首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
+ concentration ([K+]o) on the membrane potential (Em) of Chara corallina was studied. Em more negative than -100 mV was maintained even at 100 mM [K+]o. Addition of Ca2+ to the external medium further increased this tendency. However, Em responded sensitively to the increase in [K+]o, when the electrogenic proton pump of the plasma membrane was inhibited by treating cells with dicyclohexylcarbodiimide, an inhibitor of proton pump. Analysis using equivalent circuit model of the plasma membrane suggested that the electrogenic proton pump was activated by the increase in [K+]o. In the presence of 100 mM K+, action potentials were generated by electric stimuli. The ionic mechanism of generation of action potentials in the presence of K+ at high concentration was discussed. Received 3 October 2000/ Accepted in revised form 6 January 2001  相似文献   

2.
The electrophysiological properties of cytoplasm-rich fragments (single membrane samples) prepared from internodal cells of Chara corallina were explored in conjunction with K+-sensitive microelectrode and current-voltage (I-V) measurements. This system eliminated the problem of the inaccessible cytoplasmic layer, while preserving many of the electrical characteristics of the intact cells. In 0.1 millimolar external K concentration (Ko+), the resting conductance (membrane conductance Gm, 0.85 ± 0.25 Siemens per square meter (±standard error)) of the single membrane samples, was dominated by the proton pump, as suggested by the response of the near-linear I-V characteristic to changes in external pH. Initial cytoplasmic K+ activities (aK+), judged most reliable, gave values of 117 ± 67 millimolar; stable aK+ values were 77 ± 31 millimolar. Equilibrium potentials for K+ (Nernst equilibrium potential) (EK) calculated, using either of these data sets, were near the mean membrane potential (Vm). On a cell-to-cell basis, however, EK was generally negative of the Vm, despite an electrogenic contribution from the Chara proton pump. When Ko+ was increased to 1.0 millimolar or above, Gm rose (by 8- to 10-fold in 10 millimolar Ko+), the steady state I-V characteristics showed a region of negative slope conductance, and Vm followed EK. These results confirm previous studies which implicated a Ko+-induced and voltage-dependent permeability to K+ at the Chara plasma membrane. They provide an explanation for transitions between apparent Ko+-insensitive and Ko+-sensitive (`K+ electrode') behavior displayed by the membrane potential, as recorded in many algae and higher plant cells.  相似文献   

3.
Energization of potassium uptake in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
Plant roots accumulate K+ from micromolar external concentrations. However, the absence of a firm determination of the trans-plasma-membrane electrochemical gradient for K+ in these conditions has precluded an assessment of whether K+-accumulation requires energization in addition to the driving force provided by the inside-negative membrane electrical potential (Em). To address this question unequivocally, we measured Em, and the cytosolic and external K+-activities in root cells of Arabidopsis thaliana (L.) Heynh. cv. Columbia in conditions in which net K+-accumulation occurs at low external K+ (10 M). In these conditions, net K+-uptake was about 0.1 mol · (g FW)-1 · h-1, Em varied between-153 and -129 mV and the cytosolic K+-activity, determined with K+-selective electrodes, was 83 ± 4 mM. These values yield an outwardly-directed driving force on K+ of at least 6.5 kJ · mol-1. Only if external potassium is raised to the region of 1 mM does Em become sufficient to drive net K+-accumulation. It is therefore concluded that at micromolar external K+-activities which prevail in most soils, K+-uptake cannot be solely energized by Em — as exemplified by a channel-mediated mechanism. The nature of the energization mechanism is discussed in relation to processes operating in fungal and algal cells.Abbreviations and Symbols AAS atomic absorption spectrometry - Em membrane potential - electrochemical potassium gradient - F Faraday constant (96500 C · mol-1) We thank Peter Barraclough, Roger Leigh, David Walker and Tony Miller (Rothamsted Experimental Station, Harpenden, UK) for helpful discussions. Financial support was provided by the Agricultural and Food Research Council (Grant PG87/529).  相似文献   

4.
In isolated Elodea densa leaves, the relationships between H+ extrusion (-ΔH+), K+ fluxes and membrane potential (Em) were investigated for two different conditions of activation of the ATP-dependent H+ pump. The ‘basal condition’ (darkness, no pump activator present) was characterized by low values of-ΔH+ and K+ uptake (ΔK+), wide variability of the ?ΔH+/ΔK+ ratio, relatively low membrane polarization and Em values more positive than EK for external K+ concentrations (|K+]o of up to 2mol m?3. A net K+ uptake was seen already at [K+]o below 1 mol m?3, suggesting that K+ influx in this condition was a thermodynamically uphill process involving an active mechanism. When the H+ pump was stimulated by fusicoccin (FC), by cytosol acidification, or by light (the ‘high polarization condition’), K+ influx largely dominated K+ and C? efflux, and the ?ΔH+/ΔK+ ratio approached unity. In the range 50 mmol m?3?5 mol m?3 [K+]0, Em was consistently more negative than EK. The curve of K+ influx at [K+]0 ranging from 50 to 5000mmol m?3 fitted a monophasic, hyperbolic curve, with an apparent half saturation value = 0–2 mol m?3. Increasing |K+]0 progressively depolarized Em, counteracting the strong hyperpolarizing effect of FC. The effects of K+ in depolarizing Em were well correlated with the effects on both K+ influx and ?ΔH+, suggesting a cause-effect chain: K+0 influx → depolarization → activation of H+ extrusion. Cs+ competitively inhibited K+ influx much more strongly in the ‘high polarization’ than in the ‘basal’ condition (50% inhibition at [Cs+]/[K+]0 ratios of 1:14 and 1:2, respectively) thus confirming the involvement of different K+ uptake systems in the two conditions. These results suggest that in E. densa leaves two distinct modes of interactions rule the relationships between H+ pump, membrane polarization and K+ transport. At low membrane polarization, corresponding to a low state of activation of the PM H+-ATPase and to Em values more positive than EK, K+ influx would mainly  相似文献   

5.
Abstract A method is described for perfusing xylem vessels in tap root segments of the halophyte P. maritima. Use of excised segments allowed recording of the trans-root potential (TRP) at both ends of a segment. It was shown that there can be a spatial variation of electrogenic ion pump activity along the xylem in one root segment. The pH of perfusion solutions, differing in buffering capacity, was adjusted by the root segment to pH 5.1–5.6 during How through the xylem. This pH range was similar to that of sap produced by root pressure. The K+ activity in the outflow solution (K+out) was rather constant at 12–13 mol m?l3 despite input K+ activities ranging from 8 to 20 mol m?l3. Addition of fusicoccin (10?l2 mol m?l3) to the perfusion solution induced a strong acidification of the xylem sap, a decrease in K+out and an increase in Na+out. Inhibition of aerobic respiration through anoxia inhibited electrogenic proton pumping into the xylem and led to an increase in K+out and a decrease in Na+out. It is suggested that transport of K+ and Na+ to the shoot of the halophyte P. maritima is regulated in the tap root by means of ion exchange between xylem vessels and xylem parenchyma and that this exchange is energized by proton translocating ATPases.  相似文献   

6.
Rb+ transport in low-K+ cells of Neurospora crassa is biphasic, transport at millimolar Rb+ being added to a transport process which saturates in the micromolar range. Both processes exhibit Michaelis-Menten kinetics, but in the micromolar phase the kinetic parameters depend on the K+ content of the cell (the lower the K+ content the lower the Km and the higher the Vmax). Normal-K+ cells, suspended in a buffer with millimolar K+, do not present Rb+ transport in the micromolar range. Millimolar transport in these cells presents kinetics which depend on the K+ in buffer (the higher the K+ the higher the Km), although the K+ content of the cells is constant. Na+ inhibits competitively Rb+ transport in low-K+ and normal-K+ cells, but, even when the differences between the Rb+Km values are more than three orders of magnitude, the apparent dissociation constant for Na+ is the same, and millimolar, in both cases.  相似文献   

7.
The apoplastic pH of guard cells probably acidifies in response to light, since light induces proton extrusion by both guard cells and epidermal leaf cells. From the data presented here, it is concluded that these apoplastic pH changes will affect K+ fluxes in guard cells of Arabidopsis thaliana (L.) Heynh. Guard cells of this species were impaled with double-barrelled microelectrodes, to measure the membrane potential (Em) and the plasma-membrane conductance. Guard cells were found to exhibit two states with respect to their Em, a depolarized and a hyperpolarized state. Apoplastic acidification depolarized Em in both states, though the origin of the depolarization differed for each state. In the depolarized state, the change in Em was the result of a combined pH effect on instantaneously activating conductances and on the slow outward rectifying K+ channel (s-ORC). At a more acidic apoplastic pH, the current through instantaneously activated conductances became more inwardly directed, while the maximum conductance of s-ORC decreased. The effect on s-ORC was accompanied by an acceleration of activation and deactivation of the channel. Experiments with acid loading of guard cells indicated that the effect on s-ORC was due to a lowered intracellular pH, caused by apoplastic acidification. In the hyperpolarized state, the pH-induced depolarization was due to a direct effect of the apoplastic pH on the inward rectifying K+ channel. Acidification shifted the threshold potential of the channel to more positive values. This effect was accompanied by a decrease in activation times and an increase of deactivation times, of the channel. From the changes in Em and membrane conductance, the expected effect of acidification on K+ fluxes was calculated. It was concluded that apoplastic acidification will increase the K+-efflux in the depolarized state and reduce the K+-influx in the hyperpolarized state. Received: 28 April 1997 / Accepted: 10 November 1997  相似文献   

8.
Summary Microscopic observations of isotonic suspensions of human red blood cells demonstrate that cell shape is unaltered when the transmembrane electrical potential, orE m , is set in the range –85 to +10 mV with valinomycin at varied external K+, or K o .E m was measured with the fluorescent potentiometric indicator, diS-C3(5), as calibrated by a pH method. Repeating Glaser's experiments in which echinocytosis was attributed to hyperpolarization, we found that at low ionic strength the pH-dependent effects of amphotericin B appear to be unrelated toE m . The effects of increased intracellular Ca2+, or Ca o , on echinocytosis and onE m are separable. With Ca ionophore A23187 half-maximal echinocytosis occurs at greater Ca o than that which induces the half-maximal hyperpolarization associated with Ca-induced K+ conductance (Gardos effect). Thus, cells hyperpolarized by increased Ca o remain discoidal when Ca is below the threshold for echinocytosis. With A23187 and higher Ca o , extensive echinocytosis occurs in cells which are either hyperpolarized or at their resting potential. The Ca-activation curve for echinocytosis is left-shifted by low K o , a new observation consistent with increased DIDS-sensitive uptake of45Ca by hyperpolarized cells. These results support the following conclusions: (1) the shape and membrane potential of human red blood cells are independent under the conditions studied; (2) in cells treated with A23187, the Gardos effect facilitates echinocytosis by increasing Ca.  相似文献   

9.
We report here on an experimental system that utilizes ion-selective microelectrodes to measure the electrochemical potential gradients for H+ and K+ ions within the unstirred layer near the root surface of both intact 4-day-old corn seedlings and corn root segments. Analysis of the steady state H+ and K+ electrochemical potential gradients provided a simultaneous measure of the fluxes crossing a localized region of the root surface. Net K+ influx values obtained by this method were compared with unidirectional K+ (86Rb+) influx kinetic data; at any particular K+ concentration, similar values were obtained by either technique. The ionspecific microelectrode system was then used to investigate the association between net H+ efflux and net K+ influx. Although the computed H+:K+ stoichiometry is dependent upon the choice of diffusion coefficients, the values obtained were extremely variable, and net K+ influx rarely appeared to be charge-balanced by H+ efflux. In contrast to earlier studies, we found the cortical membrane potential to be highly K+ sensitive within the micromolar K+ concentration range. Simultaneous measurements of membrane potential and K+ influx, as a function of K+ concentration, revealed similar Km values for the depolarization of the potential (Km 6-9 micromolar K+) and net K+ influx (Km 4-7 micromolar K+). These data suggest that K+ may enter corn roots via a K+-H+ cotransport system rather than a K+/H+ antiporter.  相似文献   

10.
The stimulation of H+ extrusion by hyper-osmotic stress (0.2–0.3 M mannitol) in cultured cells of Arabidopsis thaliana (L.) Heynh. was shown to be associated with an inhibition of Cl? efflux, whereas hypo-osmotic stress, inhibiting H+ extrusion, early and strongly stimulated Cl? efflux. In this paper, we investigate the contribution of other factors [K+ transport and transmembrane electric potential difference (Em)] to the hyper-osmotic-induced activation of the plasma membrane (PM) H+-ATPase. The effects of mannitol (MA) on K+ transport and on Em were compared with those of fusicoccin (FC) since the modes of action of osmotica and of the toxin in stimulating H+-ATPase activity seem to differ at least in some steps. The changes in H+ extrusion induced by hyper- or hypo-osmotic stress were opposite and could be reversed by the application of the respective opposite stress. The effect of MA on H+ extrusion was dependent on the presence of K+ (or Rb+) similarly to that of FC, while Na+ and Li+, which also stimulated the FC effect, were ineffective on that of MA. The MA effect was independent of the anions (Cl?, SO42?, NO3?) accompanying K+. K+ net uptake and K+ influx were stimulated by both MA and FC. Tetraethylammonium (TEA+) and Cs+ inhibited both MA- and FC-induced H+ extrusion, suggesting the involvement of K+ channels. MA (0.2 M) induced a strong hyperpolarization of Em both in the absence and in the presence of K+. The hyperpolarizing effect of MA was also found when the cells were already hyperpolarized by FC, and was rapidly reversed by removing the osmoticum from the medium. In the presence of the lipophilic cation tributylbenzylammonium (TBBA+), MA was no longer able to stimulate H+ extrusion, while FC still stimulated it. In cells pretreated with TBBA+, which strongly depolarized Em, the subsequent addition of FC repolarized it, while the hyperpolarizing effect of MA was lacking. On the contrary, in cells pretreated with Erythrosine B (EB), Em was strongly depolarized and the following addition of FC did not hyperpolarize it, while the hyperpolarizing effect of MA was still observed. These results suggest that the mechanism of MA in activating H+ extrusion and K+ uptake is different from that of FC. The rise in net K+ uptake seems to be driven by the activation of some hyperpolarizing system that does not seem to depend on a direct activation of PM H+-ATPase, but rather on the inhibition of Cl? efflux induced by hyper-osmotic stress.  相似文献   

11.
The mechanisms of the hyperpolarizing and depolarizing actions of cesium were studied in cardiac Purkinje fibers perfused in vitro by means of a microelectrode technique under conditions that modify either the Na+-K+ pump activity or If. Cs+ (2 mM) inconsistently increased and then decreased the maximum diastolic potential (MDP); and markedly decreased diastolic depolarization (DD). Increase and decrease in MDP persisted in fibers driven at fast rate (no diastolic interval and no activation of If). In quiescent fibers, Cs+ caused a transient hyperpolarization during which elicited action potentials were followed by a markedly decreased undershoot and a much reduced DD. In fibers depolarized at the plateau in zero [K+]o (no If), Cs+ induced a persistent hyperpolarization. In 2 mM [K+]o, Cs+ reduced the undershoot and suppressed spontaneous activity by hyperpolarizing and thus preventing the attainment of the threshold. In 7 mM [K+]o, DD and undershoot were smaller and Cs+ reduced them. In 7 and 10 mM [K+]o, Cs+ caused a small inconsistent hyperpolarization and a net depolarization in quiescent fibers; and decreased MDP in driven fibers. In the presence of strophanthidin, Cs+ hyperpolarized less. Increasing [Cs+]o to 4, 8 and 16 mM gradually hyperpolarized less, depolarized more and abolished the undershoot. We conclude that in Purkinje fibers Cs+ hyperpolarizes the membrane by stimulating the activity of the electrogenic Na+-K+ pump (and not by suppressing If); and blocks the pacemaker potential by blocking the undershoot, consistent with a Cs+ block of a potassium pacemaker current.  相似文献   

12.
In an attempt to understand the processes mediating ion transport within the root, the patch clamp technique was applied to protoplasts isolated from the cortex and stele of maize roots and their plasma membrane conductances investigated. In the whole-cell configuration, membrane hyperpolarization induced a slowly activating inwardly rectifying conductance in most protoplasts isolated from the root cortex. In contrast, most protoplasts isolated from the stele contained a slowly activating outwardly rectifying conductance upon plasma membrane depolarization. The reversal potential of the inward current indicated that it was primarily due to the movement of K+; the outwardly rectifying conductance was comparatively less selective for K+. Membrane hyperpolarization beyond a threshold of about ?70 mV induced inward currents. When EK was set negative of this threshold, inward currents activated negative of EK and no outward currents were observed positive of EK. Outward currents in the stelar protoplasts activated at potentials positive of ?85 mV. However, when EK was set positive of ?85 mV a small inward current was also observed at potentials negative (and slightly positive) of the equilibrium potential for K+. Inwardly and outwardly rectifying K+ channels were observed in outside-out patches from the plasma membrane of cortical and stelar cells, respectively. Characterization of these channels showed that they were likely to be responsible for the macroscopic ‘whole-cell’ currents. Inward and outward currents were affected differently by various K+ channel blockers (TEA+, Ba2+ and Cs+). In addition, Ca2+ above 1 mM partially blocked the inward current in a voltage-dependent manner but had little effect on the outward current. It is suggested that the inwardly rectifying conductance identified in protoplasts isolated from the cortex probably represents an important component of the low-affinity K+ uptake mechanism (mechanism II) identified in intact roots. The outwardly rectifying conductance identified in protoplasts isolated from the stele could play a role in the release of cations into the xylem vessels for transport to the shoot.  相似文献   

13.
Previous data in Egeria densa leaves demonstrated a strong inhibitory effect of Cs+ on passive K+ influx and on K+-induced, ATP-dependent electrogenic proton extrusion. In this paper we analyzed, using the same material, the effects of Cs+ on ammonium (NH4+) and methylammonium (CH3NH3+) transport in order to elucidate whether a common transport system for K+ and NH4+ could be demonstrated. The effects of Cs+ on NH4+- and CH3NH3+-induced titratable H+ extrusion (–ΔH+) and on transmembrane electrical potential difference (Em) in E. densa leaves were analyzed in parallel. All experiments were run either in the absence or presence of fusicoccin, corresponding to low or high H+-ATPase activity and membrane hyperpolarization and leading, in this material, to respectively active or passive transport of K+. The results suggest the presence in E. densa leaves of two distinct pathways for NH4+ uptake: one in common with NH4+ and (with lower affinity) CH3NH3+, insensitive to Cs+, and a second system, operating at higher H+-ATPase activity and Em hyperpolarization, strongly inhibited by Cs+ and impermeable to CH3NH3+. In agreement with this hypothesis, Xenopus laevis oocytes injected with the KAT1 RNA of Arabidopsis thaliana were permeable to K+ and NH4+, but not to CH3NH3+.  相似文献   

14.
The rapid uptake of weak acids permeant in the uncharged form is accompanied in maize and wheat root segments by a hyperpolarization of the transmembrane electrical potential and an increase in K+ uptake, suggesting a stimulation of the plasmalemma H+ pump. The evaluation of weak acid-induced H+ extrusion must take into account the alkalinization of the medium due to the rapid uptake of the uncharged form of the acid, partially masking the proton pump-mediated extrusion of H+. The data corrected for this interference show that the lipophilic butyric acid and trimethyl acetic acid induce in maize and in wheat root segments a significant increase in `real' H+ extrusion, roughly matching the increase in net K+ uptake. The presence of K+ significantly increases the rate of uptake of the weak acid, possibly as a consequence of an alkalinization of the cytosol associated with K+ absorption. In maize root segments, the effects of fusicoccin and those of butyric acid on both K+ uptake and H+ extrusion are clearly synergistic, thus suggesting distinct modes of action. These results support the view that the activity of the plasmalemma H+ pump is regulated by the value of cytosolic pH.  相似文献   

15.
The membrane potential (Em) of sartorius muscle fibers was made insensitive to [K+] by equilibration in a 95 mM K+, 120 mM Na+ Ringer solution. Under these conditions a potassium-activated, ouabain-sensitive sodium efflux was observed which had characteristics similar to those seen in muscles with Em sensitive to [K+]. In addition, in the presence of 10 mM K+, these muscles were able to produce a net sodium extrusion against an electrochemical gradient which was also inhibited by 10?4 M ouabain. This suggests that the membrane potential does not play a major role in the potassium activation of the sodium pump in muscles.  相似文献   

16.
Plasmalemma electrical properties were used to investigate K+ transport and its control in internodal cells of Chara corallina Klein ex Willd., em R.D.W. Cell exposure to solutions containing 10 mm KCl caused the potential, normally −250 millivolts (average), to depolarize in two steps. The first step was a 21 millivolt depolarization that lasted from 1 to 40 minutes. The second step started with an action potential and left the membrane potential at −91 millivolts, with a 10-fold reduction in resistance. We suggest that the second step was caused by the opening of K+ -channels in the membrane. This lowered the resistance and provided a current pathway that partially short-circuited the electrogenic pump. Although largely short-circuited, the electrogenic pump was still operating as indicated by: (a) the depolarized potential of −91 millivolts was more negative than Ek (=−42 millivolts in 10 mm K+); (b) a large net K+ uptake occurred while the cell was depolarized; (c) both the electrogenic pump inhibitor, diethylstilbestrol, and the sulfhydryl-reagent N-ethylmaleimide (which increased the passive membrane permeability) further depolarized the potential in 10 mm KCl.A two-phase recovery back to normal cell potentials occurred upon lowering the K+ concentration from 10 to 0.2 mm. The first phase was an apparent Nernst potential response to the change in external K+ concentration. The second phase was a sudden hyperpolarization accompanied by a large increase in membrane resistance. We attribute the second phase to the closing of K+ -channels and the removal of the associated short-circuiting effect on the electrogenic pump, thereby allowing the membrane to hyperpolarize. Further experiments indicated that the K+ -channel required Ca2+ for normal closure, but other ions could substitute, including: Na+, tetraethylammonium, and 2,4,6-triaminopyrimidine. Apparently, K+ -channel conductance is determined by competition between Ca2+ and K+ for a control (gating?) binding site.  相似文献   

17.
Lysophosphatidylcholine at concentrations of 30 micromolar stimulated the rate of MgATP-dependent H+-accumulation in oat (Avena sativa L. cv Rhiannon) root plasma membrane vesicles about 85% while the passive permeability of H+ was unchanged. Activation was dependent on chain length, degree of saturation, and head group of the lysophospholipid. A H+-ATPase assay was developed that allowed the simultaneous measurement of proton pumping and ATPase activity in the same sample. ATP hydrolysis was also stimulated by lysophospholipids and showed the same lipid specificity, but stimulation was only about 25% at 30 micromolar. At higher concentrations of lysophosphatidylcholine the ATPase activity in a latency-free system could be stimulated about 150%. The enzymic properties of proton pumping and ATP hydrolysis were otherwise identical with respect to vanadate sensitivity, Km for ATP and pH optimum. The stimulatory effect of lysophospholipids suggests that these compounds could be part of the regulatory system for plant plasma membrane H+-ATPase activity in vivo.  相似文献   

18.
The gastric H+,K+‐ATPase is an ATP‐driven proton pump responsible for generating a million‐fold proton gradient across the gastric membrane. We present the structure of gastric H+,K+‐ATPase at 6.5 Å resolution as determined by electron crystallography of two‐dimensional crystals. The structure shows the catalytic α‐subunit and the non‐catalytic β‐subunit in a pseudo‐E2P conformation. Different from Na+,K+‐ATPase, the N‐terminal tail of the β‐subunit is in direct contact with the phosphorylation domain of the α‐subunit. This interaction may hold the phosphorylation domain in place, thus stabilizing the enzyme conformation and preventing the reverse reaction of the transport cycle. Indeed, truncation of the β‐subunit N‐terminus allowed the reverse reaction to occur. These results suggest that the β‐subunit N‐terminus prevents the reverse reaction from E2P to E1P, which is likely to be relevant for the generation of a large H+ gradient in vivo situation.  相似文献   

19.
Control of rhizosphere pH and exclusion of Al by the plasma membrane have been hypothesized as possible mechanisms for Al tolerance. To test primarily the rhizosphere pH hypothesis, wheat cultivars (Triticum aestivum L. `Atlas 66' and `Scout'), which differ in Al tolerance, were grown in either complete nutrient solution, or 0.6 millimolar CaSO4, with and without Al at pH 4.50. A microelectrode system was used to simultaneously measure rhizosphere pH, K+, and H+ fluxes, and membrane potentials (Em) along the root at various distances from the root apex. In complete nutrient solution, the rhizosphere pH associated with mature root cells (measured 10-40 millimeters from the root apex) of Al-tolerant `Atlas 66' was slightly higher than that of the bulk solution, whereas roots of Al-sensitive `Scout' caused a very small decrease in the rhizosphere pH. In CaSO4 solution, no significant differences in rhizosphere pH were found between wheat cultivars, while differential Al tolerance was still observed, indicating that the rhizosphere pH associated with mature root tissue is not directly involved in the mechanism(s) of differential Al tolerance. In Al-tolerant `Atlas 66', growth in a CaSO4 solution with 5 micromolar Al (pH 4.50) had little effect on net K+ influx, H+ efflux, and root-cell membrane potential measured in cells of mature root tissue (from 10-40 mm back from apex). However, in Al-sensitive `Scout', Al treatment caused a dramatic inhibition of K+ influx and both a moderate reduction of H+ efflux and depolarization of the membrane potential. These results demonstrate that increased Al tolerance in wheat is associated with the increased ability of the tolerant plant to maintain normal ion fluxes and membrane potentials across the plasmalemma of root cells in the presence of Al.  相似文献   

20.
In leech P neurons the inhibition of the Na+-K+ pump by ouabain or omission of bath K+ leaves the membrane potential unaffected for a prolonged period or even induces a marked membrane hyperpolarization, although the concentration gradients for K+ and Na+ are attenuated substantially. As shown previously, this stabilization of the membrane potential is caused by an increase in the K+ conductance of the plasma membrane, which compensates for the reduction of the K+ gradient. The data presented here strongly suggest that the increased K+ conductance is due to Na+-activated K+ (KNa) channels. Specifically, an increase in the cytosolic Na+ concentration ([Na+]i) was paralleled by a membrane hyperpolarization, a decrease in the input resistance (Rin) of the cells, and by the occurrence of an outwardly directed membrane current. The relationship between Rin and [Na+]i followed a simple model in which the Rin decrease was attributed to K+ channels that are activated by the binding of three Na+ ions, with half-maximal activation at [Na+]i between 45 and 70 mM. At maximum channel activation, Rin was reduced by more than 90%, suggesting a significant contribution of the KNa channels to the physiological functioning of the cells, although evidence for such a contribution is still lacking. Injection experiments showed that the KNa channels in leech P neurons are also activated by Li+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号