首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel inhibitors of fatty acid amide hydrolase   总被引:1,自引:0,他引:1  
A class of bisarylimidazole derivatives are identified as potent inhibitors of the enzyme fatty acid amide hydrolase (FAAH). Compound 17 (IC(50)=2 nM) dose-dependently (0.1-10mg/kg, iv) potentiates the effects of exogenous anandamide (1 mg/kg, iv) in a rat thermal escape test (Hargreaves test), and shows robust antinociceptive activity in animal models of persistent (formalin test) and neuropathic (Chung model) pain. Compound 17 (20 mg/kg, iv) demonstrates activity in the formalin test that is comparable to morphine (3mg/kg, iv), and is dose-dependently inhibited by the CB1 antagonist SR141716A. In the Chung model, compound 17 shows antineuropathic effects similar to high-dose (100 mg/kg) gabapentin. FAAH inhibition shows potential utility for the clinical treatment of persistent and neuropathic pain.  相似文献   

2.
A novel fluorescent assay to continuously monitor fatty acid amide hydrolase (FAAH) activity that is simple, sensitive, and amenable to high-throughput screening (HTS) of compound libraries is described in this article. Stable Chinese hamster ovary (CHO) cell lines expressing either human FAAH or an inactive mutant, FAAH-S241A, were established. Arachidonyl 7-amino, 4-methyl coumarin amide (AAMCA), a novel fluorogenic substrate for FAAH, was designed and synthesized. FAAH catalyzes the hydrolysis of AAMCA to generate arachidonic acid and a highly fluorescent 7-amino, 4-methyl coumarin (AMC). The assay was done at 25 degrees C by incubating whole cell or microsomal preparations from FAAH-expressing cells with AAMCA. Release of AMC was monitored continuously using a fluorometer. Microsomal FAAH catalyzed the hydrolysis of AAMCA with an apparent K(m) of 0.48muM and V(max) of 58pmolmin(-1)mgprotein(-1). The assay is specific for FAAH given that microsomes prepared from cells expressing FAAH-S241A or vector alone had no significant activity against AAMCA. Furthermore, the activity was inhibited by URB-597, an FAAH-specific inhibitor, in a concentration-dependent manner with an IC(50) of 33.5nM. The assay was optimized for HTS and had a Z' value ranging from 0.7 to 0.9. The assay is also compatible with ex vivo analysis of FAAH activity.  相似文献   

3.
4.
Anandamide (N-arachidonoylethanolamine) loses its cannabimimetic activity when it is hydrolyzed to arachidonic acid and ethanolamine by the catalysis of an enzyme referred to as anandamide amidohydrolase or fatty acid amide hydrolase. Cravatt's group and our group cloned cDNA of the enzyme from rat, human, mouse and pig, and the primary structures revealed that the enzymes belong to an amidase family characterized by the amidase signature sequence. The recombinant enzyme acted not only as an amidase for anandamide and oleamide, but also as an esterase for 2-arachidonoylglycerol. The reversibility of the enzymatic anandamide hydrolysis and synthesis was also confirmed with a purified recombinant enzyme. Several fatty acid derivatives like methyl arachidonyl fluorophosphonate potently inhibited the enzyme. The enzyme was distributed widely in mammalian organs such as liver, small intestine and brain. However, the anandamide hydrolyzing enzyme found in human megakaryoblastic cells was catalytically distinct from the previously known enzyme.  相似文献   

5.
The topic of this review is fatty acid amide hydrolase (FAAH), one of the best-characterized enzymes involved in the hydrolysis of bioactive lipids such as anandamide, 2-arachidonoylglycerol (2-AG), and oleamide. Herein, we discuss the nomenclature, the various assays that have been developed, the relative activity of the various substrates and the reversibility of the enzyme reactions catalyzed by FAAH. We also describe the cloning of the enzyme from rat and subsequent cDNA isolation from mouse, human, and pig. The proteins and the mRNAs from different species are compared. Cloning the enzyme permitted the purification and characterization of recombinant FAAH. The conserved regions of FAAH are described in terms of sequence and function, including the amidase domain which contains the serine catalytic nucleophile, the hydrophobic domain important for self association, and the proline rich domain region, which may be important for subcellular localization. The distribution of FAAH in the major organs of the body is described as well as regional distribution in the brain and its correlation with cannabinoid receptors. Since FAAH is recognized as a drug target, a large number of inhibitors have been synthesized and tested since 1994 and these are reviewed in terms of reversibility, potency, and specificity for FAAH and cannabinoid receptors.  相似文献   

6.
Thiadiazolopiperazinyl ureas as inhibitors of fatty acid amide hydrolase   总被引:1,自引:0,他引:1  
A series of thiadiazolopiperazinyl aryl urea fatty acid amide hydrolase (FAAH) inhibitors is described. The molecules were found to inhibit the enzyme by acting as mechanism-based substrates, forming a covalent bond with Ser241. SAR and PK properties are presented.  相似文献   

7.
A binding assay for human fatty acid amide hydrolase (FAAH) using the scintillation proximity assay (SPA) technology is described. This SPA uses the specific interactions of [3H]R(+)-methanandamide (MAEA) and FAAH expressing microsomes to evaluate the displacement activity of FAAH inhibitors. We observed that a competitive nonhydrolyzed FAAH inhibitor, [3H]MAEA, bound specifically to the FAAH microsomes. Coincubation with an FAAH inhibitor, URB-597, competitively displaced the [3H]MAEA on the FAAH microsomes. The released radiolabel was then detected through an interaction with the SPA beads. The assay is specific for FAAH given that microsomes prepared from cells expressing the inactive FAAH-S241A mutant or vector alone had no significant ability to bind [3H]MAEA. Furthermore, the binding of [3H]MAEA to FAAH microsomes was abolished by selective FAAH inhibitors in a dose-dependent manner, with IC50 values comparable to those seen in a functional assay. This novel SPA has been validated and demonstrated to be simple, sensitive, and amenable to high-throughput screening.  相似文献   

8.
Fatty acid amide hydrolase (EC 3.5.1.4.) is the enzyme responsible for the rapid degradation of lipid-derived chemical messengers such as anandamide, oleamide, and 2-arachidonoylglycerol. The pharmacological characterization of this enzyme in vivo has been hampered by the lack of selective and bioavailable inhibitors. We have developed a simple, radioactive, high-throughput-compatible assay for this enzyme based on the differential absorption of the substrate and its products to activated charcoal. The assay was validated using known inhibitors. It may be applied for the identification of new inhibitors from a compound library.  相似文献   

9.
A radiochromatographic method has been set up in order to determine fatty acid amide hydrolase (FAAH) activity, based on reversed-phase high-performance liquid chromatography and on-line scintillation counting. The reaction products were separated using a C18 column eluted with methanol-water-acetic acid and quantitated with an external standard. Baseline separation of the acid product from the substrate was completed in less than 4 min, with a detection limit of 2.5 fmol arachidonic acid at a signal to noise ratio of 4:1. The method enabled to determine the kinetic constants (i.e., apparent Km of 2.0 +/- 0.2 microM and Vmax of 800 +/- 75 pmol. min-1. mg protein-1 toward anandamide) and the substrate specificity of human brain FAAH, as well as the extent of enzyme inhibition by some anandamide congeners. The femtomole sensitivity and the accuracy of the method allow detection and characterization of the activity of FAAH in very minute tissue samples or in samples where the enzymatic activity is very low.  相似文献   

10.
Fatty acid amide hydrolase (FAAH) is an integral membrane enzyme that degrades the fatty acid amide family of signaling lipids, including the endocannabinoid anandamide. Genetic or pharmacological inactivation of FAAH leads to analgesic, anti-inflammatory, anxiolytic, and antidepressant phenotypes in rodents without showing the undesirable side effects observed with direct cannabinoid receptor agonists, indicating that FAAH may represent an attractive therapeutic target for treatment of pain, inflammation, and other central nervous system disorders. However, the FAAH inhibitors reported to date lack drug-like pharmacokinetic properties and/or selectivity. Herein we describe piperidine/piperazine ureas represented by N-phenyl-4-(quinolin-3-ylmethyl)piperidine-1-carboxamide (PF-750) and N-phenyl-4-(quinolin-2-ylmethyl)piperazine-1-carboxamide (PF-622) as a novel mechanistic class of FAAH inhibitors. PF-750 and PF-622 show higher in vitro potencies than previously established classes of FAAH inhibitors. Rather unexpectedly based on the high chemical stability of the urea functional group, PF-750 and PF-622 were found to inhibit FAAH in a time-dependent manner by covalently modifying the enzyme's active site serine nucleophile. Activity-based proteomic profiling revealed that PF-750 and PF-622 were completely selective for FAAH relative to other mammalian serine hydrolases. We hypothesize that this remarkable specificity derives, at least in part, from FAAH's special ability to function as a C(O)-N bond hydrolase, which distinguishes it from the vast majority of metabolic serine hydrolases in mammals that are restricted to hydrolyzing esters and/or thioesters. The piperidine/piperazine urea may thus represent a privileged chemical scaffold for the synthesis of FAAH inhibitors that display an unprecedented combination of potency and selectivity for use as potential analgesic and anxiolytic/antidepressant agents.  相似文献   

11.
A series of mechanism based heteroaryl urea fatty acid amide hydrolase (FAAH) inhibitors with spirocyclic diamine cores is described. A potent member of this class, (37), was found to inhibit FAAH centrally, elevate the brain levels of three fatty acid ethanolamides [FAAs: anandamide (AEA), oleoyl ethanolamide (OEA) and palmitoyl ethanolamide (PEA)], and was moderately efficacious in a rat model of neuropathic pain.  相似文献   

12.
13.
A novel series of heterocyclic sulfoxides and sulfones was prepared and examined as potential inhibitors of fatty acid amide hydrolase (FAAH), the enzyme responsible for inactivation of neuromodulating fatty acid amides including anandamide and oleamide.  相似文献   

14.
Transcriptional regulation of the mouse fatty acid amide hydrolase gene   总被引:4,自引:0,他引:4  
  相似文献   

15.
Multi-target inhibitors have become increasing popular as a means to leverage the advantages of poly-pharmacology while simplifying drug delivery. Here, we describe dual inhibitors for soluble epoxide hydrolase (sEH) and fatty acid amide hydrolase (FAAH), two targets known to synergize when treating inflammatory and neuropathic pain. The structure activity relationship (SAR) study described herein initially started with t-TUCB (trans-4-[4-(3-trifluoromethoxyphenyl-l-ureido)-cyclohexyloxy]-benzoic acid), a potent sEH inhibitor that was previously shown to weakly inhibit FAAH. Inhibitors with a 6-fold increase of FAAH potency while maintaining high sEH potency were developed by optimization. Interestingly, compared to most FAAH inhibitors that inhibit through time-dependent covalent modification, t-TUCB and related compounds appear to inhibit FAAH through a time-independent, competitive mechanism. These inhibitors are selective for FAAH over other serine hydrolases. In addition, FAAH inhibition by t-TUCB appears to be higher in human FAAH over other species; however, the new dual sEH/FAAH inhibitors have improved cross-species potency. These dual inhibitors may be useful for future studies in understanding the therapeutic application of dual sEH/FAAH inhibition.  相似文献   

16.
A series of novel 2-azetidinones (β-lactams) bearing short alkenyl chains at C3 and N1 have been prepared and evaluated in vitro as inhibitors of human FAAH. Compound 9c (1-(4′-pentenoyl-3-(4′-pentenyl)-2-azetidinone)) featured an IC50 value of 4.5 μM and a good selectivity for FAAH versus MGL.  相似文献   

17.
A series of mechanism-based heteroaryl urea fatty acid amide hydrolase (FAAH) inhibitors with fused bicyclic diamine cores is described. In contrast to compounds built around a piperazine core, most of the fused bicyclic diamine bearing analogs prepared exhibited greater potency against rFAAH than the human enzyme. Several compounds equipotent against both species were identified and profiled in vivo.  相似文献   

18.
Fatty acid amide hydrolase (FAAH) is a pharmaceutical target whose inhibition may lead to valuable therapeutics. Sensitive substrates for high-throughput assays are crucial for the rapid-screening FAAH inhibitors. Here we describe the development of novel and highly sensitive fluorescent assays for FAAH based on substituted aminopyridines. Examining the relationship between the structure and the fluorescence of substituted aminopyridines suggested that a methoxy group in the para position relative to the amino group in aminopyridines greatly increased the fluorescence (i.e., quantum yields approach unity). These novel fluorescent reporters had a high Stokes' shift of 94 nm, and their fluorescence in buffer systems increased with pH values from neutral to basic. Fluorescent substrates with these reporters displayed a very low fluorescent background and high aqueous solubility. Most importantly, fluorescent assays for FAAH based on these substrates were at least 25 times more sensitive than assays using related compounds with published colorimetric or fluorescent reporters. This property results in shorter assay times and decreased protein concentrations in the assays. Such sensitive assays will facilitate distinguishing the relative potency of powerful inhibitors of FAAH. When these fluorescent substrates were applied to human liver microsomes, results suggested that there was at least one amide hydrolase in addition to FAAH that could hydrolyze long-chain fatty acid amides. These results show that these fluorescent substrates are very valuable tools in FAAH activity assays including screening inhibitors by high-throughput assays instead of using the costly and labor-intensive radioactive ligands. Potential applications of novel fluorescent reporters are discussed.  相似文献   

19.
A series of oxime carbamates have been identified as potent inhibitors of fatty acid amide hydrolase (FAAH), an important regulatory enzyme of the endocannabinoid signaling system. Kinetic analysis indicates that they behave as non-competitive, reversible inhibitors, and show remarkable selectivity for FAAH over the other components of the endocannabinoid system.  相似文献   

20.
The three-dimensional (3D) model of the human fatty acid amide hydrolase (hFAAH) was constructed based on the crystal structure of the rat FAAH (PDB code 1MT5) in complex with a substrate using Modeller9v2 program. With the aid of molecular mechanics and molecular dynamics method, the last model was obtained and further assessed by Profile-3D, Prosa2003 and Procheck, which confirms that the refined model is reliable. Furthermore, the docking results of propofol and its structural analogue into the active site of hFAAH indicate that 2,6-di-sec-butyl phenol is a more preferred ligand than others, which is in good agreement with the experimental results. From the docking studies, we also suggest that Phe192, Ile238, Thr377, Leu380, Phe381, Phe388 and Leu404 in the hFAAH are seven important determinant residues in binding as they have strong van der Waal interactions with the ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号