首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamine-mischargeable tRNA produced by sodium bisulfite-treated Escherichia coli tRNA-Trp was isolated by dihydroxyboryl-cellulose affinity column chromatography. This tRNA was shown to have dual specificity tryptophan and glutamine, and, when charged with either amino acid, bound to ribosomes in response to the non-sense codon UAG but not in response to the tryptophan codon UGG. The results were consistent with the reported properties of Su+7 tRNA. The bisulfite-treated tRNA-Trp migrated as two bands during polyacrylamide gel electrophoresis. The faster moving band (band I) coincided with that of untreated tRNA-Trp. The slower moving band (band II) coincided with the glutamine-chargeable tRNA-Trp. Su+7 tRNA behaved like band II tRNA upon gel electrophoresis. Nucleotide sequence analysis showed that a cytidine-uridine transition occurred at the 1st or the 2n position of the anitcodon of band II tRNA. Band I and band II tRNAs differed from each other in their thermal melting profiles. It is suggested that the single base change in the anticodon is responsible for the altered conformation of band II tRNA.  相似文献   

2.
3.
4.
In this work we show that the wild-type (su?7) progenitor of the recessivelethal suppressors of UAG (su+7(UAG)) and of UAA/G (su+7(UAA/G)) is the structural gene for transfer RNATrp, the adaptor for translating the codon UGG. The su+7(UAG) suppressor form of the tRNA has a C for U substitution in the middle base of the anticodon; in the su+7(UAA/G) suppressor tRNA both C residues of the anticodon are replaced by U. Our data establish that the mutational change altering the tRNATrp to a UAG suppressor is accompanied by a loss of tryptophan-accepting specificity and the acquisition of glutamine-acceptor activity.  相似文献   

5.
Escherichia coli has only a single copy of a gene for tRNA6Leu (Y. Komine et al., J. Mol. Biol. 212:579–598, 1990). The anticodon of this tRNA is CAA (the wobble position C is modified to O2-methylcytidine), and it recognizes the codon UUG. Since UUG is also recognized by tRNA4Leu, which has UAA (the wobble position U is modified to 5-carboxymethylaminomethyl-O2-methyluridine) as its anticodon, tRNA6Leu is not essential for protein synthesis. The BT63 strain has a mutation in the anticodon of tRNA6Leu with a change from CAA to CUA, which results in the amber suppressor activity of this strain (supP, Su+6). We isolated 18 temperature-sensitive (ts) mutants of the BT63 strain whose temperature sensitivity was complemented by introduction of the wild-type gene for tRNA6Leu. These tRNA6Leu-requiring mutants were classified into two groups. The 10 group I mutants had a mutation in the miaA gene, whose product is involved in a modification of tRNAs that stabilizes codon-anticodon interactions. Overexpression of the gene for tRNA4Leu restored the growth of group I mutants at 42°C. Replacement of the CUG codon with UUG reduced the efficiency of translation in group I mutants. These results suggest that unmodified tRNA4Leu poorly recognizes the UUG codon at 42°C and that the wild-type tRNA6Leu is required for translation in order to maintain cell viability. The mutations in the six group II mutants were complemented by introduction of the gidA gene, which may be involved in cell division. The reduced efficiency of translation caused by replacement of the CUG codon with UUG was also observed in group II mutants. The mechanism of requirement for tRNA6Leu remains to be investigated.In the universal genetic code, 61 sense codons correspond to 20 amino acids, and the various tRNA species mediate the flow of information from the genetic code to amino acid sequences. Since codon-anticodon interactions permit wobble pairing at the third position, 32 tRNAs, including tRNAfMet, should theoretically be sufficient for a complete translation system. Although some organisms have fewer tRNAs (1), most have abundant tRNA species and multiple copies of major tRNAs. For example, Escherichia coli has 86 genes for tRNA (79 genes identified in reference 14, 6 new ones reported in reference 3, and one fMet tRNA at positions 2945406 to 2945482) that encode 46 different amino acid acceptor species. Although abundant genes for tRNAs are probably required for efficient translation, the significance of the apparently nonessential tRNAs has not been examined.E. coli has five isoaccepting species of tRNALeu. According to the wobble rule, tRNA1Leu recognizes only the CUG codon. The CUG codon is also recognized by tRNA3Leu (tRNA2Leu) and thus tRNA1Leu may not be essential for protein synthesis. Similarly, tRNA6Leu is supposed to recognize only the UUG codon, but tRNA4Leu can recognize both UUA and UUG codons. Thus, tRNA6Leu appears to be dispensable. The existence of an amber suppressor mutation of tRNA6Leu (supP, Su+6) supports this possibility. tRNA6Leu is encoded by a single-copy gene, leuX (supP), and Su+6 has a mutation in the anticodon, which suggests loss of the ability to recognize UUG (26). Why are so many species of tRNALeu required? Holmes et al. (12) examined the utilization of the isoaccepting species of tRNALeu in protein synthesis and showed that utilization differs depending on the growth medium; in minimal medium, isoacceptors tRNA2Leu (cited as tRNA3Leu; see Materials and Methods) and tRNA4Leu are the predominant species that are found bound to ribosomes, but an increased relative level of tRNA1Leu is found bound to ribosomes in rich medium. The existence of tRNA6Leu is puzzling. This isoaccepting tRNA accounts for approximately 10% of the tRNALeu in total-cell extracts. However, little if any tRNA6Leu is found on ribosomes in vivo, and it is also only weakly active in protein synthesis in vitro with mRNA from E. coli (12). It thus appears that tRNA6Leu is only minimally involved in protein synthesis in E. coli.To investigate the role of tRNA6Leu in E. coli, we attempted to isolate tRNA6Leu-requiring mutants from an Su+6 strain. These mutants required wild-type tRNA6Leu for survival at a nonpermissive temperature. We report here the isolation and the characterization of these mutants.  相似文献   

6.
Summary The gene of the amber suppressor tRNA derived from tRNATry, Su+7, has been inserted into a col E1-derived vehicle by selecting for its expression. Despite selection for a suppressor phenotype, and the plasmid's stable presence at ca. 180 copies/cell during balanced growth, the level of mature tRNA maintained by the gene is less than that of the normal haploid tRNATry locus in the bacterial chromosome. Transfer RNA genes, both the plasmid Su+7 gene and chromosomal tRNA's are expressed during inhibition of protein synthesis. During, e.g. chloramphenicol inhibition, Su-7 and Su+7 tRNA can be elevated similarly in the plasmid-containing cell; Su+7 reaches levels of molecules/cell which ordinarily characterize a major tRNA.The recombinant plasmid, but not the cloning vehicle alone, has a more general effect on tRNA levels; accumulation of tRNA from three chromosomal tRNA loci including tRNATry, continues during extensive isoleucine limitation. The plasmid therefore contains a locus which probably alters the relaxedstringent circuit, whose effects is disseminated to at least 3 widely separated loci.  相似文献   

7.
Breaking the degeneracy of the genetic code via sense codon reassignment has emerged as a way to incorporate multiple copies of multiple non-canonical amino acids into a protein of interest. Here, we report the modification of a normally orthogonal tRNA by a host enzyme and show that this adventitious modification has a direct impact on the activity of the orthogonal tRNA in translation. We observed nearly equal decoding of both histidine codons, CAU and CAC, by an engineered orthogonal M. jannaschii tRNA with an AUG anticodon: tRNAOpt. We suspected a modification of the tRNAOptAUG anticodon was responsible for the anomalous lack of codon discrimination and demonstrate that adenosine 34 of tRNAOptAUG is converted to inosine. We identified tRNAOptAUG anticodon loop variants that increase reassignment of the histidine CAU codon, decrease incorporation in response to the histidine CAC codon, and improve cell health and growth profiles. Recognizing tRNA modification as both a potential pitfall and avenue of directed alteration will be important as the field of genetic code engineering continues to infiltrate the genetic codes of diverse organisms.  相似文献   

8.
Readthrough in vitro of the Qβ coat protein terminator codon UGA has been used as an assay for suppression by UGA-suppressor tRNATrp. When the tRNA is covalently crosslinked between 4-thiouracil(8) and cytosine(13) by irradiation at 334 nm, it is found that UGA suppression by this assay is reduced to the low level characteristic of the wild type tRNATrp. In contrast, crosslinking has little effect on incorporation of tryptophan in response to UGG codons. Thus, incorporation of tryptophan during translation of R17 messenger RNA is unaffected by photochemical crosslinking. Furthermore, dilution experiments using R17 mRNA in which tryptophan incorporation is dependent on precharged suppressor Trp-tRNA show that the crosslinked species competes well with non-irradiated tRNA. These results further emphasize the influence on tRNA-ribosome interactions of the region in tRNA around the dihydrouridine arm, where the mutation, in the suppressor is found and the photochemical crosslink is introduced.  相似文献   

9.
Yu H  Li Q 《PloS one》2011,6(1):e16147

Background

Animal mitochondrial genomes typically encode one tRNA for each synonymous codon family, so that each tRNA anticodon essentially has to wobble to recognize two or four synonymous codons. Several factors have been hypothesized to determine the nucleotide at the wobble site of a tRNA anticodon in mitochondrial genomes, such as the codon-anticodon adaptation hypothesis, the wobble versatility hypothesis, the translation initiation and elongation conflict hypothesis, and the wobble cost hypothesis.

Principal Findings

In this study, we analyzed codon usage and tRNA anticodon wobble sites of 29 marine bivalve mitochondrial genomes to evaluate features of the wobble nucleotides in tRNA anticodons. The strand-specific mutation bias favors G and T on the H strand in all the 29 marine bivalve mitochondrial genomes. A bias favoring G and T is also visible in the third codon positions of protein-coding genes and the wobble sites of anticodons, rejecting that codon usage bias drives the wobble sites of tRNA anticodons or tRNA anticodon bias drives the evolution of codon usage. Almost all codon families (98.9%) from marine bivalve mitogenomes support the wobble versatility hypothesis. There are a few interesting exceptions involving tRNATrp with an anticodon CCA fixed in Pectinoida species, tRNASer with a GCU anticodon fixed in Mytiloida mitogenomes, and the uniform anticodon CAU of tRNAMet translating the AUR codon family.

Conclusions/Significance

These results demonstrate that most of the nucleotides at the wobble sites of tRNA anticodons in marine bivalve mitogenomes are determined by wobble versatility. Other factors such as the translation initiation and elongation conflict, and the cost of wobble translation may contribute to the determination of the wobble nucleotide in tRNA anticodons. The finding presented here provides valuable insights into the previous hypotheses of the wobble nucleotide in tRNA anticodons by adding some new evidence.  相似文献   

10.
A bovine liver serine tRNA with a variety of unusual features has been sequenced and characterized. This tRNA is aminoacylated with serine, although it has a tryptophan anticodon CmCA. In ribosome binding assays, this tRNA (tRNACmCASer) binds to the termination codon UGA and shows little or no binding in response to a variety of other codons including those for tryptophan and serine. The unusual codon recognition properties of this molecule were confirmed in an in vitro assay where this tRNA suppressed UGA termination. This is the first naturally occurring eucaryotic suppressor tRNA to be so characterized. Other unusual features, possibly related to the ability of this tRNA to read UGA, are the presence of two extra nucleotides, compared to all other tRNAs, between the universal residues U at position 8 and A at position 14 and the presence of an extra unpaired nucleotide within the double-stranded loop IV stem. This tRNA is also the largest eucaryotic tRNA sequenced to date (90 nucleotides). Despite its size, however, it contains only six modified residues. tRNACmCASer shows extremely low homology to other mammalian serine (47–52% homology) or tryptophan (49% homology) tRNAs.  相似文献   

11.
Translation of the UGA triplet in vitro by tryptophan transfer RNA's   总被引:32,自引:0,他引:32  
Tryptophan transfer RNA from the UGA-suppressing strain of Escherichia coli CAJ64 was purified and assayed for suppressor activity in vitro in two ways: by translation of the bacteriophage T4 lysozyme messenger RNA bearing a UGA mutation, and by translation of poly(U-G-A). Purified tRNATrp, and no other fraction, stimulates lysozyme synthesis 30-fold above the level seen when comparable amounts of tryptophan tRNA from the non-suppressing strain, CA244, were added; it also translates poly(U-G-A) as polytryptophan more efficiently than the su tRNA. Tryptophan tRNA from the non-suppressing strain is active in the assays but far less so than CAJ64 tRNATrp, and this is consistent with the leakiness of su strains. Since the nucleotide sequences of these tryptophan tRNA's are known (Hirsh, 1971), it is concluded that tRNA with a CCA anticodon recognizes the UGA triplet and this recognition is improved by a nucleotide change elsewhere in the molecule.  相似文献   

12.
13.
14.
Most archaea and bacteria use a modified C in the anticodon wobble position of isoleucine tRNA to base pair with A but not with G of the mRNA. This allows the tRNA to read the isoleucine codon AUA without also reading the methionine codon AUG. To understand why a modified C, and not U or modified U, is used to base pair with A, we mutated the C34 in the anticodon of Haloarcula marismortui isoleucine tRNA (tRNA2Ile) to U, expressed the mutant tRNA in Haloferax volcanii, and purified and analyzed the tRNA. Ribosome binding experiments show that although the wild-type tRNA2Ile binds exclusively to the isoleucine codon AUA, the mutant tRNA binds not only to AUA but also to AUU, another isoleucine codon, and to AUG, a methionine codon. The G34 to U mutant in the anticodon of another H. marismortui isoleucine tRNA species showed similar codon binding properties. Binding of the mutant tRNA to AUG could lead to misreading of the AUG codon and insertion of isoleucine in place of methionine. This result would explain why most archaea and bacteria do not normally use U or a modified U in the anticodon wobble position of isoleucine tRNA for reading the codon AUA. Biochemical and mass spectrometric analyses of the mutant tRNAs have led to the discovery of a new modified nucleoside, 5-cyanomethyl U in the anticodon wobble position of the mutant tRNAs. 5-Cyanomethyl U is present in total tRNAs from euryarchaea but not in crenarchaea, eubacteria, or eukaryotes.  相似文献   

15.
In vivo processing of an intron-containing archael tRNA   总被引:1,自引:0,他引:1  
In vitro studies on the processing of halobacterial tRNA introns have led to the proposal that archaeal and eukaryotic tRNA intron endonucleases have distinctly different requirements for the recognition of pre-tRNAs. Using a Haloferax volcanii in vivo expression vector we have examined the in vivo processing of modified forms of the halobacterial intron-containing tRNATrp gene. As observed in vitro, changes in the exon–intron boundary structure of this pre-tRNA block processing. Intron sequences, other than those at the exon–intron boundaries, are not essential for processing in vivo. We also show that conversion of the tryptophan anticodon to an opal suppressor anticodon is tolerated when the exon-intron boundary structure is maintained.  相似文献   

16.
Summary Using the pMB9 recombinant plasmid pMY3, which contains a functional gene for the tRNATry mutant Su+7, the EcoRI fragment containing the tRNATry gene is mapped and oriented with respect to the HindIII site in the tetracycline region of pMB9. Complete HpaII and HaeIII maps of the EcoRI fragment are derived. The Su+7 tRNA gene is placed by hybridization to these fragments, and the tRNA gene is oriented by using the restriction sites for HinfI, TaqI, and HpaII in the tRNA gene itself. A tRNAAsp gene is shown to lie adjacent to tRNATry, and is also placed and oriented in the map. The RI fragment itself originates in a locus adjacent to, and transcribed in the same direction as, the ribosomal RNA genes of 80d3.The implications of the structure of the cloned DNA for its previously measured regulatory and tRNA gene activities are discussed. In particular, the effect on the regulation of RNA synthesis is attributable to an E. coli DNA sequence, but cannot be due to the presence of a normal tRNA promoter on the plasmid.Abbreviations MD megadaltons; expressions of the form HpaII:0.075 refer to a fragment generated by the indicated restriction nuclease, having the indicated molecular weight, in MD  相似文献   

17.
The anticodon sequence is a major recognition element for most aminoacyl-tRNA synthetases. We investigated the in vivo effects of changing the anticodon on the aminoacylation specificity in the example of E. coli tRNAPhe. Constructing different anticodon mutants of E. coli tRNAPhe by site-directed mutagenesis, we isolated 22 anticodon mutant tRNAPhe; the anticodons corresponded to 16 amino acids and an opal stop codon. To examine whether the mutant tRNAs had changed their amino acid acceptor specificity in vivo, we tested the viability of E. coli strains containing these tRNAPhe genes in a medium which permitted tRNA induction. Fourteen mutant tRNA genes did not affect host viability. However, eight mutant tRNA genes were toxic to the host and prevented growth, presumably because the anticodon mutants led to translational errors. Many mutant tRNAs which did not affect host viability were not aminoacylated in vivo. Three mutant tRNAs containing anticodon sequences corresponding to lysine (UUU), methionine (CAU) and threonine (UGU) were charged with the amino acid corresponding to their anticodon, but not with phenylalanine. These three tRNAs and tRNAPhe are located in the same cluster in a sequence similarity dendrogram of total E. coli tRNAs. The results support the idea that such tRNAs arising from in vivo evolution are derived by anticodon change from the same ancestor tRNA.  相似文献   

18.
19.
The major species of valine specific tRNA was isolated from human placenta, degraded to oligonucleotides, and shown to have the nucleotide sequence pG-U-U-U-C-C-G-U-A-G-U-G-U?-A-G-D-G-G-D-D-A-U-C-A-C-m2G-U?-U-C-G-C-C-U-(I or C)-A-C-A-C-G-C-G-A-A-A-G-m7G-D-m5C-m5C-C-C-G-G-U-U?-C-G-m1A-A-A-C-C-G-G-G-C-G-G-A-A-A-C-A-C-C-AOH. This human placental tRNAVal differs from the major species of mouse myeloma tRNAVal only in that it contains either I or C in the wobble position of the anticodon, and totally lacks 2′-O-methylcytosine and 5-methylcytosine in the anticodon loop.  相似文献   

20.
Abstract

Fluorophore of proflavine was introduced onto the 3′-terminal ribose moiety of yeast tRNAPhe. The distance between the fluorophore and the fluorescent Y base in the anticodon of yeast tRNAPhe was measured by a singlet-singlet energy transfer. Conformational changes of tRNAPhe with binding of tRNAGlu 2, which has the anticodon UUC complementary to the anticodon GAA of tRNAPhe, were investigated. The distance obtained at the ionic strength of 100 mM K+ and 10 mM Mg2+ is very close to the distance from x-ray diffraction, while the distance obtained in the presence of tRNAGlu 2 is significantly smaller. Further, using a fluorescent probe of 4-bromomethl-7-methoxycoumarin introduced onto pseudouridine residue Ψ55 in the TΨC loop of tRNAPhe, Stern-Volmer quenching experiments for the probe with or without added tRNAGlu 2were carried out. The results showed greater access of the probe to the quencher with added tRNAGlu 2. These results suggest that both arms of the L-shaped tRNA structure tend to bend inside with binding of tRNAGlu 2 and some structural collapse occurs at the corner of the L-shaped structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号