首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primiparous females gave birth around the same time as multiparous nonlactating females, and earlier than did multiparous lactating females. No differences in birth sex ratio were found between primiparous and multiparous females. During the breeding season following birth, primiparous mothers returned to oestrus later than did multiparous mothers, and while few primiparous mothers conceived successfully during that season, most multiparous mothers did. Primiparous females suckled their infants more frequently than did multiparous females at all ages; infants of primiparous females also made more nipple contacts per bout, and had shorter sucking bouts. When mothers came into oestrus, suckling frequency drastically increased for primiparous females, but not for multiparous females, magnifying the differences between the two groups. After the first oestrus, suckling frequency declined for all mothers, but multiparous mothers had consistently lower suckling frequencies than did primiparous mothers. The high suckling frequency, and numerous nipple contacts per bout, found among primiparous mothers are likely to be related to the low reproductive chances that these females faced during the breeding season. Multiparous mothers seemed to compensate for their low suckling frequency by lengthening the suckling bouts, and this suckling pattern did not hinder their reproduction. It is argued that primiparous mothers might have to suckle their infants more frequently because they can only produce milk at slow rates, being in this way forced into a reproductively inhibiting suckling pattern. However, the delay in subsequent reproduction could be ultimately advantageous for primiparous mothers if it enhanced infant survival, and allowed the mothers to regain physical condition before reproducing again.  相似文献   

2.
Lactation has been proposed as the main proximate mechanism regulating female fertility among non–seasonally breeding mammals. Less is known about the effects of lactation upon fertility among seasonal species, where photoperiodic control of reproduction is widely believed to have an overriding influence. In neither case is it clear which of the different components of lactation influence fertility and in which ways. In this paper, the links between suckling patterns and the likelihood of conception during the following breeding season are examined. Data were collected at the Madingley rhesus colony, where reproduction is strictly seasonal. It is shown that fertility was depressed in lactating females when compared to non–lactating ones. Within the lactating group, mothers who suckled their infants frequently, and with a great number of independent nipple contacts in each bout, failed to conceive during the following breeding season. It is suggested that early differences in suckling patterns might reflect differences in maternal condition; and that differences during the breeding season may affect the quality of the ovulations. A considerable decrease in both the frequency of suckling and the number of nipple contacts per bout seemed to be required for conception to occur. On the other hand, neither the duration of the suckling bouts, nor the duration of the intervals between bouts, were found to be associated with the likelihood of conception.  相似文献   

3.
Muscle contraction patterns and mandibular movements of infant rabbits during suckling and chewing were compared. Oral muscle activity was recorded by fine-wire electromyography, while jaw movements and milk bottle pressure were registered. Suckling and mastication have a comparable cycle duration and share a common pattern of oral muscle activity which consists of a succession of a jaw closer burst, during which the jaw closes and undergoes a power stroke (in mastication), a suprahyoid burst with a stationary or slightly opening jaw and a digastric burst with fast jaw opening (the power stroke of suckling). Compared to suckling, mastication shows decreased jaw opener activity, increased jaw closer activity, development of jaw closing activity in the lateral pterygoid, and increased asymmetry in the masseter by development of a new differentiated motor pattern on the working side. The study shows that the suckling motor pattern enables the infant rabbits to change to chewing with just a few modifications.  相似文献   

4.
The oral apparatus of neonatal and juvenile golden hamsters was investigated by clearing and staining of whole crania, videotaping of behavior, and electromyography of several jaw muscles. Chewing developed during the first postnatal week and matured in the second; however, suckling was still the primary mode of feeding. Micromovements of the jaws occurred early when the osseous skeleton and joints developed. Macromovements correlated well with EMG records and were limited to jaw opening at birth. Muscles of the oral floor generated large bursts of activity during jaw opening and tongue protrusion from 0 days postnatal (dpn), when simple and stereotyped gaping was induced, until 14 dpn, when movements were spontaneous and not stereotyped nor inducible. However, adductor muscle activity was brief, low in amplitude, and primarily involved with jaw stabilization until 4 dpn, when these muscles became active during closing the jaws; closing activity increased in frequency and amplitude until the end of the second week. Development of frequent, coordinated macromovements of chewing was associated with the refinement of joint structure and dental occlusion and with the growth of the craniofacial skeleton. Jaw movements and associated EMG's correlated better with available data on development of neural circuitry than with that for musculoskeletal development.  相似文献   

5.
The Ontogeny of Mammalian Mastication   总被引:2,自引:1,他引:1  
Movements of the oral apparatus begin during the fetal periodand develop in a consistent order. Jaw openingappears first,followed by active jaw closure and tongue movements, lip movements,sucking, and finally masticatory movements. The later developingmovements appear prenatally in precocious mammals such as guineapigs and sheep, but are postnatal in altricial mammals suchas rats, hamsters and rabbits. The orderly development of oralbehavior is probably related to the progressive maturation ofthe nervous system and neuromuscular connections. Most newbornmammals feed exclusively bysuckling, a combination of the tongueworking against the nipple and negative pressure at the backof the oral cavity. Thetransition from suckling to masticationis gradual and involves considerable learning. In at least onespecies, the domestic pig, infant animals chew using a somewhatdifferent muscular contraction pattern from that of adults.Age changes in muscle action lines are the most likely explanationfor this difference. After being established in infancy, theprocess of mastication undergoes only minor changes in rateand relative muscle activity during the juvenile period. Throughoutontogeny there is a reciprocal relation between morphology andbehavior. While masticatory performance depends on structureat any given stage, it also has profound effects on furthermusculoskeletal growth and differentiation.  相似文献   

6.
1. The various types of eye movement exhibited by the cyclopean eye of Daphnia pulex were studied using high speed motion photography. 2. This rudimentary eye, which consists of only 22 ommatidia, can move through approximately 150 degrees in the sagittal plane and 60 degrees in the horizontal plane. 3. Four classes of eye movement were found: (1) a high speed tremor at 16 Hz with an amplitude of 3-4 degrees, which resembles physiological nystagmus, (2) a slow rhythmic scanning movement at 4 Hz, and 5-6 degrees amplitude, (3) large fast eye movements similar to saccadic eye movements and (4) optokinetic nystagmus produced by moving striped patterns. 4. Where the fast tremor occurred concurrently with the slow rhythmic scan, a Fourier analysis revealed that the former was the fourth harmonic of the latter.  相似文献   

7.
How locomotory performance is influenced by prior experience and behaviour is of adaptive significance. The relationship between kinematics, behaviour and performance was investigated by assessing a previously undescribed mode of climbing locomotion performed by adult Pacific lamprey. The lampreys were challenged with a 1.4 m vertical weir under an experimental setting. The majority of ascents used intermittent bouts of climbing (on an average approximately one-fifth of total ascent time) via powerful cycles of axial undulation at 0.35–1.25 Hz, interspersed with periods of stationary attachment with the oral disk. However, two of the most rapid ascents (57 and 85 s) occurred during one continuous bout at a low cycle frequency ( c . 0.38 and 0.50 Hz). Probability of success and ascent time was positively related to experience climbing the weir. The ratio of time spent actively climbing to time spent resting decreased with distance travelled, indicating fatigue. Ascents with long periods of activity had correspondingly high durations of recovery. Moreover, time to ascend was positively related to the proportion of time spent stationary in ascents that took <300 s. The findings suggest that modification of intermittent locomotion allows Pacific lamprey to compensate for variation in climbing performance and can extend distance travelled before exhaustion.  相似文献   

8.
The natural insect neuromodulator octopamine (OCT) was released iontophoretically into regions of neuropil in locust metathoracic ganglia. A narrowly-defined site was found on one side of the ganglion at which release caused a prolonged bout of repetitive flex-extend-flex movements of the tibia on the injected side, at a frequency of from 2-3.5 Hz. When a bout had terminated, repetition of the OCT release caused an extremely similar bout to occur, and again with further treatments, indefinitely. OCT iontophoresis at the equivalent site on the contralateral side caused the contralateral flexor to make stepping movements. Two sites were found, in each half of the ganglion, at which similar OCT release evoked a bout of flight motor activity at 10 Hz. The flight bout involved both sides synchronously and nearly equally, except for a slightly greater motor output on the injected side. Evoked bouts lasted from 20 sec to 25 min depending on the preparation and amount of OCT released. At a site in the 6th abdominal ganglion of mature female locusts OCT release suppressed ongoing rhythmic oviposition digging evoked by severing the ventral nerve cord. A number of previously undescribed DUM neurons was encountered and their dendritic patterns, which are distinctive, determined following dye injection. A hypothesis, termed the Orchestration Hypothesis is presented, which considers how modulator neurons such as locust octopaminergic neurons, might be involved in the generation of specific behaviors.  相似文献   

9.
By performing uni- and bilateral olfactory bulb lesions and uni- and bilateral transsections of the infraorbital branches of the trigeminal nerves in 2-day-old rabbits, it could be shown that: Both the olfactory and tactile modalities are essential for the successful performance of nipple-search behaviour. While bilateral bulbectomy completely eliminates searching, and hence suckling, unilateral bulbectomy has relatively little effect. Bilateral denervation of the muzzle does not eliminate searching, but pups are unable to suckle as they fail to show the mouth-opening component necessary for nipple attachment. In contrast to unilateral bulbectomy, unilateral denervation of the muzzle results in a lateralization of head movements during searching, nipple grasping and nipple release.  相似文献   

10.
The ubiquitous brain oscillations occur in bursts of oscillatory activity. The present report tries to define the statistical characteristics of electroencephalographical (EEG) bursts of oscillatory activity during resting state in humans to define (i) the statistical properties of amplitude and duration of oscillatory bursts, (ii) its possible correlation, (iii) its frequency content, and (iv) the presence or not of a fixed threshold to trigger an oscillatory burst. The open eyes EEG recordings of five subjects with no artifacts were selected from a sample of 40 subjects. The recordings were filtered in frequency ranges of 2 Hz wide from 1 to 99 Hz. The analytic Hilbert transform was computed to obtain the amplitude envelopes of oscillatory bursts. The criteria of thresholding and a minimum of three cycles to define an oscillatory burst were imposed. Amplitude and duration parameters were extracted and they showed durations between hundreds of milliseconds and a few seconds, and peak amplitudes showed a unimodal distribution. Both parameters were positively correlated and the oscillatory burst durations were explained by a linear model with the terms peak amplitude and peak amplitude of amplitude envelope time derivative. The frequency content of the amplitude envelope was contained in the 0–2 Hz range. The results suggest the presence of amplitude modulated continuous oscillations in the human EEG during the resting conditions in a broad frequency range, with durations in the range of few seconds and modulated positively by amplitude and negatively by the time derivative of the amplitude envelope suggesting activation-inhibition dynamics. This macroscopic oscillatory network behavior is less pronounced in the low-frequency range (1–3 Hz).  相似文献   

11.
A new tool for locomotor circuitry activation in the non-injured human by transcutaneous electrical spinal cord stimulation (tSCS) has been described. We show that continuous tSCS over T11-T12 vertebrae at 5-40 Hz induced involuntary locomotor-like stepping movements in subjects with their legs in a gravity-independent position. The increase of frequency of tSCS from 5 to 30 Hz augmented the amplitude of evoked stepping movements. The duration of cycle period did not depend on frequency of tSCS. During tSCS the hip, knee and ankle joints were involved in the stepping performance. It has been suggested that tSCS activates the locomotor circuitry through the dorsal roots. It appears that tSCS can be used as a non-invasive method in rehabilitation of spinal pathology.  相似文献   

12.
The purpose of this investigation is to introduce a wavelet analysis designed for analyzing short events reflecting bursts of muscle activity in non-stationary mechanomyographic (MMG) signals. A filter bank of eleven nonlinearly scaled wavelets that maintain the optimal combination of time and frequency resolution across the frequency range of MMG signals (5–100 Hz) was used for the analysis. A comparison with the short-time Fourier transform, Wigner-Ville transform and continuous wavelet transform using a test signal with known time–frequency characteristics showed that the MMG wavelet analysis resolved the intensity, timing, and frequencies of events in a more distinct way without overemphasizing high or low frequencies or generating interference terms. The analysis was used to process MMG signals from the vastus lateralis, rectus femoris, and vastus medialis muscles obtained during maximal concentric and eccentric isokinetic movements. Muscular events were observed that were precisely located in time and frequency in a muscle-specific way, thereby showing periods of synergistic contractions of the quadriceps muscles. The MMG wavelet spectra showed different spectral bands for concentric and eccentric isokinetic movements. In addition, the high and low frequency bands seemed to be activated independently during the isokinetic movement. What generates these bands is not yet known, however, the MMG wavelet analysis was able to resolve them, and is therefore applicable to non-stationary MMG signals.  相似文献   

13.
Momentary fatigue is an important variable in resistance training periodization programs. Although several studies have examined neuromuscular activity during single repetitions of resistance training, information is lacking in regard to neuromuscular fatigue indices throughout a full resistance training bout. The purpose of this study was to evaluate muscle activity during a shoulder resistance training bout with 15 repetitions maximum (RM) loadings in novice individuals. Twelve healthy sedentary women (age = 27-58 years; weight = 54-85 kg; height = 160-178 cm) were recruited for this study. Normalized electromyographic (nEMG) activity and median power frequency (MPF) of the upper, medial, and lower trapezius; the medial deltoid, infraspinatus, and serratus anterior was measured during 3 sets of 15RM during the exercises front raise, reverse flyes, shrugs, and lateral raise. For the majority of exercises, nEMG activity was high (>60% of maximal isometric contractions). From the first to the last repetition of each set nEMG-averaged for all muscles-increased 10. 0 ± 0.4% (p < 0.05) and MPF decreased -7.7 ± 0.5 Hz (p < 0.05). By contrast, nEMG activity and MPF were unchanged from the first to the third set (averaged for all muscles: 38.1 ± 23.6 vs. 47.6 ± 28.8% and 88.4 ± 21.3 vs. 82.1 ± 18.1 Hz, respectively). In conclusion, during a shoulder resistance training bout in novice individuals using 15RM loading muscle activity of the upper, medial, and lower trapezius, the medial deltoid, infraspinatus, and serratus anterior increased, and MPF decreased within each set-indicating momentary neuromuscular fatigue. By contrast, no such change was observed between the 3 sets. This indicates that momentary neuromuscular fatigue in shoulder resistance training is induced more efficiently within a set than between sets.  相似文献   

14.
The execution of reach-to-grasp movements in order to interact with our environment is an important subset of the human movement repertoire. To coordinate such goal-directed movements, information about the relative spatial position of target and effector (in this case the hand) has to be continuously integrated and processed. Recently, we reported the existence of spatial representations in spiking-activity of the cortical fronto-parietal grasp network (Lehmann & Scherberger 2013), and in particular in the anterior intraparietal cortex (AIP). To further investigate the nature of these spatial representations, we explored in two rhesus monkeys (Macaca mulatta) how different frequency bands of the local field potential (LFP) in AIP are modulated by grip type, target position, and gaze position, during the planning and execution of reach-to-grasp movements. We systematically varied grasp type, spatial target, and gaze position and found that both spatial and grasp information were encoded in a variety of frequency bands (1–13Hz, 13–30Hz, 30–60Hz, and 60–100Hz, respectively). Whereas the representation of grasp type strongly increased towards and during movement execution, spatial information was represented throughout the task. Both spatial and grasp type representations could be readily decoded from all frequency bands. The fact that grasp type and spatial (reach) information was found not only in spiking activity, but also in various LFP frequency bands of AIP, might significantly contribute to the development of LFP-based neural interfaces for the control of upper limb prostheses.  相似文献   

15.
This study aimed to compare voluntary and stimulated exercise for changes in muscle strength, growth hormone (GH), blood lactate, and markers of muscle damage. Nine healthy men had two leg press exercise bouts separated by 2 wk. In the first bout, the quadriceps muscles were stimulated by biphasic rectangular pulses (75 Hz, duration 400 mus, on-off ratio 6.25-20 s) with current amplitude being consistently increased throughout 40 contractions at maximal tolerable level. In the second bout, 40 voluntary isometric contractions were performed at the same leg press force output as the first bout. Maximal voluntary isometric strength was measured before and after the bouts, and serum GH and blood lactate concentrations were measured before, during, and after exercise. Serum creatine kinase (CK) activity and muscle soreness were assessed before, immediately after, and 24, 48, and 72 h after exercise. Maximal voluntary strength decreased significantly (P < 0.05) after both bouts, but the magnitude of the decrease was significantly (P < 0.05) greater for the stimulated contractions (-22%) compared with the voluntary contractions (-9%). Increases in serum GH and lactate concentrations were significantly (P < 0.05) larger after the stimulation compared with the voluntary exercise. Increases in serum CK activity and muscle soreness were also significantly (P < 0.05) greater for the stimulation than voluntary exercise. It was concluded that a single bout of electrical stimulation exercise resulted in greater GH response and muscle damage than voluntary exercise.  相似文献   

16.
The peripheral effector system mediating rodent whisking produces protraction/retraction movements of the whiskers and translation movements of the collagenous mystacial pad. To examine the interaction of these movements during whisking in air we used high-resolution, optoelectronic methods for two-dimensional monitoring of whisker and pad movements in head-fixed rats. Under these testing conditions (1) whisker movements on the same side of the face are synchronous and of similar amplitude; (2) pad movements exhibit the characteristic 'exploratory' rhythm (6-12 Hz) of whisking but their movements often have a low frequency (1-2 Hz) component; (3) Pad movements occur in both antero-posterior and dorso-ventral planes but there are considerable variations in the amplitude and topography of movement parameters in the two planes. We conclude that (a) both whisker and pad receive input from a common central rhythm generator; (b) differences in whisker and pad amplitude and topography probably reflect differences in the biomechanical properties of the structures receiving that input; (c) pad movements make a significant contribution to the kinematics of whisking behavior and (d) the two-dimensional nature of pad translation movements significantly increases the rat's flexible control of its mobile sensor.  相似文献   

17.
The purpose of this study was to establish the effects of different hip rotations during isometric side-lying hip abduction (SHA) in subjects with gluteus medius (Gmed) weakness by investigating the electromyographic (EMG) amplitude of the Gmed, tensor fasciae latae (TFL) activity, and gluteus maximus (Gmax), and the activity ratio of the Gmed/TFL, Gmax/TFL, and Gmed/Gmax. Nineteen subjects with Gmed weakness were recruited for this study. Subjects performed three isometric hip abductions: frontal SHA with neutral hips (SHA-N), frontal SHA with hip medial rotation (SHA-MR), and frontal SHA with hip lateral rotation (SHA-LR). Surface EMG amplitude was measured to collect the EMG data from the Gmed, TFL, and Gmax. A one-way repeated-measures analysis of variance was used to determine the statistical significance of the Gmed, TFL, and Gmax EMG activity and the Gmed/TFL, Gmax/TFL, and Gmed/Gmax EMG activity ratios. Gmed EMG activity was significantly greater in SHA-MR than in SHA-N. TFL EMG activity was significantly greater in SHA-LR than in SHA-N. The Gmed/TFL and Gmed/Gmax EMG activity ratios were also significantly greater in SHA-MR than in SHA-N or SHA-LR. The results of this study suggest that SHA-MR can be used as an effective method to increase Gmed activation and to decrease TFL activity during SHA exercises.  相似文献   

18.
Changes in spontaneous activity of the urinary bladder during postnatal development were examined in muscle strips from the base and dome of bladders from 1- to 5-wk-old rats. Activity was analyzed using fast Fourier transformation (FFT), nonlinear cross prediction, and the Shannon entropy test. Spontaneous activity was not detected in strips from 1- to 5-day-old rats but was observed in 50% of strips from 6- to 7-day-old rats and was prominent in strips from 2-wk-old animals. FFT analysis revealed one peak in activity, which was significantly faster in the bladder base (0.21 +/- 0.03 Hz) than in the dome (0.08 +/- 0.01 Hz). A second peak at approximately 0.5 Hz was detected at 3-5 wk of age. Atropine but not tetrodotoxin decreased the amplitude of spontaneous contractions, whereas carbachol, a muscarinic agonist, unmasked or stimulated spontaneous activity. These data suggest that slow rhythmic activity observed previously in neonatal whole bladders is generated by pacemaker cells in the bladder base or dome. The emergence of faster activity in bladders from older animals may reflect the development of multiple pacemaker sites, which would reduce coordination within the bladder wall and improve storage function in the mature bladder.  相似文献   

19.
We studied the effects of inhibitors of prostaglandin synthesis on fetal breathing movements on 17 occasions in 11 lambs (gestational age 125-141 days). We gave 12 h infusions of sodium mechlofenamate (8.6-22.2 mg.kg-1) in 13 studies and indomethacin (21.8-38.8 mg.kg-1) in four studies. Results were similar with both agents and did not correlate with drug dosage. There were no changes in fetal arterial blood pressure, pH or blood gas tensions. We assessed fetal breathing movements by measurements of tracheal pressure for a control period of 224 h prior to and 208 h during the infusion of inhibitors of prostaglandin synthesis; their administration caused a marked stimulation of fetal breathing movements judged from the following four variables: (1) incidence of fetal breathing movements increased from 38.4 to 69.2% of the time (P < 0.001); (2) average amplitude of change in tracheal pressure during fetal breathing movements increased from 4.1 to 6.0 torr (P < 0.01); (3) maximal amplitude of change in tracheal pressure during fetal breathing movements increased from 8.8 to 13.4 torr (P < 0.01); and (4) the duration of the longest continuous episode of fetal breathing movements increased from 37 to 229 min (P < 0.05). Two fetuses had electrocorticogram (ECoG) recordings. In control periods, fetal breathing movements occurred only during low voltage, high frequency ECoG activity; however, during infusions of inhibitors of prostaglandin synthesis, fetal breathing movements occurred also during high voltage, low frequency ECoG activity. We conclude that inhibitors of prostaglandin synthesis stimulate fetal breathing movement in fetal sheep. These results suggest that a component of the prostaglandin system is a factor which inhibits breathing movements during fetal life.  相似文献   

20.
Rhythmic body movements and their role as triggers of intermittent heartbeats were studied in pupae of Leptinotarsa decemlineata Say. Heartbeats and body movements were recorded simultaneously by means of an optical method (infra‐red cardiography) combined with respirometry. IR‐cardiography allows heartbeats and body movements to be distinguished on the basis of their different rates (40–80 min?1 and 4–8 min?1, respectively) and amplitude. In the mid‐interecdysial period, abdominal movements in the pupae were always accompanied by heart activity beginning after the first 5–12 abdominal strokes. Simultaneous periods of abdominal movements and heartbeats lasted 2–5 min, while the intervening pause ranged from 40 to 72 min at 24°C. Experiments of forced heart activity showed that a slight external tactile stimulus (prodding once with a single hair), applied prior to an expected heartbeat bout, evoked abdominal movements followed soon afterwards by contractions of the dorsal vessel. Repeated prodding with a hair evoked body rotating movements (1–3 strokes) at any time with heartbeats starting at the first movement. We surmise that rhythmic body movements play an active role in the triggering of heart activity in pupae according to the principle of cardiac reflex response. This is a possible mechanism for synchronizing periods of heart activity with periods of rhythmic body movements. Haemolymph circulation in pupae is favoured when heartbeat bouts are accompanied by active body movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号