首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Testosterone, seven of its potential precursors, three of its metabolites and estradiol were analyzed in testes from rats given ethanol for 23 days in a nutritionally adequate liquid diet. The results were compared to those obtained with pair-fed control rats. The concentrations of pregnenolone, progesterone, 17-hydroxyprogesterone, androstenedione and testosterone were markedly lowered in four of the five rats given ethanol. The concentrations of the other 3 beta-hydroxy-delta 5 steroids and estradiol were unchanged, resulting in significantly increased ratios between 17-hydroxypregnenolone and 17-hydroxyprogesterone (P less than 0.025) and between androstenediol and testosterone (P less than 0.025) in the ethanol-treated rats. The results indicate that chronic ethanol administration reduces formation of testosterone by affecting a step prior to pregnenolone. There may also be an effect on the conversion of some 3 beta-hydroxy-delta 5 to the corresponding 3-oxo-delta 4 steroids. The levels of testosterone and three other steroids in testes of rats given the liquid diet were significantly lower than those in testes of animals fed a standard rat chow. This indicates a dietary influence on testicular steroid concentrations.  相似文献   

2.
Sertoli cell-enriched tubules isolated from rats which had been treated with 1,4-dimethyl sulfonyloxybutane were incubated with either [14C] progesterone or [14C] testosterone for 2 hours. Tubules of normal rats and fragments of Sertoli cell-enriched testes were incubated under the same conditions. Sertoli cell-enriched tubules converted progesterone to 20α-dihydroprogesterone, 17α-hydroxyprogesterone, androstenedione and testosterone. The major metabolite was 20α-dihydroprogesterone. The percentage conversion of progesterone into testosterone corresponded to a production of 10–20 ng testosterone. Sertoli cell-enriched tubules converted testosterone to dihydrotestosterone, androstenedione, 3α-androstanediol and 3β-androstanediol. Under our experimental conditions, dihydrotestosterone was the major 5α-reduced metabolite. Normal tubules converted progesterone and testosterone to the same metabolites as Sertoli cell-enriched tubules. Fragments of Sertoli cell-enriched testes were much more active than isolated tubules in metabolizing progesterone. They produced the same amounts of 5α-reduced metabolites of testosterone.  相似文献   

3.
《Insect Biochemistry》1988,18(1):93-99
o-Pentafluorobenzyloxime (OPFB)-heptafluorobutyrylester (HFB)-derivatives were prepared from extracts of haemolymph from last instar larvae of Leptinotarsa decemlineata and subjected to negative ion chemical ionization capillary gas chromatography-mass spectrometry (NCI/GC-MS). Ten C21 and C19 steroids could be positively identified: testosterone, dehydroepiandrosterone, 5α-dihydrotestosterone, 11-ketotestosterone, 11β-hydroxytestosterone, androstenedione, progesterone, 17α-hydroxyprogesterone, pregnenolone and 17α,20β-dihydroprogesterone. No estrogens could be found in these larvae. Radioimmunoassay of chromatographed extracts of haemolymph taken from the larval and pupal stages showed fluctuations in testosterone (and 5α-dihydrotestosterone) titer.  相似文献   

4.
Sertoli cells from 10 day old rats convert androstenedione to testosterone and 5α-androstane-3α,17β-diol, testosterone to 17β-hydroxy-5α-androstan-3-one and 5α-androstane-3α,17β-diol, and 17β-hydroxy-5α-androstan-3-one to 5α-andro-stane-3α,17β-diol after 72 hours in vitro. Conversions of androstenedione to testosterone and 5α-androstane-3α,17β-diol, and testosterone to 5α-androstane-3α,17β-diol were 2 to 3 times greater in FSH treated cultures. Steroid conversion was not stimulated significantly by LH or TSH. The results are interpreted as evidence that in young rats Sertoli steroid metabolism is stimulated by FSH, that Sertoli cells are an androgen target and that FSH may induce or facilitate Sertoli androgen responsiveness.  相似文献   

5.
M B Hodgins  J B Hay 《Steroids》1973,21(2):307-322
The metabolism of testosterone, androstenedione and dehydroepiandrosterone in the rat preputial gland has been studied. A high activity of 5α-reductase is present as shown by the formation of 17β hydroxy-5α-androstan-3-one and 5α-androstan-3, 17-dione as the major products from testosterone and androstenedione respectively. Other enzyme activities are present including 17β-hydroxy steroid dehydrogenase, but the amounts of testosterone and 17β-hydroxy-5α-androstan-3-one formed from androstenedione and dehydroepiandrosterone are low. The main product of dehydroepiandrosterone metabolism was androstenedione indicating a high level of 3β-hydroxy steroid dehydrogenase 4-5 isomerase activity. The metabolism was compared with that in rat skin where it was found that the extent of metabolism was much less. The possible significance of the various products formed and of differences between skin and preputial gland metabolism is discussed. Some differences were noted between the metabolism of androgens by rat skin and preputial gland and the metabolism of androgens by human skin.  相似文献   

6.
《Insect Biochemistry》1984,14(2):199-208
O-Pentafluorobenzyloxime (OPFB)-heptafluorobutyrylester (HFB) derivatives and OPFB-O-methyloxime (MO)-trimethylsilylether (TMS) derivatives of non-ecdysteroid steroids were prepared from haemolymph extracts of last instar larvae of the fleshfly Sarcophaga bullata. Using a negative ion chemical ionization capillary gas chromatography-mass spectrometry (NCI/GC-MS) technique the following steroids could be identified: progesterone, testosterone, 5α-androstane-3β,17β-diol, 5β-androstane-3α,17β-diol, androst-5-ene-3β,17β-diol, androstenedione, 5α-dihydrotestosterone, 11-ketotestosterone, 11β-hydroxytestosterone, 17α-hydroxyprogesterone, 17α-hydroxyprogesterone, 17α,20β-dihydroxyprogesterone. Although the technique is very sensitive, estrogens could not be detected. These results suggest an active metabolism of progesterone and testosterone.  相似文献   

7.
In young (4-week-old) male and female spontaneously hypertensive (SH) rats, ethanol metabolic rate in vivo and hepatic alcohol dehydrogenase activity in vitro are high and not different in the two sexes. In males, ethanol metabolic rate falls markedly between 4 and 10 weeks of age, which coincides with the time of development of sexual maturity in the rat. Alcohol dehydrogenase activity is also markedly diminished in the male SH rat and correlates well with the changes in ethanol metabolism. There is virtually no influence of age on ethanol metabolic rate and alcohol dehydrogenase activity in the female SH rat. Castration of male SH rats prevents the marked decrease in ethanol metabolic rate and alcohol dehydrogenase activity, whereas ovariectomy has no effect on these parameters in female SH rats. Chronic administration of testosterone to castrated male SH rats and to female SH rats decreases ethanol metabolic rate and alcohol dehydrogenase activity to values similar to those found in mature males. Chronic administration of oestradiol-17β to male SH rats results in marked stimulation of ethanol metabolic rate and alcohol dehydrogenase activity to values similar to those found in female SH rats. Chronic administration of ethanol to male SH rats from 4 to 11 weeks of age prevents the marked age-dependent decreases in ethanol metabolic rate and alcohol dehydrogenase activity, but has virtually no effect in castrated rats. In the intoxicated chronically ethanol-fed male SH rats, serum testosterone concentrations are significantly depressed. In vitro, testosterone has no effect on hepatic alcohol dehydrogenase activity of young male and female SH rats. In conclusion, in the male SH rat, ethanol metabolic rate appears to be limited by alcohol dehydrogenase activity and is modulated by testosterone. Testosterone has an inhibitory effect and oestradiol has a testosterone-dependent stimulatory effect on alcohol dehydrogenase activity and ethanol metabolic rate in these animals.  相似文献   

8.
The concentrations of metabolites in the pregnenolone → testosterone pathway were determined in freezestopped testes in control rats and during ethanol intoxication (2 h after injection of 1.5 g ethanolkg body wt). Ethanol lowered the mean testicular concentrations of testosterone (by 63–74%), androstenedione (49–81%), 17-hydroxyprogesterone (60–76%), progesterone (29–67%) and pregnenolone (12–25%). 4-Methylpyrazole had no effect on the ethanol-induced changes. The present results reveal no inhibition at the 17-hydroxyprogesterone → androstenedione → testosterone steps, but do not exclude inhibition before the step yielding pregnenolone and at the pregnenolone → progesterone → 17-hydroxyprogesterone steps.  相似文献   

9.
Studies were undertaken to investigate testicular steroidogenesis in the Rhesus monkey Macaca mulatta. Testicular fragments (50 mg) were incubated for 3 hr with pregnenolone-7-3H or with progesterone-7-3H. The major metabolite of pregnenolone was progesterone (70.1%), with a lesser conversion to 17-hydroxyprogesterone (1.6%), androstenedione (3.3%), and testosterone (7.2%). The delta-5 intermediates 17-hydroxypregnenolone (4.6%) and dehydroepiandrosterone (8.6%) were also identified in the pregnenolone incubates. A majority of the progesterone substrate was not metabolized by the testicular fragments (80.1%), while some conversion to 17-hydroxyprogesterone (3.4%), androstenedione (4.8%), and testosterone (11.7%) occurred in the incubates. These results suggest that testicular fragments from the Rhesus monkey may convert pregnenolone to testosterone through both the delta-4 and the delta-5 pathways.  相似文献   

10.
Studies on the role of cytochrome P-450 in mouse, rat, and chick testis microsomes showed that this CO-binding hemoprotein is involved in the activity of the 17α-hydroxylase. A 70–80% inhibition by CO of the 17α-hydroxylase activity was detected in rat and chick testis microsomes. In the mouse testis, the level of the enzyme activity is ten times greater than that of the rat. This partly explains why an acceleration of NADPH oxidation by progesterone can be observed in mouse but not in rat testis microsomes. In rat testis microsomes, type I binding spectra of cytochrome P-450 was observed with pregnenolone, progesterone, 17-hydroxyprogesterone, androstenedione, and testosterone. The apparent Ks values for progesterone and 17-hydroxyprogesterone were 0.50 and 1.00 μm, respectively.When NADPH is used to measure cytochrome P-450 levels in rat testis microsomes, CO formation resulting from a stimulation in lipid peroxidation by phosphate or Fe2+ was sufficient to bind with 50% of the total amount of cytochrome P-450. Substitution of phosphate by Tris reduced the amount of lipid peroxidation to minimal levels. On a comparable basis, no CO formation was observed in avian testis microsomes.An increase in the testicular levels of cytochrome P-450 resulted upon the administration of HCG and cyclic-AMP to 1-day-old chicks. The lack of stimulation of the cytochrome P-450 levels by progesterone and pregnenolone suggest that the hormonal stimulation of the P-450 levels is not due to substrate induction.  相似文献   

11.
Metabolic routes from progesterone to androstanediol in washed rat testicular microsomes were investigated, with special emphasis on the importance of 4-ene-3-oxosteroids, as well as the effect of a minimal effective dose of human chorionic gonadotropin on these transformations. Incubation of equimolar concentrations of a mixture of [14C]progesterone and 17α-hydroxy[3H]progesterone resulted in a large preference of 17α-hydroxyprogesterone over progesterone as substrate for androstanediol formation. Incubation of [3H]progesterone together with [14C]androstenedione resulted in the inhibition of C-17,20-lyase and in a low 14C/3H ratio in androstanediol, indicating the preference of progesterone over androstenedione as substrate for androstanediol production. When a mixture of 17α-hydroxyl[3H]progesterone and [14C]androstenedione was incubated with the microsomes, a more than 8-fold preference of 17α-hydroxyprogesterone as substrate for androstanediol production was found. The minimal dose of human chorionic gonadotropin stimulated testosterone production but inhibited androstanediol formation and effected, in some instances, a change in the metabolic routes. It is concluded that androstanediol is produced preferentially through 17-hydroxylated C-21 steroids, and also, to a lesser extent, through C-19 steroids.  相似文献   

12.
E. Antila  A. Leikola  S. Tähkä 《Steroids》1984,43(3):315-323
Yolk free blastoderms of chick embryo were incubated 3 or 22 hours with labeled pregnenolone, progesterone, 17-hydroxyprogesterone, dehydro-epiandrosterone, androstenedione, testosterone and estradiol-17β. Metabolites and unconverted substrates were found both in the incubation medium and in the cells. Enzymes responsible for identified conversions were: 17α-hydroxylase, 17-20-desmolase, Δ53β- and 3α-hydroxysteroid dehydrogenase, 17β-hydroxysteroid dehydrogenase and 5α- and 5β-reductase. The results suggest that the steroid metabolizing enzyme activities found may reflect a more general ability of early embryonic cells.  相似文献   

13.
Incubations of [3H]-progesterone with testicular tissue obtained from a new case of male with 17α-hydroxylase deficiency were performed. The per cent conversion to androstenedione and testosterone was virtually absent when compared to that obtained from an identical incubation performed using testicular tissue from a normal male with cryptochordism. The findings provide an in vitro evidence in support of the existence of 17α-hydroxylase testicular defect in this disorder.  相似文献   

14.
Tagawa N  Katagiri M  Kobayashi Y 《Steroids》2006,71(2):165-170
Serum levels of 17-hydroxypregnenolone, dehydroepiandrosterone, 17-hydroxyprogesterone, and androstenedione were measured during the postnatal development of rats 1-14 weeks of age. A significant decrease in the serum levels of these steroids with increasing age was observed, using multiple regression analysis: 17-hydroxypregnenolone (beta= -1.56, S.E.= 0.25, P < 0.00001), dehydroepiandrosterone (beta= -0.43, S.E.= 0.07, P < 0.00001), 17-hydroxyprogesterone (beta= -2.51, S.E.= 0.45, P < 0.00001), and androstenedione (beta= -1.63, S.E.= 0.33, P < 0.00001). A sex-related difference was not found. The observed decline in the serum levels of the steroids was directly proportional to the previously reported decrease in mRNA expression and enzyme activity of cytochrome P450c17 in the rat liver. Yet, despite this decrease to undetectable levels in liver after 7-8 weeks, significant amounts of 17-hydroxypregnenolone, 17-hydroxyprogesterone, dehydroepiandrosterone, and androstenedione were still observed in the rat serum. This may partly be due to the mRNA expression of cytochrome P450c17 in tissues other than the liver, such as the testis and/or duodenum, after 4 weeks of age. Serum levels of pregnenolone, progesterone, and corticosterone in the developing rats were also examined.  相似文献   

15.
To investigate fetal regulation of the endocrine testis during the third trimester of gestation, pregnenolone, progesterone, 17-hydroxyprogesterone, androstenedione, testosterone, FSH and prolactin concentrations were measured in the umbilical circulation of 31–35 preterm (27–37 weeks) and 18–19 fullterm (39–42 weeks) male infants, and postnatally until 5 days of age in 27–39 fullterm male infants. 17-hydroxyprogesterone and prolactin concentrations increased significantly (P < 0.001) between 27–37 weeks of gestation; the other hormones measured were unchanged. The levels of progesterone in preterm infants, and prenenolone, progesterone and 17-hydroxyprogesterone in the cord vein of fullterm infants were significantly (P < 0.001–0.05) higher than those in the cord artery. Androstenedione concentrations were similar in the cord artery and vein, and decreased less than pregnenolone, progesterone and 17-hydroxyprogesterone after birth, reflecting major androstenedione production in the fetus. Testosterone concentrations were higher (P < 0.01–0.05) in the cord artery than in the vein, both in preterm and fullterm infants, showing the main site of testosterone production to be the fetal compartment. Postnatally, testosterone increased clearly from concentrations of 0.25 ± 0.05 (SE) mg/ml in the cord artery and 0.10 ± 0.01 in the cord vein to 0.94 ± 0.14 ng/ml in the peripheral vein on the first postnatal day, and decreased thereafter clearly between 3–5 days. FSH did not change during the first 5 postnatal days. Concentrations of all the other hormones measured decreased significnatly after birth.It is concluded from the cord blood hormone levels of infants born between 27–42 weeks of gestation that: (1) The third trimester of gestation represents a stable phase of endocrine development with relatively small changes in circulating hormone levels; (2) Both the placenta and the fetus seem to be able to produce androstenedione in the perinatal period; and (3) The initial increase in testosterone after birth is indicative of the inhibitory effect of placental steriods on testicular endocrine function during the last trimester of gestation.  相似文献   

16.
We recently reported that the baboon testis converts pregnenolone to testosterone through the delta-4 pathway. The present studies were to determine the metabolism of intermediates of the delta-4 and delta-5 pathway by the baboon testis. Fragments (50 mg) were incubated for 3 hr with 10 muCi of the following tritium-labelled substrates: pregnenolone, progesterone, 17-hydroxypregnenolone, 17-hydroxyprogesterone, dehydroepiandrosterone, androstenedione, or testosterone. Pregnenolone was converted to testosterone primarily through the delta-4 pathway, with accumulation of progesterone, 17-hydroxyprogesterone and 20alpha-dihydroprogesterone as predominant intermediates. Similar results were obtained in progesterone incubations. 17-hydroxyprogesterone was not efficiently metabolized by the fragments, while 17-hydroxypregnenolone and dehydroepiandrosterone were efficiently converted into testosterone and androstenedione. Androstenedione was metabolized primarily to testosterone, while testosterone was not a suitable substrate. Some 5alpha-androstanediol was identified in each incubate. These results suggest that although testosterone is formed from pregnenolone through the delta-4 pathway, the delta-5 intermediates are more suitable substrates for testosterone synthesis in the baboon testis.  相似文献   

17.
Testicular steroidogenic enzymes in the microsomal fraction from immature pigs were investigated for the effects of phospholipids of known structure on androgen and 16-androstene biosynthesis. Untreated (control) microsomes metabolized pregnenolone to 17-hydroxypregnenolone, DHA and small quantities of progesterone, 17-hydroxyprogesterone, androstenedione and testosterone; and to 5,16-androstadien-3 beta-ol (andien-beta) and 4,16-androstadienone (dienone) in the 16-androstene pathway. Phosphatidyl(P)-serine, P-glycerol, P-ethanolamine, P-inositol, P-choline and phosphatidic acid did not significantly alter the 17-hydroxylase/C-17,20 lyase or "andien-beta-synthetase" activities. Thus, the C21 side-chain cleavage reactions appeared not to be dependent upon phospholipids for optimal activity. The conversion of pregnenolone to 4-ene steroids (progesterone, 17-hydroxyprogesterone, androstenedione and testosterone) was inhibited by dilinoleoyl-phosphatidyl-choline, but other phospholipids tested were without effect. On the other hand, the conversion of andien-beta to dienone was inhibited by P-serine, P-inositol and P-cholines with short saturated or long polyunsaturated acyl chains. Therefore, the presence of these phospholipids in pregnenolone incubations had different consequences for 3 beta-hydroxysteroid dehydrogenase-isomerase activities. It is concluded that substrate specific 3 beta-HSD-isomerases exist for androgen and 16-androstene biosynthesis and that phospholipids may play an intrinsic role in their catalytic activity.  相似文献   

18.
This trial explores 1) prenatally androgenized (PNA) rats as a model of polycystic ovary syndrome (PCOS) and 2) reproductive and metabolic effects of cryptotanshinone in PNA ovaries. On days 16-18 of pregnancy, 10 rats were injected with testosterone propionate (PNA mothers) and 10 with sesame oil (control mothers). At age 3 mo, 12 female offspring from each group were randomly assigned to receive saline and 12 cryptotanshinone treatment during 2 wk. Before treatment, compared with the 24 controls, the 24 PNA rats had 1) disrupted estrous cycles, 2) higher 17-hydroxyprogesterone (P = 0.030), androstenedione (P = 0.016), testosterone and insulin (P values = 0.000), and glucose (P = 0.047) levels, and 3) higher areas under the curve (AUC) for glucose (AUC-Glu, P = 0.025) and homeostatic model assessment for insulin resistance (HOMA-IR, P = 0.008). After treatment, compared with vehicle-treated PNA rats, cryptotanshinone-treated PNA rats had 1) improved estrous cycles (P = 0.045), 2) reduced 17-hydroxyprogesterone (P = 0.041), androstenedione (P = 0.038), testosterone (P = 0.003), glucose (P = 0.036), and insulin (P = 0.041) levels, and 3) lower AUC-Glu (P = 0.045) and HOMA-IR (P = 0.024). Western blot showed that cryptotanshinone reversed the altered protein expressions of insulin receptor substrate-1 and -2, phosphatidylinositol 3-kinase p85α, glucose transporter-4, ERK-1, and 17α-hydroxylase within PNA ovaries. We conclude that PNA model rats exhibit reproductive and metabolic phenotypes of human PCOS and that regulation of key molecules in insulin signaling and androgen synthesis within PNA ovaries may explain cryptotanshinone's therapeutic effects.  相似文献   

19.
The following steroids and steroidal alkaloids have been incubated with the blight fungus Phytophthora infestans: androst-4-ene-3,17-dione, cholesterol, cholesteryl acetate, cholesteryl myristate, cholesteryl palmitate,cholesteryl stearate, dehydroisoandrosterone, 6α-hydroxy-androst-4-ene-3,17-dione, 6β-hydroxyandrost-4-ene-3,17-dione, 11α-hydroxyprogesterone, pregnenolone, progesterone, sitosterol, sitosteryl acetate, solanidine, solanine, stigmasterol, stigmasteryl acetate and testosterone. No hydroxylation was observed, but the fungus is able to oxidize alcohol functions at C-3β, C-6α, C-11β and C-17β to carbonyl. In addition, hydrolysis of acetate to hydroxyl at C-3β, and of solanine to solanidine, was observed. The relationship between metabolism and the nature of substitution at C-17β is discussed.  相似文献   

20.
Desynchronization between the master clock in the brain, which is entrained by (day) light, and peripheral organ clocks, which are mainly entrained by food intake, may have negative effects on energy metabolism. Bile acid metabolism follows a clear day/night rhythm. We investigated whether in rats on a normal chow diet the daily rhythm of plasma bile acids and hepatic expression of bile acid metabolic genes is controlled by the light/dark cycle or the feeding/fasting rhythm. In addition, we investigated the effects of high caloric diets and time-restricted feeding on daily rhythms of plasma bile acids and hepatic genes involved in bile acid synthesis. In experiment 1 male Wistar rats were fed according to three different feeding paradigms: food was available ad libitum for 24 h (ad lib) or time-restricted for 10 h during the dark period (dark fed) or 10 h during the light period (light fed). To allow further metabolic phenotyping, we manipulated dietary macronutrient intake by providing rats with a chow diet, a free choice high-fat-high-sugar diet or a free choice high-fat (HF) diet. In experiment 2 rats were fed a normal chow diet, but food was either available in a 6-meals-a-day (6M) scheme or ad lib. During both experiments, we measured plasma bile acid levels and hepatic mRNA expression of genes involved in bile acid metabolism at eight different time points during 24 h. Time-restricted feeding enhanced the daily rhythm in plasma bile acid concentrations. Plasma bile acid concentrations are highest during fasting and dropped during the period of food intake with all diets. An HF-containing diet changed bile acid pool composition, but not the daily rhythmicity of plasma bile acid levels. Daily rhythms of hepatic Cyp7a1 and Cyp8b1 mRNA expression followed the hepatic molecular clock, whereas for Shp expression food intake was leading. Combining an HF diet with feeding in the light/inactive period annulled CYp7a1 and Cyp8b1 gene expression rhythms, whilst keeping that of Shp intact. In conclusion, plasma bile acids and key genes in bile acid biosynthesis are entrained by food intake as well as the hepatic molecular clock. Eating during the inactivity period induced changes in the plasma bile acid pool composition similar to those induced by HF feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号