首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transferrin family of non-heme iron binding glycoproteins are believed to play a central role in iron metabolism and have been implicated in iron transport, cellular iron delivery and control of the level of free iron in external secretions. Lactoferrin (LF) is a member of this family that is widely localized in external fluids including milk and mucosal secretions, in addition to being a prominent component of the secondary granules of neutrophils. Although structurally related to transferrin, LF appears to have a broader functional role mediated by both iron dependent and iron independent mechanisms. In this review, we will focus on our current understanding on the role of LF in regulating iron homeostasis and its role in host protection against microbial infection at the mucosal surface. In addition, recent insights obtained from analyzing the phenotypic consequences of LF ablation in lactoferrin knockout mice (LFKO), which challenge the long held dogma that LF is required for intestinal iron absorption in the neonate, are summarized.  相似文献   

2.
3.
Abstract: Fetal alcohol syndrome produces defects that parallel abnormalities associated with early iron deficiency. Hence, we examined the effects of prenatal exposure to ethanol on iron, transferrin, and ferritin concentrations. The subjects were the offspring of pregnant rats fed an ethanol-containing diet (Et), pair-fed an isocaloric control diet (Ct), or fed chow and water. The amounts of iron, transferrin, and ferritin were assessed in three CNS regions (cerebral cortex, subcortical forebrain, and brain-stem). In all three segments of the control rats, iron, transferrin, and ferritin levels decreased during the first 2 postnatal weeks, reached a minimum during week 3, and then rose to adult levels. This pattern was delayed by ethanol treatment, e.g., the minimal concentrations in iron, transferrin, and ferritin in the Et-treated rats were achieved later (3 days, 7 days, and 2 weeks, respectively) than they were in the Ct-treated rats. Ethanol-induced alterations in iron homeostasis persisted into adulthood; iron concentration was reduced, transferrin concentration was unaffected, and ferritin concentration was increased. The net result was that the timely delivery and bioavailability of iron were compromised by ethanol exposure. The defects in iron regulation are permanent and may underlie ethanol-induced abnormalities in iron-dependent growth processes such as myelination.  相似文献   

4.
In the process of evaluating roles for purified preparations of lactoferrin, transferrin and acidic isoferritins in the regulation of myelopoiesis, it was found that: (1) values reported for lactoferrin in the serum and plasma of normal donors are in most cases an over-estimation, (2) lactoferrin suppresses the production/release of granulocyte-macrophage colony stimulatory factors (GM-CSF) from monocytes in the absence of T-lymphocytes and also suppresses the production/release of acidic isoferritin-inhibitory activity from monocytes, (3) lactoferrin, transferrin and acidic isoferritins act on their specific target cells which express Ia-like antigens, (4) lactoferrin and transferrin act in vivo to suppress rebound myelopoiesis in mice recovering from sublethal dosages of Cytoxan, with preliminary observations suggesting that lactoferrin has a greater apparent effect on the bone marrow and transferrin has a greater apparent effect on the spleen, (5) active lactoferrin derives from Fc receptor positive subpopulations of PMN from patients with CML as well as from normal donors, but the percentage of Fc receptor containing PMN is lower in CML, as is the amount of active lactoferrin found in their PMN, and (6) lactoferrin, transferrin and acidic isoferritins suppress the colony formation of U937 clonogenic cells, with lactoferrin and transferrin decreasing the release of growth factors from U937 cells which are needed to stimulate U937 colony formation, and lactoferrin and acidic isoferritins suppress the colony formation of WEHI-3 cells, with lactoferrin decreasing the release of growth factors from WEHI-3 cells which are needed to stimulate WEHI-3 colony formation. Speculation on the potential usefulness of these iron binding glycoproteins to control of disease progression is given in the discussion.  相似文献   

5.
 The effectiveness and mechanism of iron acquisition from transferrin or lactoferrin by Aeromonas hydrophila has been analyzed with regard to the pathogenesis of this microbe. The ability of A. hydrophila's siderophore, amonabactin, to remove iron from transferrin was evaluated with in vitro competition experiments. The kinetics of iron removal from the three molecular forms of ferric transferrin (diferric, N- and C-terminal monoferric) were investigated by separating each form by urea gel electrophoresis. The first direct determination of individual microscopic rates of iron removal from diferric transferrin is a result. A. hydrophila 495A2 was cultured in an iron-starved defined medium and the growth monitored. Addition of transferrin or lactoferrin promoted bacterial growth. Growth promotion was independent of the level of transferrin or lactoferrin iron saturation (between 30 and 100%), even when the protein was sequestered inside dialysis tubing. Siderophore production was also increased when transferrin or lactoferrin was enclosed in a dialysis tube. Cell yield and growth rate were identical in experiments where transferrin was present inside or outside the dialysis tube, indicating that binding of transferrin was not essential and that the siderophore plays a major role in iron uptake from transferrin. The rate of iron removal from diferric transferrin shows a hyperbolic dependence on amonabactin concentration. Surprisingly, amonabactin cannot remove iron from the more weakly binding N-terminal site of monoferric transferrin, while it is able to remove iron from the more strongly binding C-terminal site of monoferric transferrin. Iron from both sites is removed from diferric transferrin and it is the N-terminal site (which does not release iron in the monoferric protein) that releases iron more rapidly! It is apparent that there is a significant interaction of the two lobes of the protein with regard to the chelator access. Taken together, these results support an amonabactin-dependent mechanism for iron removal by A. hydrophila from transferrin and lactoferrin. The implications of these findings for an amonabactin-dependent mechanism for iron removal by A. hydrophila from transferrin and lactoferrin are discussed. Received: 8 August 1999 / Accepted: 22 October 1999  相似文献   

6.
Transferrins are secreted proteins that bind iron. The well-studied transferrins are mammalian serum transferrin, which is involved in iron transport, and mammalian lactoferrin, which functions as an immune protein. Lactoferrin and lactoferrin-derived peptides have bactericidal activity, and the iron-free form of lactoferrin has bacteriostatic activity due to its ability to sequester iron. Insect transferrin is similar in sequence to both serum transferrin and lactoferrin, and its functions are not well-characterized; however, many studies of insect transferrin indicate that it has some type of immune function. The goal of this study was to determine the specific immune functions of transferrin from Manduca sexta (tobacco hornworm). We verified that transferrin expression is upregulated in response to infection in M. sexta larvae and determined that the concentration of transferrin in hemolymph increases from 2 μM to 10 μM following an immune challenge. It is also present in molting fluid and prepupal midgut fluid, two extracellular fluids with immune capabilities. No immune-induced proteolytic cleavage of transferrin in hemolymph was observed; therefore, M. sexta transferrin does not appear to be a source of antimicrobial peptides. Unlike iron-saturated lactoferrin, iron-saturated transferrin had no detectable antibacterial activity. In contrast, 1 μM iron-free transferrin inhibited bacterial growth, and this inhibition was blocked by supplementing the culture medium with 1 μM iron. Our results suggest that M. sexta transferrin does not have bactericidal activity, but that it does have a bacteriostatic function that depends on its iron sequestering ability. This study supports the hypothesis that insect transferrin participates in an iron withholding strategy to protect insects from infectious bacteria.  相似文献   

7.
In vitro, pancreatic triglyceride lipase requires colipase to restore activity in the presence of inhibitors, like bile acids. Presumably, colipase performs the same function in vivo, but little data supports that notion. Other studies suggest that colipase or its proform, procolipase, may have additional functions in appetite regulation or in fat digestion during the newborn period when pancreatic triglyceride lipase is not expressed. To identify the physiological role of procolipase, we created a mouse model of procolipase deficiency. The Clps-/- mice appeared normal at birth, but unexpectedly 60% died within the first 2 weeks of life. The survivors had fat malabsorption as newborns and as adults, but only when fed a high fat diet. On a low fat diet, the Clps-/- mice did not have steatorrhea. The Clps-/- pups had impaired weight gain and weighed 30% less than Clps+/+ or Clps+/- littermates. After weaning, the Clps-/- mice had normal rate of weight gain, but they maintained a reduced body weight compared with normal littermates even on a low fat diet. Despite the reduced body weight, the Clps-/- mice had a normal body temperature. To maintain their weight gain in the presence of steatorrhea, the Clps-/- mice had hyperphagia on a high fat diet. Clps-/- mice had normal intake on a low fat diet. We conclude that, in addition to its critical role in fat digestion, procolipase has essential functions in postnatal development and in regulating body weight set point.  相似文献   

8.
H-ferritin (HF) is a core subunit of the iron storage protein ferritin, and plays a central role in the regulation of cellular iron homeostasis. Recent studies revealed that ferritin and HF are involved in a wide variety of iron-independent functions, including regulating biological processes during physiological and pathological conditions, and can be overexpressed in some human diseases. To investigate the in vivo function of HF, we generated transgenic (tg) mice overexpressing the human HF gene (hHF-tg). We established two independent hHF-tg mouse lines. Although both lines of hHF-tg mice were viable, they showed reduced body size compared to wild-type (WT) mice at 4–12 weeks of age. Serum iron concentration and blood parameters of hHF-tg mice such as hemoglobin and red blood cell counts were comparable to those of WT mice. At 3–5 weeks of age, hHF-tg mice exhibited temporary loss of coat hair on the trunk, but not on the head or face. Histological analyses revealed that although initial hair development was normal, hHF-tg mice had epidermal hyperplasia with hyperkeratosis, dilated hair follicles, bended hair shafts and keratinous debris during the hairless period. In conclusion, we showed that hHF-tg mice exhibited mild growth retardation and temporary hairless phenotype. Our findings highlight the physiological roles of HF and demonstrate that hHF-tg mice are useful for understanding the in vivo functions of HF.  相似文献   

9.
The liver X receptors (LXRs) play a key role in cholesterol and bile acid metabolism but are also important regulators of glucose metabolism. Recently, LXRs have been proposed as a glucose sensor affecting LXR-dependent gene expression. We challenged wild-type (WT) and LXRαβ(-/-) mice with a normal diet (ND) or a high-carbohydrate diet (HCD). Magnetic resonance imaging showed different fat distribution between WT and LXRαβ(-/-) mice. Surprisingly, gonadal (GL) adipocyte volume decreased on HCD compared with ND in WT mice, whereas it slightly increased in LXRαβ(-/-) mice. Interestingly, insulin-stimulated lipogenesis of isolated GL fat cells was reduced on HCD compared with ND in LXRαβ(-/-) mice, whereas no changes were observed in WT mice. Net de novo lipogenesis (DNL) calculated from Vo(2) and Vco(2) was significantly higher in LXRαβ(-/-) than in WT mice on HCD. Histology of HCD-fed livers showed hepatic steatosis in WT mice but not in LXRαβ(-/-) mice. Glucose tolerance was not different between groups, but insulin sensitivity was decreased by the HCD in WT but not in LXRαβ(-/-) mice. Finally, gene expression analysis of adipose tissue showed induced expression of genes involved in DNL in LXRαβ(-/-) mice compared with WT animals as opposed to the liver, where expression of DNL genes was repressed in LXRαβ(-/-) mice. We thus conclude that absence of LXRs stimulates DNL in adipose tissue, but suppresses DNL in the liver, demonstrating opposite roles of LXR in DNL regulation in these two tissues. These results show tissue-specific regulation of LXR activity, a crucial finding for drug development.  相似文献   

10.
Intact cells of several bacterial species were tested for their ability to bind human transferrin and lactoferrin by a solid-phase binding assay using horseradish peroxidase conjugated transferrin and lactoferrin. The ability to bind lactoferrin was detected in all isolates of Neisseria and Branhamella catarrhalis but not in isolates of Escherichia coli or Pseudomonas aeruginosa. Transferrin-binding activity was similarly detected in most isolates of Neisseria and Branhamella but not in E. coli or P. aeruginosa. The expression of transferrin- and lactoferrin-binding activity was induced by addition of ethylenediamine di-o-phenylacetic acid and reversed by excess FeCl3, indicating regulation by the level of available iron in the medium. The transferrin receptor was specific for human transferrin and the lactoferrin receptor had a high degree of specificity for human lactoferrin in all species tested. The transferrin- and lactoferrin-binding proteins were identified after affinity isolation using biotinylated human transferrin or lactoferrin and streptavidin-agarose. The lactoferrin-binding protein was identified as a 105-kilodalton protein in all species tested. Affinity isolation with biotinylated transferrin yielded two or more proteins in all species tested. A high molecular mass protein was observed in all isolates, and was of similar size (approximately 98 kilodaltons) in all species of Neisseria but was larger (105 kilodaltons) in B. catarrhalis.  相似文献   

11.
While low nephron number is associated with increased risk of developing cardiovascular and renal disease, the functional consequences of a high nephron number are unknown. We tested the hypothesis that a high nephron number provides protection against hypertensive and renal insults. Mean arterial pressure (MAP) and renal function were characterized in male wild-type (WT) and transforming growth factor-β2 heterozygous (Tgfb2(+/-)) mice under basal conditions and following a chronic high-salt diet. Kidneys were collected for unbiased stereological analysis. Baseline MAP and renal function were indistinguishable between genotypes. The chronic high-salt diet (5% NaCl for 4 wk followed by 8% NaCl for 4 wk) led to similar step-wise increases in urine volume, Na(+) excretion, and albuminuria in the genotypes. The 5% NaCl diet induced modest and similar increases in MAP (3.5 ± 1.6 and 3.4 ± 0.8 mmHg in WT and Tgfb2(+/-), respectively). After the step up to the 8% NaCl diet, MAP increased further in WT (+15.9 ± 5.1 mmHg), but not Tgfb2(+/-) (-0.1 ± 1.0 mmHg), mice. Nephron number was 30% greater in Tgfb2(+/-) than WT mice and was not affected by the chronic high-salt diet. Mean glomerular volume was lower in Tgfb2(+/-) than WT mice, and the chronic high-salt diet induced significant glomerular hypertrophy. In a separate cohort of mice, an acute, 7-day, 8% NaCl diet induced similar rises in MAP in the genotypes. This is the first study to examine the physiological characteristics of a model of high nephron number, and the findings are consistent with this phenotype providing protection against chronic, but not acute, hypertensive insults.  相似文献   

12.
Both the iron mobilization protein transferrin and iron itself are found predominantly in oligodendrocytes in the brain and consequently have been hypothesized to have a role in myelination. This study is designed to begin to understand the mechanism(s) that control the expression of transferrin at the gene level in the nervous system using a hypomyelinating murine mutant (jimpy mouse). With this animal model it is possible to determine if transferrin gene expression in the nervous system is dependent on the presence of a mature oligodendrocytic population. The results demonstrate that normally expression of the transferrin gene increases from postnatal day 5 to 22-25 and then levels off in the adult. In the jimpy mouse, the relative amount of transferrin gene expression is less than that of littermate controls at 5 days of age. Furthermore, transferrin gene expression does not increase with age beyond the level observed at postnatal day 5 in the jimpy mouse. It is concluded from this study that the majority of the transferrin mRNA in the mouse brain is expressed by and/or requires the presence of a mature oligodendrocytic population.  相似文献   

13.
14.
Interleukin-10-/- (IL-10) knockout (KO) mice develop an intestinal inflammation that closely mimics human inflammatory bowel disease (IBD) which is accompanied by inflammation-associated bone abnormalities and elevated serum proinflammatory cytokines. The objective of this study was to use the IL-10 KO mouse model to determine whether flaxseed oil (FO) diet, rich in alpha-linolenic acid (ALA), attenuates intestinal inflammation and inflammation-associated bone abnormalities, compared to a corn oil (CO) control diet. Male wild-type (WT) or IL-10 KO mice were fed a 10% CO or 10% FO diet from weaning (postnatal day 28) for 9 weeks. At necropsy, serum, intestine, femurs and lumbar vertebrae were collected and analyzed. IL-10 KO mice fed CO had lower femur bone mineral content (BMC; P<.001), bone mineral density (BMD; P<.001), peak load (P=.033) and lumbar vertebrae BMD (P=.02) compared to WT mice fed either diet. Flaxseed oil had a modest, favorable effect on IL-10 KO mice as femur BMC, BMD and peak load were similar to WT mice fed CO or FO. In addition, lumbar vertebra BMD was similar among IL-10 KO mice fed FO and WT mice fed CO or FO. The fact that FO attenuated serum tumor necrosis factor-alpha (TNF-alpha) among IL-10 KO mice suggests that the positive effects of FO on femur BMC, BMD, peak load and vertebral BMD in IL-10 KO mice may have been partly mediated by changes in serum TNF-alpha. In conclusion, these findings suggest that a dietary level of ALA attainable from a 10% flaxseed oil diet results in modest improvements in some bone outcomes but does not attenuate intestinal inflammation that is characteristic of IL-10 KO mice.  相似文献   

15.
A new method for specifically staining the iron atoms present in transferrin and lactoferrin after polyacrylamide gel electrophoresis and isoelectric focusing is described. The stain, 3-(2-pyridyl)-5,6-bis(2-(5-furylsulfonic acid))-1,2,4-triazine, disodium salt, or Ferene S, will detect transferrin in 5 microliters of human serum, lactoferrin in 10 microliters of human whey, and 10 micrograms of purified primate (Macaca fascicularis) transferrin. This method of staining is very rapid as the serum transferrin bands can be seen within 5 to 10 min of staining.  相似文献   

16.
Several proteins with limited cell type distribution have been shown to bind lactoferrin. However, except in the case of hepatic and intestinal cells, these have not been definitively identified and characterized. Here we report that the multifunctional glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) functions as a novel receptor for lactoferrin (Lf) in macrophages. GAPDH is a well-known moonlighting protein, and previous work from our laboratory has indicated its localization on macrophage cell surfaces, wherein it functions as a transferrin (Tf) receptor. The K(D) value for GAPDH-lactoferrin interaction was determined to be 43.8 nmol/L. Utilizing co-immunoprecipitation, immunoflorescence, and immunogold labelling electron microscopy we could demonstrate the trafficking of lactoferrin to the endosomal compartment along with GAPDH. We also found that upon iron depletion the binding of lactoferrin to macrophage cell surface is enhanced. This correlated with an increased expression of surface GAPDH, while other known lactoferrin receptors CD14 and lipoprotein receptor-related protein (LRP) were found to remain unaltered in expression levels. This suggests that upon iron depletion, cells prefer to use GAPDH to acquire lactoferrin. As GAPDH is an ubiquitously expressed molecule, its function as a receptor for lactoferrin may not be limited to macrophages.  相似文献   

17.
Camel lactoferrin is the first protein from the transferrin superfamily that has been found to display the characteristic functions of iron binding and release of lactoferrin as well as transferrin simultaneously. It was remarkable to observe a wide pH demarcation in the release of iron from two lobes. It loses 50 % iron at pH 6.5 and the remaining 50 % iron is released only at pH values between 4.0 and 2.0. Furthermore, proteolytically generated N and C-lobes of camel lactoferrin showed that the C-lobe lost iron at pH 6.5, while the N-lobe lost it only at pH less than 4.0. In order to establish the structural basis of this striking observation, the purified camel apolactoferrin was crystallized. The crystals belong to monoclinic space group C2 with unit cell dimensions a=175.8 A, b=80.9 A, c=56.4 A, beta=92.4 degrees and Z=4. The structure has been determined by the molecular replacement method and refined to an R-factor of 0.198 (R-free=0.268) using all the data in the resolution range of 20.0-2.6 A. The overall structure of camel apolactoferrin folds into two lobes which contain four distinct domains. Both lobes adopt open conformations indicating wide distances between the iron binding residues in the native iron-free form of lactoferrin. The dispositions of various residues of the iron binding pocket of the N-lobe of camel apolactoferrin are similar to those of the N-lobe in human apolactoferrin, while the corresponding residues in the C-lobe show a striking similarity with those in the C-lobes of duck and hen apo-ovotransferrins. These observations indicate that the N-lobe of camel apolactoferrin is structurally very similar to the N-lobe of human apolactoferrin and the structure of the C-lobe of camel apolactoferrin matches closely with those of the hen and duck apo-ovotransferrins. These observations suggest that the iron binding and releasing behaviour of the N-lobe of camel lactoferrin is similar to that of the N-lobe of human lactoferrin, whereas that of the C-lobe resembles those of the C-lobes of duck and hen apo-ovotransferrins. Hence, it correlates with the observation of the N-lobe of camel lactoferrin losing iron at a low pH (4.0-2.0) as in other lactoferrins. On the other hand, the C-lobe of camel lactoferrin loses iron at higher pH (7.0-6.0) like transferrins suggesting its functional similarity to that of transferrins. Thus, camel lactoferrin can be termed as half lactoferrin and half transferrin.  相似文献   

18.
The expression of human transferrin and lactoferrin binding activity in Haemophilus influenzae, detected by a binding assay using human transferrin or lactoferrin conjugated to peroxidase, was regulated by the level of available iron in the medium. Transferrin binding activity was present in all H. influenzae isolates tested but not detected in other Haemophilus species or in species of Pasteurella or Actinobacillus. Lactoferrin binding activity was only detected in 1/15 H. influenzae isolates tested. The transferrin and lactoferrin receptors were shown to be specific for the respective human proteins by means of a competition binding assay. Competition binding assays also showed that iron-loaded transferrin was more effective at blocking the transferrin receptor than apotransferrin, but no differences in receptor blocking were observed between iron-loaded lactoferrin and apolactoferrin.  相似文献   

19.
Nicotinamide mononucleotide adenylyl transferases (NMNATs) are essential neuronal maintenance factors postulated to preserve neuronal function and protect against axonal degeneration in various neurodegenerative disease states. We used in vitro and in vivo approaches to assess the impact of NMNAT2 reduction on cellular and physiological functions induced by treatment with a vinca alkaloid (vincristine) and a taxane-based (paclitaxel) chemotherapeutic agent. NMNAT2 null (NMNAT2-/-) mutant mice die at birth and cannot be used to probe functions of NMNAT2 in adult animals. Nonetheless, primary cortical cultures derived from NMNAT2-/- embryos showed reduced cell viability in response to either vincristine or paclitaxel treatment whereas those derived from NMNAT2 heterozygous (NMNAT2+/-) mice were preferentially sensitive to vincristine-induced degeneration. Adult NMNAT2+/- mice, which survive to adulthood, exhibited a 50% reduction of NMNAT2 protein levels in dorsal root ganglia relative to wildtype (WT) mice with no change in levels of other NMNAT isoforms (NMNAT1 or NMNAT3), NMNAT enzyme activity (i.e. NAD/NADH levels) or microtubule associated protein-2 (MAP2) or neurofilament protein levels. We therefore compared the impact of NMNAT2 knockdown on the development and maintenance of chemotherapy-induced peripheral neuropathy induced by vincristine and paclitaxel treatment using NMNAT2+/- and WT mice. NMNAT2+/- did not differ from WT mice in either the development or maintenance of either mechanical or cold allodynia induced by either vincristine or paclitaxel treatment. Intradermal injection of capsaicin, the pungent ingredient in hot chili peppers, produced equivalent hypersensitivity in NMNAT2+/- and WT mice receiving vehicle in lieu of paclitaxel. Capsaicin-evoked hypersensitivity was enhanced by prior paclitaxel treatment but did not differ in either NMNAT2+/- or WT mice. Thus, capsaicin failed to unmask differences in nociceptive behaviors in either paclitaxel-treated or paclitaxel-untreated NMNAT2+/- and WT mice. Moreover, no differences in motor behavior were detected between genotypes in the rotarod test. Our studies do not preclude the possibility that complete knockout of NMNAT2 in a conditional knockout animal could unmask a role for NMNAT2 in protection against detrimental effects of chemotherapeutic treatment.  相似文献   

20.
GABA has been proposed to inhibit insulin secretion through GABAB receptors (GABABRs) in pancreatic beta-cells. We investigated whether GABABRs participated in the regulation of glucose homeostasis in vivo. The animals used in this study were adult male and female BALB/C mice, mice deficient in the GABAB1 subunit of the GABABR (GABAB(-/-)), and wild types (WT). Blood glucose was measured under fasting/fed conditions and in glucose tolerance tests (GTTs) with a Lifescan Glucose meter, and serum insulin was measured by ELISA. Pancreatic insulin content and islet insulin were released by RIA. Western blots for the GABAB1 subunit in islet membranes and immunohistochemistry for insulin and GABAB1 were performed in both genotypes. BALB/C mice preinjected with Baclofen (GABABR agonist, 7.5 mg/kg ip) presented impaired GTTs and decreased insulin secretion compared with saline-preinjected controls. GABAB(-/-) mice showed fasting and fed glucose levels similar to WT. GABAB(-/-) mice showed improved GTTs at moderate glucose overloads (2 g/kg). Baclofen pretreatment did not modify GTTs in GABAB(-/-) mice, whereas it impaired normal glycemia reinstatement in WT. Baclofen inhibited glucose-stimulated insulin secretion in WT isolated islets but was without effect in GABAB(-/-) islets. In GABAB(-/-) males, pancreatic insulin content was increased, basal and glucose-stimulated insulin secretion were augmented, and impaired insulin tolerance test and increased homeostatic model assessment of insulin resistance index were determined. Immunohistochemistry for insulin demonstrated an increase of very large islets in GABAB(-/-) males. Results demonstrate that GABABRs are involved in the regulation of glucose homeostasis in vivo and that the constitutive absence of GABABRs induces alterations in pancreatic histology, physiology, and insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号