首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
KIR2DL4 (CD158d), an NK cell-activating receptor with inhibitory potential   总被引:14,自引:0,他引:14  
KIR2DL4 (CD158d) is an unusual member of the killer cell Ig-like receptor family expressed in all NK cells and some T cells. KIR2DL4 activates the cytotoxicity of NK cells, despite the presence of an immunoreceptor tyrosine-based inhibition motif (ITIM) in its cytoplasmic tail. The role of this ITIM on the activating function of KIR2DL4, and whether it can provide inhibitory signals, is not known. Mutated forms of KIR2DL4 were engineered that lacked either the tyrosine in the ITIM or an arginine-tyrosine motif in the transmembrane region that is required for the activation signal. The activity of the mutated KIR2DL4 molecules was tested in a redirected lysis assay. The ITIM was not necessary for activation of lysis by KIR2DL4. The activation signal of KIR2DL4 was sensitive to inhibition by another ITIM-containing receptor. The activation-deficient mutant of KIR2DL4 inhibited the signal delivered by the activating receptor CD16. In pull-down experiments with GST fusion proteins, the tyrosine-phosphorylated cytoplasmic tail of KIR2DL4 bound the Src homology 2-containing phosphatases 1 and 2, as did the tail of the inhibitory receptor KIR2DL1. Therefore, KIR2DL4 has inhibitory potential in addition to its activating function.  相似文献   

2.
KIR2DL4 (CD158d) genotype influences expression and function in NK cells   总被引:8,自引:0,他引:8  
The expression and function of the NK cell receptor KIR2DL4 are controversial. Two common alleles of the transmembrane domain of KIR2DL4 exist. The 10A allele with 10 adenines at the end of the transmembrane exon encodes a full length receptor, whereas the 9A allele has only 9 adenines resulting in a frame shift which in turn generates a stop codon early in the first cytoplasmic exon. The possibility that the 10A and 9A alleles might result in differences in expression and function of KIR2DL4 was explored using mAbs to KIR2DL4. Transfection experiments with cDNA from the 10A and 9A alleles revealed significant membrane expression only with the protein encoded by the 10A allele. Analysis of peripheral blood NK cells demonstrated that only in subjects with at least one 10A allele was cell surface expression of KIR2DL4 detectable, and then only on the minor CD56(bright) NK cell subset. The major CD56(dim) NK cell subset did not cell surface express KIR2DL4 but, interestingly, did so after in vitro culture. Functional analysis using cultured NK cells in redirected lysis assays demonstrated that KIR2DL4 is an activating receptor for NK cells with at least one 10A allele. No significant activity was detected for NK cells generated from subjects homozygous for the 9A allele. These data show that genotype influences cell surface expression and function of KIR2DL4 which may account for reported differences in KIR2DL4 expression and function.  相似文献   

3.
Resting human NK cells require a two-stage activation process that we have previously described as "priming" and "triggering." NK-sensitive tumor cells provide both priming and triggering signals. NK-resistant tumors evade lysis, mostly by failure to prime; however, we recently reported a tumor cell line (CTV-1) that primes resting NK cells but fails to trigger lysis. In this article, we report two additional leukemia cell lines that prime NK cells but are resistant to lysis. Tumor-mediated NK priming is via CD2 binding to a ligand within CD15 on the tumor cell. NK-resistant RAJI cells became susceptible to NK lysis following transfection and expression of CD15. Blockade of CD15 on K562 cells or on CD15(+) RAJI cells significantly inhibited lysis, as did blockade of CD2 on resting NK cells. NK priming via CD2 induced CD16 shedding, releasing CD3ζ to the CD2, leading to its phosphorylation and the subsequent phosphorylation of linker for activation of T cells and STAT-5 and synthesis of IFN-γ. Blockade of C-type lectin receptors significantly suppressed the tumor-mediated priming of NK cells, whereas blockade of Ig-superfamily-like receptors had no effect at the NK-priming stage. Tumor priming of resting NK cells was irrespective of HLA expression, and blockade of HLA-killer Ig-like receptor interactions did not influence the incidence or degree of priming. However, CD15-CD2 interactions were critical for NK priming and were required, even in the absence of HLA-mediated NK inhibition. Tumor-mediated priming led to a sustained primed state, and the activated NK cells retained the ability to lyse NK-resistant tumors, even after cryopreservation.  相似文献   

4.
Killer cell Ig-like receptor (KIR)2DL4 (2DL4, CD158d) was previously described as the only KIR expressed by every human NK cell. It is also structurally atypical among KIRs because it possesses a basic transmembrane residue, which is characteristic of many activating receptors, but also contains a cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM). We expressed epitope-tagged 2DL4 in an NK-like cell line to study receptor function. Three distinct 2DL4 cDNA clones were analyzed: one encoding the "conventional" 2DL4 with the cytoplasmic ITIM (2DL4.1) and two encoding different cytoplasmic truncated forms lacking the ITIM (2DL4.2 and 2DL4(*)). Surprisingly, one truncated receptor (2DL4.2), which is the product of a prevalent human 2DL4 allele, was not expressed on the cell surface, indicating that some individuals may lack functional 2DL4 protein expression. Conversely, both 2DL4.1 and 2DL4(*) were expressed on the cell surface and up-regulated by IL-2. Analysis of primary NK cells with anti-2DL4 mAb confirmed the lack of surface expression in a donor with the 2DL4.2 genotype. Donors with the 2DL4.1 genotype occasionally expressed receptor only on CD56(high) NK cells, although their expression was up-regulated by IL-2. Interestingly, Ab engagement of epitope-tagged 2DL4 triggered rapid and robust IFN-gamma production, but weak redirected cytotoxicity in an NK-like cell line, which was the opposite pattern to that observed upon engagement of another NK cell activating receptor, NKp44. Importantly, both 2DL4.1 and 2DL4(*) exhibited similar activation potential, indicating that the ITIM does not influence 2DL4.1 activating function. The unique activation properties of 2DL4 suggest linkage to a distinct signaling pathway.  相似文献   

5.
NK cells are cytotoxic to virus-infected and tumor cells that have lost surface expression of class I MHC proteins. Target cell expression of class I MHC proteins inhibits NK cytotoxicity through binding to inhibitory NK receptors. In contrast, a similar family of activating NK receptors, characterized by the presence of a charged residue in their transmembrane portion and a truncated cytoplasmic tail, augment lysis by NK cells when ligated by an appropriate class I MHC protein. However, the class I MHC specificity of many of these activating NK receptors is still unknown. Here, we show enhanced lysis of HLA-Cw4 but not HLA-Cw6-expressing cells, by a subset of NK clones. This subset may express killer cell Ig-like receptor two-domain short tail number 4 (KIR2DS4), as suggested by staining with various mAb. It is still possible, however, that these clones may express receptors other than KIR2DS4 that might recognize HLA-Cw4. Binding of KIR2DS4-Ig fusion protein to cells expressing HLA-Cw4 but not to those expressing HLA-Cw6 was also observed. The binding of KIR2DS4-Ig to HLA-Cw4 is weaker than that of killer cell Ig-like receptor two-domain long tail number 1 (KIR2DL1)-Ig fusion protein; however, such weak recognition is capable of inhibiting lysis by an NK transfectant expressing a chimeric molecule of KIR2DS4 fused to the transmembrane and cytoplasmic portion of KIR2DL1. Residue alpha14 is shown to be important in the KIR2DS4 binding to HLA-Cw4. Implications of the role of the activating NK receptors in immunosurveillance are discussed.  相似文献   

6.
KIR2DL4 (2DL4, CD158d), a member of the human killer cell Ig-like receptor (KIR) family, triggers potent IFN-gamma responses but weak cytotoxicity in resting NK cells. 2DL4 mRNA has been detected in most NK cell clones from most humans examined, but surface protein expression is detectable only on CD56(high) NK cells from certain donors. The receptor possesses a transmembrane arginine residue, suggesting association with a signaling accessory protein that has remained elusive. We provide biochemical and functional evidence that FcepsilonRI-gamma (gamma) associates with 2DL4 to promote surface expression and provide signal transducing function. Weak cytolytic responses triggered through 2DL4 may result from low stoichiometric association with gamma. Selective association with gamma distinguishes 2DL4 from all other activating forms of the KIR family, which alternatively associate with DNAX-activating protein (DAP)12.  相似文献   

7.
In addition to ligand‐induced activation of receptors at the cell surface, certain internalized receptor–ligand complexes are activated in endosomes which are, now recognized as important intracellular platforms of signal transduction. The major receptor families that signal from endosomes and illustrate the diversity and complexity of endosomal signaling include receptor tyrosine kinases (RTKs), G‐protein‐coupled receptors (GPCRs) and toll‐like receptors (TLRs). Natural killer (NK) cells, an important component of the innate immune system, not only provide a rapid defense against foreign invaders, such as bacteria and viruses, but also positively shape local responses by cytokine and chemokine secretion. The NK cell receptor KIR2DL4 (CD158d) utilizes a new mode of endosomal signaling after binding its ligand, soluble HLA‐G, in the extracellular milieu. Internalization of the receptor and its ligand into endosomes and initiation of signaling at this site result in a proinflammatory and proangiogenic response with important functions at sites of ligand expression, such as at the maternal–fetal interface during early pregnancy. After a brief overview of the modes of endosomal signaling and its value in generating distinct physiological responses, this review will highlight the mechanism and physiological significance of a novel intracellular signaling pathway used by the endosome‐resident immune receptor KIR2DL4.  相似文献   

8.
2B4 is expressed on all NK and a subset of memory/effector CD8(+) T cells. 2B4 binds to CD48 and activates NK cytotoxicity, but its function on CD8(+) T cells is not clear. Furthermore, two isoforms of 2B4 (2B4S and 2B4L) exist in mice but the role of individual isoforms is not known. To address these questions, we generated primary T cell cultures from L(d)-specific 2C/Rag2(-/-) TCR transgenic mice and transduced them with 2B4S or 2B4L. 2B4S- or 2B4L-transduced T cells showed greater cytotoxicity over control cells against CD48(+) and CD48(-) targets, suggesting that ligation of 2B4 by CD48 on target cells was not necessary for 2B4 function. Rather, 2B4/CD48 interaction on adjacent T cells appeared to be critical for cytotoxicity. Therefore, 2B4 functions as a costimulator of CD8(+) T cells in MHC-restricted cytotoxicity. We conclude that 2B4/CD48 interactions among T cells themselves can augment CTL lysis of their specific targets.  相似文献   

9.
Interactions between inhibitory killer cell immunoglobulin-like receptors (iKIR) and human leukocyte antigen (HLA) class I molecules regulate natural killer (NK) cell responses to eliminate infected and transformed cells while maintaining tolerance to healthy cells. Unlinked polymorphic gene families encode KIR receptors and HLA class I ligands and their independent segregation results in a variable number and type of iKIR + HLA pairs inherited in individuals. The diversity in the co-inheritance of iKIR + HLA pairs and activating KIR (aKIR) genes in 759 unrelated individuals from four ethnic populations was analyzed. Every individual studied inherited a minimum of one iKIR + HLA pair; suggesting that major histocompatibility complex class I-dependent inhibitory KIR signaling is essential for human NK cell function. In contrast, 13.4% of the study group lacked all aKIR genes. Twenty percent of the study group carried only one of the four iKIR + HLA pairs. Interestingly, 3% of the study group carrying only KIR2DL3 + HLA-C1 as an iKIR + HLA pair lacked aKIR genes. These data suggest that a single iKIR can constitute the minimal KIR repertoire for human NK cells. Genotypes carrying an equal number of iKIR + HLA pairs and aKIR genes represented 20% of the study group. The remaining individuals had either a dominant inhibitory KIR genotype (iKIR + HLA > aKIR) or a dominant activating KIR genotype (iKIR + HLA < aKIR). Genotypes encoding these imbalanced inhibitory and activating interactions may contribute to susceptibility or resistance to human diseases.  相似文献   

10.
11.
The immunoglobulin-like receptor (KIR) gene family in New World primates (Platyrrhini) has been characterized only in the owl monkey (Aotus sp.). To gain a better understanding of the KIR system in Platyrrhini, we analyzed a KIR haplotype in Ateles geoffroyi, and sequenced KIR complementary DNAs (cDNAs) from other three Atelidae species, Ateles hybridus, Ateles belzebuth, and Lagothrix lagotricha. Atelidae expressed a variable set of activating and inhibitory KIRs that diversified independently from their Catarrhini counterparts. They had a unique mechanism to generate activating receptors from inhibitory ones, involving a single nucleotide deletion in exon 7 and a change in the donor splice site of intron 7. The A. geoffroyi haplotype contained at least six gene models including a pseudogene, two coding inhibitory receptors, and three coding activating receptors. The centromeric region was in a tail-to-tail orientation with respect to the telomeric region. The owl monkey KIR haplotype shared this organization, and in phylogenetic trees, the centromeric genes clustered together with those of A. geoffroyi, whereas their telomeric genes clustered independently. KIR cDNAs from the other Atelidae species conformed to this pattern. Signatures of positive selection were found in residues predicted to interact with the major histocompatibility complex. Such signatures, however, primarily explained variability between paralogous genes but not between alleles in a locus. Atelidae, therefore, has expanded the KIR family in a bimodal fashion, where an inverted centromeric region has remained relatively conserved and the telomeric region has diversified by a rapid process of gene duplication and divergence, likely favored by positive selection for ligand binding.  相似文献   

12.
The poliovirus receptor (PVR) belongs to a large family of Ig molecules called nectins and nectin-like proteins, which mediate cell-cell adhesion, cell migration, and serve as entry receptors for viruses. It has been recently shown that human NK cells recognize PVR through the receptor DNAM-1, which triggers NK cell stimulation in association with beta(2) integrin. In this study, we show that NK cells recognize PVR through an additional receptor, CD96, or T cell-activated increased late expression (Tactile). CD96 promotes NK cell adhesion to target cells expressing PVR, stimulates cytotoxicity of activated NK cells, and mediates acquisition of PVR from target cells. Thus, NK cells have evolved a dual receptor system that recognizes nectins and nectin-like molecules on target cells and mediates NK cell adhesion and triggering of effector functions. As PVR is highly expressed in certain tumors, this receptor system may be critical for NK cell recognition of tumors.  相似文献   

13.
14.
Incubation of purified C57BL/6 murine CD4(+) T lymphocytes with anti-CD3 mAb serves as a model of TCR-mediated activation and results in increased IFN-gamma production and cell surface expression of CD25 and CD69. We demonstrate here that signaling through the TCR causes a rapid (4-h) 5-fold increase in A(2A) adenosine receptor (AR) mRNA, which is correlated with a significant increase in the efficacy of A(2A)AR-mediated cAMP accumulation in these cells. A(2A)AR activation reduces TCR-mediated production of IFN-gamma by 98% with a potency order of 4-{3-[6-amino-9-(5-ethylcarbamoyl-3,4-dihydroxytetrahydrofuran-2-yl)-9H-purin-2-yl]prop-2-ynyl}cyclohexanecarboxylic acid methyl ester (ATL146e; EC(50) = 0.19 +/- 0.03 nM) > 4-{3-[6-amino-9-(5-cyclopropyl-carbamoyl-3,4-dihydroxytetrahydrofuran-2-yl)-9H-purin-2-yl]prop-2-ynyl}piperidine-1-carboxylic acid methyl ester (ATL313; 0.43 +/- 0.06 nM) > 5'-N-ethylcarboxamidoadenosine (3.5 +/- 0.77 nM) > 2-[4-(2-carboxyethyl)phenethylamino]-5'-N-ethylcarboxamidoadenosine (CGS21680; 7.2 +/- 1.4 nM) > N(6)-cyclohexyladenosine (110 +/- 33 nM) > 2-chloro-N(6)-(3-iodobenzyl)-5'-N-methylcarboxamide (390 +/- 160 nM), similar to the potency order to compete for radioligand binding to the recombinant murine A(2A)AR but not the A(3)AR. The selective A(2A)AR antagonist, 4-(2-[7-amino-2-[2-furyl][1,2,4]triazolo[2,3-a][1,3,5]triazin-5-yl-amino]ethyl)phenol (ZM241385), inhibits the effect of ATL146e with a pA(2) of 0.34 nM and also inhibits the effects of N(6)-cyclohexyl-adenosine and 2-chloro-N(6)-(3-iodobenzyl)-5'-N-methylcarboxamide. In CD4(+) T cells derived from A(2A)AR(-/-) and A(2A)AR(+/-) mice, the IFN-gamma release response to ATL146e is reduced by 100 and 50%, respectively, indicative of a gene dose effect. The response of T cells to the phosphodiesterase inhibitor, 4-(3'-cyclopentyloxy-4'-methoxyphenyl)-2-pyrrolidone (rolipram), is not affected by A(2A)AR deletion. We conclude that the rapid induction of the A(2A)AR mRNA in T cells provides a mechanism for limiting T cell activation and secondary macrophage activation in inflamed tissues.  相似文献   

15.
It has previously been shown that IFN-gamma-induced up-regulation of HLA class II on the surface of epithelial cells is not sufficient to induce proliferation of allospecific CD4+ T cells in vitro. To further investigate this phenomenon, a human epithelial bladder carcinoma, T24, was induced to constitutively express HLA class II without IFN-gamma stimulation, by permanent transfection with the full-length class II transactivator (CIITA) gene. Proliferation of allospecific T cells to transfected and wild-type cells with and without prior activation with saturating levels of IFN-gamma for 4 days was examined. IFN-gamma-activated T24 did not induce any response from CD4+ T cells. However, T24.CIITA induced significant levels of alloproliferation, which could be abrogated by pretreatment of T24.CIITA with a mAb to LFA-3. Prestimulation of T24. CIITA with saturating levels of IFN-gamma for 4 days also prevented allospecific CD4+ T cell proliferation. These findings suggest that epithelial cells may be intrinsically able to process and present alloantigen and provide adequate costimulation. We propose that IFN-gamma has a secondary, as yet unidentified, effect that acts to negatively regulate this response, at least in some epithelial cells.  相似文献   

16.
Through recognition of HLA class I, killer cell Ig-like receptors (KIR) modulate NK cell functions in human immunity and reproduction. Although a minority of HLA-A and -B allotypes are KIR ligands, HLA-C allotypes dominate this regulation, because they all carry either the C1 epitope recognized by KIR2DL2/3 or the C2 epitope recognized by KIR2DL1. The C1 epitope and C1-specific KIR evolved first, followed several million years later by the C2 epitope and C2-specific KIR. Strong, varying selection pressure on NK cell functions drove the diversification and divergence of hominid KIR, with six positions in the HLA class I binding site of KIR being targets for positive diversifying selection. Introducing each naturally occurring residue at these positions into KIR2DL1 and KIR2DL3 produced 38 point mutants that were tested for binding to 95 HLA- A, -B, and -C allotypes. Modulating specificity for HLA-C is position 44, whereas positions 71 and 131 control cross-reactivity with HLA-A*11:02. Dominating avidity modulation is position 70, with lesser contributions from positions 68 and 182. KIR2DL3 has lower avidity and broader specificity than KIR2DL1. Mutation could increase the avidity and change the specificity of KIR2DL3, whereas KIR2DL1 specificity was resistant to mutation, and its avidity could only be lowered. The contrasting inflexibility of KIR2DL1 and adaptability of KIR2DL3 fit with C2-specific KIR having evolved from C1-specific KIR, and not vice versa. Substitutions restricted to activating KIR all reduced the avidity of KIR2DL1 and KIR2DL3, further evidence that activating KIR function often becomes subject to selective attenuation.  相似文献   

17.
18.
T cell responses are important to the control of infection but are deleterious if not regulated. IFN-gamma-deficient mice infected with mycobacteria exhibit enhanced accumulation of activated effector T cells and neutrophils within granulomatous lesions. These cells do not control bacterial growth and compromise the integrity of the infected tissue. We show that IFN-gamma-deficient mice have increased numbers of IL-17-producing T cells following infection with Mycobacterium bovis bacille Calmette Guérin. Furthermore, exogenous IFN-gamma increases IL-12 and decreases IL-23 production by bacille Calmette Guérin-infected bone marrow-derived dendritic cells and reduces the frequency of IL-17-producing T cells induced by these bone marrow-derived dendritic cells. These data support the hypothesis that, during mycobacterial infection, both IFN-gamma- and IL-17-producing T cells are induced, but that IFN-gamma serves to limit the IL-17-producing T cell population. This counterregulation pathway may be an important factor in limiting mycobacterially associated immune-mediated pathology.  相似文献   

19.
Killer cell Ig-like receptors (KIR) are MHC class I-binding immunoreceptors that can suppress activation of human NK cells through recruitment of the Src homology 2-containing protein tyrosine phosphatase-1 (SHP-1) to two immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in their cytoplasmic domains. KIR2DL4 (2DL4; CD158d) is a structurally distinct member of the KIR family, which is expressed on most, if not all, human NK cells. 2DL4 contains only one ITIM in its cytoplasmic domain and an arginine in its transmembrane region, suggesting both inhibitory and activating functions. While 2DL4 can activate IFN-gamma production, dependent upon the transmembrane arginine, the function of the single ITIM of 2DL4 remains unknown. In this study, tandem ITIMs of KIR3DL1 (3DL1) and the single ITIM of 2DL4 were directly compared in functional and biochemical assays. Using a retroviral transduction method, we show in human NK cell lines that 1) the single ITIM of 2DL4 efficiently inhibits natural cytotoxicity responses; 2) the phosphorylated single ITIM recruits SHP-2 protein tyrosine phosphatase, but not SHP-1 in NK cells; 3) expression of dominant-negative SHP-1 does not block the ability of 2DL4 to inhibit natural cytotoxicity; 4) surprisingly, mutation of the tyrosine within the single ITIM does not completely abolish inhibitory function; and 5) this correlates with weak SHP-2 binding to the mutant ITIM of 2DL4 in NK cells and a corresponding nonphosphorylated ITIM peptide in vitro. These results reveal new aspects of the KIR-inhibitory pathway in human NK cells, which are SHP-1 and phosphotyrosine independent.  相似文献   

20.
Orangutan (Pongo pygmaeus) MHC-C appears less evolved than human HLA-C: Popy-C is not fixed and its alleles encode only one (C1) of the two motifs for killer cell Ig-like receptor (KIR) ligands. To assess the structure and complexity of the orangutan KIR locus, the complete nucleotide sequence of an orangutan KIR haplotype was determined. The PopyKIR locus is flanked by LILR and FCAR and consists of seven genes and pseudogenes, two novel and five corresponding to known cDNA. Distinguishing all KIRs in this rapidly evolving KIR locus from the KIR3DX1 gene is an LTR33A/MLT1D element in intron 3. These two forms of KIR represent lineages that originated by duplication of a common ancestor. The conserved, framework regions of primate KIR loci comprise the 5' part of a lineage V KIR, the 3' part of a pseudogene, the complete 2DL4 gene, and the 3' part of a lineage II KIR. Although previously defined PopyKIR2DL4 alleles contain premature termination codons, the sequenced haplotype's PopyKIR2DL4 allele encodes a full-length protein. A model for KIR evolution is proposed. Distinguishing the orangutan KIR haplotype from the proposed common ancestor of primate KIR haplotypes is an increased number to give three lineage III KIR genes in the centromeric part of the locus, the site for most human lineage III genes encoding HLA-C specific KIR. Thus, expansion of lineage III KIR is associated with emergence of MHC-C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号