eatoni, a supra-littoral species, avoided freezing and had a mean supercooling point of −15.5 ± 0.94°C (SE) in winter and −11.8 ± 0.98°C in summer. Survival of a constant low temperature of −8°C also increased in this species from 6 h in summer to 27 h in winter. It is suggested that this strategy may be a consequence of the osmoregulatory requirements imposed on this species by its supra-littoral habitat. Upper lethal temperatures (31–34°C) corresponded closely with maximum microclimate temperatures in all of the species. This indicates that the pronounced warming, accompanied by the increased insolation that has been recorded at Marion Island, may reduce survival of these species. These effects may be compounded as a consequence of predation by feral house mice on the weevils. Received: 4 February 1997 / Accepted: 3 May 1997  相似文献   

19.
Live Norway lobsters (Nephrops norvegicus L.) were trawled at depths of 30 to 55 m off the coast of Jutland (Denmark) in late winter (March) and in summer (August) in 2006. Water temperatures at the bottom and surface of the sea were 7 °C and 2 °C during the winter, and 12 °C and 21 °C in the summer, respectively. The recovery of specific physiological and metabolic variables from the intense stresses associated with capture (trawling and air-exposure during sorting) was followed in seawater at 5 °C in winter or 18 °C in summer. Recovery was compared in lobsters held individually in two different live-storage positions, either resting vertically on the tail or sitting horizontally. In winter, many animals were alive when brought on board and approximately 86% were still alive at the end of experimentation (96 h). In summer very few animals were alive when brought on board and, of these, approximately 95% were dead at 24 h. When compared with values measured in laboratory controls, the stresses of capture elicited very high haemolymph lactate contents in both seasons, although levels recovered within 24 h. Trawling also caused very high haemolymph glucose concentrations, which differed with season. In winter, haemolymph glucose was elevated for 24 h to levels significantly higher than in summer. In summer, glucose had returned to control levels by 4 h. At 4 h after trawling, haemolymph O2 status was not markedly influenced in either season, but there were significant disturbances of acid-base status. In winter, a potential metabolic lactic acidosis was compensated by a marked respiratory alkalosis, with significantly increased haemolymph pH and decreased CO2 total content and partial pressure. These effects disappeared gradually over 96 h. Summer lobsters showed combined metabolic and respiratory acidosis at 4 h, although this had recovered to control values in the small number of survivors sampled at 24 h. The capture stresses elicited very high haemolymph crustacean hyperglycaemic hormone (CHH) titres, significantly higher in summer than in winter. In winter, CHH titre had declined significantly at 24 h, whereas it exhibited a further significant increase at 24 h in summer. Live-storage position had no significant effect on survival or recovery from capture stresses in either season. The results demonstrate that Nephrops were much more stressed by trawling at high summer temperatures and had difficulty recovering from this, with pronounced negative effects on their survival, irrespective of their live-storage position.  相似文献   

20.
The cabbage beetle, Colaphellus bowringi, is a short-day species undergoing an imaginal summer and winter diapause. Its photoperiodic response highly depends on temperature. All adults entered diapause at ≤ 20 °C regardless of photoperiods. High temperatures strongly weakened the diapause-inducing effects of long daylengths. The diapause-averting influence of short daylengths was expressed only at high temperatures (above 20 °C). This indicates that the beetle has a cryptic ability to reproduce in summer. In fact, summer and winter diapause were induced principally by relatively low temperatures in the field, whereas photoperiod had less influence on diapause induction. The critical daylength for the autumnal population was between 12 h and 13 h. By transferring from a long day to a short day or vice versa at different times after hatching, it was shown that the sensitive stage with regard to photoperiod was the larva, whereas a long day was photoperiodically more potent than a short day. The sensitive stage to temperature encompassed the larval, pupal and adult stages. This different response pattern serves to ensure that the beetle enters summer and winter diapause in time. The selections for non-diapause trait under laboratory (at 25 °C) and natural conditions (at >24 °C) showed that the beetle could lose its sensitivity to photoperiod very rapidly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号