首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The myelin-associated glycoprotein (MAG) is an integral membrane glycoprotein that is located in the periaxonal membrane of myelin-forming Schwann cells. On the basis of this localization, it has been hypothesized that MAG plays a structural role in (a) forming and maintaining contact between myelinating Schwann cells and the axon (the 12-14-nm periaxonal space) and (b) maintaining the Schwann cell periaxonal cytoplasmic collar of myelinated fibers. To test this hypothesis, we have determined the immunocytochemical localization of MAG in the L4 ventral roots from 11-mo-old quaking mice. These roots display various stages in the association of remyelinating Schwann cells with axons, and abnormalities including loss of the Schwann cell periaxonal cytoplasmic collar and dilation of the periaxonal space of myelinated fibers. Therefore, this mutant provides distinct opportunities to observe the relationships between MAG and (a) the formation of the periaxonal space during remyelination and (b) the maintenance of the periaxonal space and Schwann cell periaxonal cytoplasmic collar in myelinated fibers. During association of remyelinating Schwann cells and axons, MAG was detected in Schwann cell adaxonal membranes that apposed the axolemma by 12-14 nm. Schwann cell plasma membranes separated from the axolemma by distances greater than 12-14 nm did not react with MAG antiserum. MAG was present in adaxonal Schwann cell membranes that apposed the axolemma by 12-14 nm but only partially surrounded the axon and, therefore, may be actively involved in the ensheathment of axons by remyelinating Schwann cells. To test the dual role of MAG in maintaining the periaxonal space and Schwann cell periaxonal cytoplasmic collar of myelinated fibers, we determined the immunocytochemical localization of MAG in myelinated quaking fibers that displayed pathological alterations of these structures. Where Schwann cell periaxonal membranes were not stained by MAG antiserum, the cytoplasmic side of the periaxonal membrane was "fused" with the cytoplasmic side of the inner compact myelin lamella and formed a major dense line. This loss of MAG and the Schwann cell periaxonal cytoplasmic collar usually resulted in enlargement of the 12-14-nm periaxonal space and ruffling of the apposing axolemma. In myelinated fibers, there was a strict correlation between the presence of MAG in the Schwann cell periaxonal membrane and (a) maintenance of the 12-14-nm periaxonal space, and (b) presence of the Schwann cell periaxonal cytoplasmic collar.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The myelin-associated glycoprotein (MAG) is a heavily glycosylated integral membrane glycoprotein which is a minor component of isolated rat peripheral nervous system (PNS) myelin. Immunocytochemically MAG has been localized in the periaxonal region of PNS myelin sheaths. The periaxonal localization and biochemical features of MAG are consistent with the hypothesis that MAG plays a role in maintaining the periaxonal space of myelinated fibers. To test this hypothesis, MAG was localized immunocytochemically in 1-micron sections of the L5 ventral root from rats exposed to B,B'-iminodipropionitrile. In chronic states of B,B'-iminodipropionitrile intoxication, Schwann cell periaxonal membranes and the axolemma invaginate into giant axonal swellings and separate a central zone of normally oriented axoplasm from an outer zone of maloriented neurofilaments. Ultrastructurally, the width of the periaxonal space (12-14 nm) in the ingrowths is identical to that found in normally myelinated fibers. These Schwann cell ingrowths which are separated from compact myelin by several micra are stained intensely by MAG antiserum. Antiserum directed against Po protein, the major structural protein of compact PNS myelin, does not stain the ingrowths unless compact myelin is present. These results demonstrate the periaxonal localization of MAG and support a functional role for MAG in maintaining the periaxonal space of PNS myelinated fibers.  相似文献   

3.
Membrane-membrane interactions between axons and Schwann cells are required for initial myelin formation in the peripheral nervous system. However, recent studies of double myelination in sympathetic nerve have indicated that myelin sheaths continue to exist after complete loss of axonal contact (Kidd, G. J., and J. W. Heath. 1988. J. Neurocytol. 17:245-261). This suggests that myelin maintenance may be regulated either by diffusible axonal factors or by nonaxonal mechanisms. To test these hypotheses, axons involved in double myelination in the rat superior cervical ganglion were destroyed by chronic guanethidine treatment. Guanethidine-induced sympathectomy resulted in a Wallerian-like pattern of myelin degeneration within 10 d. In doubly myelinated configurations the axon, inner myelin sheath (which lies in contact with the axon), and approximately 75% of outer myelin sheaths broke down by this time. Degenerating outer sheaths were not found at later periods. It is probably that outer sheaths that degenerated were only partially displaced from the axon at the commencement of guanethidine treatment. In contrast, analysis of serial sections showed that completely displaced outer internodes remained ultrastructurally intact. These internodes survived degeneration of the axon and inner sheath, and during the later time points (2-6 wk) they enclosed only connective tissue elements and reorganized Schwann cells/processes. Axonal regeneration was not observed within surviving outer internodes. We therefore conclude that myelin maintenance in the superior cervical ganglion is not dependent on direct axonal contact or diffusible axonal factors. In addition, physical association of Schwann cells with the degenerating axon may be an important factor in precipitating myelin breakdown during Wallerian degeneration.  相似文献   

4.
In view of reports that the nerve fibers of the sea prawn conduct impulses more rapidly than other invertebrate nerves and look like myelinated vertebrate nerves in the light microscope, prawn nerve fibers were studied with the electron microscope. Their sheaths are found to have a consistent and unique structure that is unlike vertebrate myelin in four respects: (1) The sheath is composed of 10 to 50 thin (200- to 1000-A) layers or laminae; each lamina is a cellular process that contains cytoplasm and wraps concentrically around the axon. The laminae do not connect to form a spiral; in fact, no cytoplasmic continuity has been demonstrated among them. (2) Nuclei of sheath cells occur only in the innermost lamina of the sheath; thus, they lie between the sheath and the axon rather than outside the sheath as in vertebrate myelinated fibers. (3) In regions in which the structural integrity of the sheath is most prominent, radially oriented stacks of desmosomes are formed between adjacent laminae. (4) An ~200-A extracellular gap occurs around the axon and between the innermost sheath laminae, but it is separated from surrounding extracellular spaces by gap closure between the outer sheath laminae, as the membranes of adjacent laminae adhere to form external compound membranes (ECM's). Sheaths are interrupted periodically to form nodes, analogous to vertebrate nodes of Ranvier, where a new type of glial cell called the "nodal cell" loosely enmeshes the axon and intermittently forms tight junctions (ECM's) with it. This nodal cell, in turn, forms tight junctions with other glial cells which ramify widely within the cord, suggesting the possibility of functional axon-glia interaction.  相似文献   

5.
The myelin-associated glycoprotein (MAG) is an integral membrane protein (congruent to 100,000 mol wt) which is a minor component of purified peripheral nervus system (PNS) myelin. In the present study, MAG was localized immunocytochemically in 1-micrometer thick Epon sections of 7-d and adult rat peripheral nerves, and its localization was compared to that of the major structural protein (Po) of PNS myelin. To determine more precisely the localization of MAG, immunostained areas in 1 micrometer sections were traced on electron micrographs of identical areas from adjacently cut thin sections.l MAG was localized in periaxonal membranes. Schmidt-Lantermann incisures, paranodal membranes, and the outer mesaxon of PNS myelin sheaths. Compact regions of PNS myelin did not react with MAG antiserum. The results demonstrate MAG's presence in "'semi-compact" Schwann cell or myelin membranes that have a gap of 12-14 nm between extracellular leaflets and a spacing of 5 nm or more between cytoplasmic leaflets. In compact regions of the myelin sheath which do not contain MAG, the cytoplasmic leaflets are "fused" and form the major dense line, whereas the extracellular leaflets are separated by a 2.0 nm gap appearing as paired minor dense lines. Thus, it is proposed that MAG plays a role in maintaining the periaxonal space, Schmidt-Lantermann incisures, paranodal myelin loops, and outer mesaxon by preventing "complete" compaction of Schwann cell and myelin membranes. The presence of MAG in these locations also suggests that MAG may serve a function in regulating myelination in the PNS.  相似文献   

6.
《The Journal of cell biology》1986,103(6):2439-2448
The cellular and subcellular localization of the neural cell adhesion molecules L1, N-CAM, and myelin-associated glycoprotein (MAG), their shared carbohydrate epitope L2/HNK-1, and the myelin basic protein (MBP) were studied by pre- and post-embedding immunoelectron microscopic labeling procedures in developing mouse sciatic nerve. L1 and N-CAM showed a similar staining pattern. Both were localized on small, non-myelinated, fasciculating axons and axons ensheathed by non- myelinating Schwann cells. Schwann cells were also positive for L1 and N-CAM in their non-myelinating state and at the onset of myelination, when the Schwann cell processes had turned approximately 1.5 loops. Thereafter, neither axon nor Schwann cell could be detected to express the L1 antigen, whereas N-CAM was found in the periaxonal area and, more weakly, in compact myelin of myelinated fibers. Compact myelin, Schmidt-Lanterman incisures, paranodal loops, and finger-like processes of Schwann cells at nodes of Ranvier were L1-negative. At the nodes of Ranvier, the axolemma was also always L1- and N-CAM-negative. The L2/HNK-1 carbohydrate epitope coincided in its cellular and subcellular localization most closely to that observed for L1. MAG appeared on Schwann cells at the time L1 expression ceased. MAG was then expressed at sites of axon-myelinating Schwann cell apposition and non-compacted loops of developing myelin. When compaction of myelin occurred, MAG remained present only at the axon-Schwann cell interface; Schmidt- Lanterman incisures, inner and outer mesaxons, and paranodal loops, but not at finger-like processes of Schwann cells at nodes of Ranvier or compacted myelin. All three adhesion molecules and the L2/HNK-1 epitope could be detected in a non-uniform staining pattern in basement membrane of Schwann cells and collagen fibrils of the endoneurium. MBP was detectable in compacted myelin, but not in Schmidt-Lanterman incisures, inner and outer mesaxon, paranodal loops, and finger-like processes at nodes of Ranvier, nor in the periaxonal regions of myelinated fibers, thus showing a complementary distribution to MAG. These studies show that axon-Schwann cell interactions are characterized by the sequential appearance of cell adhesion molecules and MBP apparently coordinated in time and space. From this sequence it may be deduced that L1 and N-CAM are involved in fasciculation, initial axon-Schwann cell interaction, and onset of myelination, with MAG to follow and MBP to appear only in compacted myelin. In contrast to L1, N- CAM may be further involved in the maintenance of compact myelin and axon-myelin apposition of larger diameter axons.  相似文献   

7.
The current opinion about processes in myelinated axon is that action potential saltatorially propagates between nodes of Ranvier and passively charges internodal axolemma thus causing depolarizing afterpotentials (DAP). Demyelination blocks the conduction that gives additional argument in favor of hypothesis that internode is not able to be activated by the existing internodal sodium channels. The results of our modeling study shows that, when periaxonal space is sufficiently narrow, saltatorial action potential is able to activate internodes. Low density of internodal sodium channels is sufficient to generate active internodal waves that slowly propagate from nodes towards corresponding midinternodes where they collide. The periaxonal width that stops internodal wave propagation (about 400 nm) is significantly larger than the highest value of the physiological range for this parameter (30 nm). Internodal activation is directly manifested as transmembrane internodal potential or as a full-sized action potential in periaxonal space where it can hardly be detected, and only as a small deflection in intracellular space. However, changes in the periaxonal potential cause transmyelin currents that lead to significant DAP. The shape and amplitude of DAP depends on myelin parameters and densities of internodal channels. Several technical parameters affect the results of calculations. Internodal spatial segmentation has to be sufficiently fine (at most 20 microm) for the model to be able to simulate internodal activation. We employ 338 internodal segments as compared with up to 21 used in previous models. Ionic accumulation together with related diffusive and electrical processes alter the calculated DAP amplitude. Inclusion of these processes in calculations demands such increase in the total number of segments that the numerical methods used up to now become unapplicable. To overcome the problem, an iterative implicit approach is proposed. It reduces a matrix of general type in multi-cable models to tridiagonal one and accelerates calculations considerably.  相似文献   

8.
 The myelin sheath is normally regarded as an electrical insulator. Low values of radial conductance and capacitance have been measured, and in electrical models of myelinated axons the contribution of longitudinal conduction within the sheath has been ignored. According to X-ray diffraction studies, however, myelin sheaths comprise alternate lipid and aqueous layers, and the latter may be expected to have a low resistivity. We propose a new model of myelinated axons in which the aqueous layers within the myelin provide appreciable longitudinal and radial conductance, the latter via a spiral pathway. We have investigated the likely contribution of these conductive paths within the myelin to the electrical properties of a human motor nerve fibre by computer simulation, representing the myelin sheath as a series of interconnecting parallel lamellae. With this new model, action potential conduction has been simulated along a 20-node cable, and the electrotonic responses to 100-ms depolarizing and hyperpolarizing current pulses have been simulated for a uniformly polarized fibre. We have found that the hypothesis of a longitudinally conducting myelin sheath improves our previous model in two ways: it is no longer necessary to make implausible assumptions about the resistivity or width of the periaxonal space to simulate realistic electrotonus, and the conduction velocity is appreciably faster (by 8.6%). Received: 19 April 1999 / Accepted in revised form: 11 September 2000  相似文献   

9.
Some of the myelin sheaths in the cerebellum of normal adult toads exhibit extensive evaginations of their full thickness. These redundant flaps of myelin are collapsed; i.e., they contain no axon and have no lumen. They extend away from the parent axonal myelin sheaths and tend to enfold other myelinated fibers or granule cell perikarya, producing bizarre configurations of myelin and what appear to be partially or completely myelinated cell bodies. In some instances, only the redundant flap of myelin appears in the plane of section, and its attachment to an axonal myelin sheath in another plane is only inferred. Single lamellae of myelin also tend to invest cerebellar granule cells and other processes, and these too appear to fold on themselves producing two- or four-layered segments. It is suggested that there are two phases of myelinogenesis: an initial "wrapping" phase, followed by a prolonged second phase during which internodes of myelin increase in both length and girth by a process other than wrapping, and that the occurrence of redundant myelin sheaths may reflect overgrowth of myelin during the second phase. Observations on the general organization of the toad cerebellum and on the ultrastructural cytology of its layers are also presented.  相似文献   

10.
Myelinated axon nerve impulses travel 100 times more rapidly than impulses in non‐myelinated axons. Increased speed is currently believed to be due to ‘hopping’ or ‘saltatory propagation’ along the axon, but the mechanism by which impulses flow has never been adequately explained. We have used modeling approaches to simulate a role for proton hopping in the space between the plasma membrane and myelin sheath as the mechanism of nerve action‐potential flow.  相似文献   

11.
Myelinated fibers and myelin-forming cells in the spinal cord at the L3–L5 level were studied in C57BL/6N mice that had spent 30 days in space. Signs of destruction of myelin in different areas of white matter, reduction of the thickness of myelin sheath and axon diameter, decreased number of myelin-forming cells were detected in “flight” mice. The stay of mice in space during 30 days had a negative impact on the structure of myelinated fibers and caused reduced expression of the markers myelin-forming cells. These findings can complement the pathogenetic picture of the development of hypogravity motor syndrome.  相似文献   

12.
The cerebral white matter of rats subjected to a variety of noxious experimental conditions was examined in the electron microscope. Several unusual configurations of the myelin sheath are identified in addition to the usual configuration. These variations include the presence of (a) formed organelles within the inner and outer loops, (b) isolated islands of cytoplasm in unfused portions of the major dense lines, (c) apparently unconnected cell processes between the sheath and the axon, and (d) concentric, double myelin sheaths. A generalized model of the myelin sheath based on a hypothetical unrolling of the sheath is described. It consists of a shovel-shaped myelin sheet surrounded by a continuous thickened rim of cytoplasm. Most of the unusual myelin configurations are explained as simple variations on this basic theme. With the help of this model, an explanation of the formation of the myelin sheath is offered. This explanation involves the concept that myelin formation can occur at all cytoplasmic areas adjacent to the myelin proper and that adjacent myelin lamellae can move in relation to each other.  相似文献   

13.
Action potential (AP) propagation in myelinated nerves requires clustered voltage gated sodium and potassium channels. These channels must be specifically localized to nodes of Ranvier where the AP is regenerated. Several mechanisms have evolved to facilitate and ensure the correct assembly and stabilization of these essential axonal domains. This review highlights the current understanding of the axon intrinsic and glial extrinsic mechanisms that control the formation and maintenance of the nodes of Ranvier in both the peripheral nervous system (PNS) and central nervous system (CNS).Axons conduct electrical signals, called action potentials (APs), among neurons in a circuit in response to sensory input, and between motor neurons and muscles. In mammals and other vertebrates, many axons are myelinated. Myelin, made by Schwann cells and oligodendrocytes in the peripheral nervous system (PNS) and central nervous system (CNS), respectively, is a multilamellar sheet of glial membrane that wraps around axons to increase transmembrane resistance and decrease membrane capacitance. Although myelin is traditionally viewed as a passive contributor to nervous system function, it is now recognized that myelinating glia also play many active roles including regulation of axon diameter, axonal energy metabolism, and the clustering of ion channels at gaps in the myelin sheath called nodes of Ranvier. Together, the active and passive properties conferred on axons by myelin, result in axons with high AP conduction velocities, low metabolic demands, and reduced space requirements as compared with unmyelinated axons. Thus, myelin and the clustering of ion channels in axons permitted the evolution of the complex nervous systems found in vertebrates. This review highlights the current understanding of the axonal intrinsic and glial extrinsic mechanisms that control the formation and maintenance of the nodes of Ranvier in both the PNS and CNS.  相似文献   

14.
Myelination allows the fast propagation of action potentials at a low energetic cost. It provides an insulating myelin sheath regularly interrupted at nodes of Ranvier where voltage-gated Na+ channels are concentrated. In the peripheral nervous system, the normal function of myelinated fibers requires the formation of highly differentiated and organized contacts between the myelinating Schwann cells, the axons and the extracellular matrix. Some of the major molecular complexes that underlie these contacts have been identified. Compact myelin which forms the bulk of the myelin sheath results from the fusion of the Schwann cell membranes through the proteins P0, PMP22 and MBP. The basal lamina of myelinating Schwann cells contains laminin-2 which associates with the glial complex dystroglycan/DPR2/L-periaxin. Non compact myelin, found in paranodal loops, periaxonal and abaxonal regions, and Schmidt-Lanterman incisures, presents reflexive adherens junctions, tight junctions and gap junctions, which contain cadherins, claudins and connexins, respectively. Axo-glial contacts determine the formation of distinct domains on the axon, the node, the paranode, and the juxtaparanode. At the paranodes, the glial membrane is tightly attached to the axolemma by septate-like junctions. Paranodal and juxtaparanodal axoglial complexes comprise an axonal transmembrane protein of the NCP family associated in cis and in trans with cell adhesion molecules of the immunoglobulin superfamily (IgSF-CAM). At nodes, axonal complexes are composed of Na+ channels and IgSF-CAMs. Schwann cell microvilli, which loosely cover the node, contain ERM proteins and the proteoglycans syndecan-3 and -4. The fundamental role of the cellular contacts in the normal function of myelinated fibers has been supported by rodent models and the detection of genetic alterations in patients with peripheral demyelinating neuropathies such as Charcot-Marie-Tooth diseases. Understanding more precisely their molecular basis now appears essential as a requisite step to further examine their involvement in the pathogenesis of peripheral neuropathies in general.  相似文献   

15.
ATPase activity was studied in the structures of axon-myelin-Schwann cell complex of sciatic nerves of rabbits of pre-and postnatal development. Positive reaction was observed on the plasma membrane, mitochondria and endoplasmic reticulum of Schwann cells, on the intraperiod lines of the compact myelin, in the split myelin lamellae in the paranodal regions and Schmidt-Lanterman clefts, in segment of outermost lamellae split off from the interparanodal myelin, in the mesaxons, in the loose myelin lamellae in the earlier stages of myelinization, on the axolemma (periaxonal space) and axoplasm. The ATPase activity on the Schwannian plasmalemma, axolemma and myelin sheath surface was found to be heterogeneously distributed. An accumulated of reaction deposits at the origin of the outer mesaxon, at the axoglial contacts as well as at the terminal part of the myelin sheath was respectively observed. Alterations of the enzyme activity distribution in axon-myelin-Schwann cell complex during rabbit's development were found to be associated with the growing myelin sheath and its node-paranode. Using controls with ouabain an attempt was made the possibilities of Wachstein and Meisel's method to be shown and the place of alpha+ form of Na+, K+-ATPase in the axon-myelin-Schwann cell Complex to be establish.  相似文献   

16.
The coordination of the vertebrate nervous system requires high velocity signal transmission between different brain areas. High speed nerve conduction is achieved in the myelinated fibers of both the central and the peripheral nervous system where the myelin sheath acts as an insulator of the axon. The interactions between the glial cell and the adjacent axon, namely axo-glial interactions, segregate the fiber in distinct molecular and functional domains that ensure the rapid propagation of action potentials. These domains are the node of Ranvier, the paranode, the juxtaparanode and the internode and are characterized by multiprotein complexes between voltage-gated ion channels, cell adhesion molecules, members of the Neurexin family and cytoskeletal proteins. In the present review, we outline recent evidence on the key players of axo-glial interactions, depicting their importance in myelinated fiber physiology and disease.  相似文献   

17.
The structure of myelinated nerve fibres has been studied in the spinal cord and optic nerve of the tadpoles of Xenopus laevis. Potassium permanganate-fixed material was examined with the electron microscope. The myelin sheath itself is made up of spirally arranged lamellae in which the intraperiod and dense lines alternate. Inside the myelin sheath an inner cytoplasmic process surrounds the axon and where the external surfaces of its bounding membrane come together an internal mesaxon is formed. The intraperiod line begins within the mesaxon and the dense line usually begins in the same region by apposition of the cytoplasmic surfaces of the membrane. The width of each lamella is 140 A. The outer line in the sheath is the dense line and this terminates in a tongue where the cytoplasmic surfaces of the myelin-forming glial cell separate. Thus, central myelin in Xenopus tadpoles is arranged in the same way as peripheral myelin, the only difference being that in central fibres, cytoplasm on the outside of the sheath is confined to that present in the tongue. For this reason adjacent central sheaths come into apposition without any intervening material being present. When this occurs an intraperiod line is formed between them.  相似文献   

18.
Adult chameleon myelinated peripheral nerve fibers have been studied with the electron microscope in thin sections. The outer lamella of the myelin sheath has been found to be connected as a double membrane to the surface of the Schwann cell. The inner lamella is connected as a similar double membrane with the double axon-Schwann membrane. The relations of these double connecting membranes suggest that the layered myelin structure is composed of a double membrane which is closely wound about the axon as a helix. These findings support the new theory of myelinogenesis proposed recently by Geren. The possible significance of these results with respect to cell surface membranes and cytoplasmic double membranes is discussed.  相似文献   

19.
A time-sequence study of the incorporation and distribution of cholesterol in peripheral nerve myelin was carried out by electron microscope autoradiography. [1,2-3H]Cholesterol was injected into 10-day old mice and the sciatic nerves were dissected out at 10, 20, 40, 60, 90, 120, and 180 min after the injection. 20 min after injection the higher densities of grains due to the presence of [3H]cholesterol were confined to the outer and inner edges of the myelin sheath. Practically no cholesterol was detected in the midzone of the myelin sheath. 1 ½ h after injection, cholesterol showed a wider distribution within the myelin sheath, the higher densities of grains occurring over the two peripheral myelin bands, each approximately 3,100 Å wide. Cholesterol was also present in the center of the myelin sheath but to a considerably lesser extent. 3 h after injection cholesterol appeared homogeneously distributed within the myelin sheath. Schwann cell and axon compartments were also labeled at each time interval studied beginning 20 min postinjection. These observations indicate that preformed cholesterol enters myelin first and almost simultaneously through the inner and outer edges of the sheath; only after 90 min does the density of labeled cholesterol in the central zone of myelin reach the same density as that in the outer and inner zones. These findings suggest that cholesterol used by the nerve fibers in the formation and maintenance of the myelin sheath enters the lamellae from the Schwann cell cytoplasm and from the axon. The possibility of a bidirectional movement of molecules, i.e. from the Schwann cell to the axon and from the axon to the Schwann cell through the myelin sheath, is noted. The results are discussed in the light of recent observations on the exchange, reutilization, and transaxonal movement of cholesterol.  相似文献   

20.
Summary The characteristics of fibers of a cutaneous nerve supplying the wing skin of the pigeon have been investigated with electrophysiological and electron microscopic techniques.Recordings of the compound action potential showed four distinct peaks with conduction velocities of about 30 m/s, 12 m/s, 4 m/s and 0.5 m/s.From electron micrographs both fiber diameters and thickness of myelin sheath were assessed and used as criteria for segregating various fiber populations. Altogether four groups could be discerned: large thickly myelinated fibers, small thickly myelinated fibers, small thinly myelinated fibers, and unmyelinated or C-fibers. The subdivision of the thickly myelinated fibers into two populations is evidenced mainly by corresponding peaks in the compound action potential. The thinly myelinated fibers with a mean diameter of 2 m contributed about 90% of all myelinated fibers in this nerve.When comparing fiber dimensions and conduction velocities of this avian nerve with those of mammalian cutaneous nerves, the lower CV's of avian nerve fibers can be explained by smaller diameters and thinner myelin sheaths.The results of this investigation are a prerequisite for latency considerations in central somatosensory pathways in birds.Abbreviations CAP compound action potential - CV conduction velocity - D fiber diameter - d axon diameter - g ratio d/D - m thickness of myelin sheath  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号