首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Euneura augarusis a specialized ectohyperparasitoid of conifer lachnids, which causes considerable mortality in mummies of conifer lachnid parasitoids. For the search on a large scale, E. augarusfemales rely mainly on volatile secondary plant compounds of conifers to locate potential host plants. In the medium-range (i.e., on a given host plant), females detect the presence of hosts either during spiral search flights or during search by walking. Search flights were more effective when mummies were dispersed, while clumped mummies were mainly found by walking. On ant-attended trees, E. augaruswas not able to forage successfully. Choice experiments with Aphidius ervi-mummies showed that E. augarusis able to develop in species that are not attacked in the field. We hypothesize that the proximate mechanism of host plant specificity, and as a consequence, host aphid specificity seems to be the use of typical conifer volatiles for host finding which provide the `search image' for the species.  相似文献   

2.
We examined host evaluation behaviour in three species of aphid parasitoids, Ephedrus californicus Baker, Monoctonus paulensis (Ashmead), and Praon pequodorum Viereck (Hymenoptera: Aphidiidae). Mated females were provided with pairwise choices among three kinds of hosts in the laboratory: (green) pea aphid, Acyrthosiphon pisum (Harris), and a green and a pink colour morph of alfalfa aphid, Macrosiphum creelii Davis. Patterns of attack and host acceptance were species-specific. Females of E. californicus did not respond to the presence of aphids prior to making antennal contact. Variations in rates of parasitization (pea aphid>green alfalfa aphid>pink alfalfa aphid) were consistent with differences in aphid defensive behaviours; no ‘preference’ for any host type was evident when aphids were anaesthetized with carbon dioxide. In M. paulensis, the order of preference (pea aphid>green alfalfa aphid>pink alfalfa aphid) did not vary when aphids were immobilized, or presented in the dark, or both. Host movement did not influence the rate of attack by M. paulensis. In contrast, the ranked order of preference in P. pequodorum varied with circumstance. In the light, females attacked pea aphid and green alfalfa aphid with equal frequency, but parasitized significantly more of the former; both kinds of aphids were attacked and parasitized at higher rates than pink alfalfa aphid. In the dark, P. pequodorum females parasitized green and pink alfalfa aphids equally and at higher rates than pea aphids. Whereas E. californicus was more successful ovipositing in immobilized hosts, P. pequodorum females attacked and laid more eggs in normal than anaesthetized aphids. Patterns of host recognition and evaluation are compared across six species representing four genera in the family Aphidiidae.  相似文献   

3.
1. Parasitoids are a valuable group for conservation biological control. In their role as regulators of aphid pests, it is critical that their lifecycle is synchronised with their hosts in both space and time. This is because a synchronised parasitoid community is more likely to strengthen the overall conservation biological control effect, thus damping aphid numbers and preventing potential outbreaks. One component of this host–parasitoid system was examined, that of migration, and the hypothesis that peak summer parasitoid and host migrations are synchronised in time was tested. 2. Sitobion avenae Fabricius and six associated parasitoids were sampled from 1976 to 2013 using 12.2‐m suction‐traps from two sites in Southern England. The relationship between peak weekly S. avenae counts and their parasitoids was quantified. 3. Simple regression models showed that the response of the peak parasitoids to the host was positive: generally, more parasitoids migrated with increasing numbers of aphids. Further, when averaged over time, the parasitoid migration peak date corresponded with the aphid migration peak. The co‐occurrence of the peaks was between 51% and 64%. However, the summer peak in aphid migration is not steadily shifting forward with time unlike spring first flights of aphids. Cross‐correlation analysis showed that there were no between‐year lagged effects of aphids on parasitoids. 4. These results demonstrate that the peak in migration phenology between host and parasitoid is broadly synchronised within a season. Because the threshold temperature for flight (> 12 °C) was almost always exceeded in summer, the synchronising agent is likely to be crop senescence, not temperature. Studies are needed to assess the effects of climate change on the mismatch potential between parasitoids and their hosts.  相似文献   

4.
The effect of adult experience on in-flight orientation to plant–host complex volatiles byAphidius erviHaliday was studied in a wind tunnel bioassay, usingAcyrthosiphon pisum(Harris), maintained on broad bean plants (Vicia faba) as host. A short oviposition experience (15 s) on the plant–host complex (PHC) was sufficient to induce a drastic decrease of flight propensity and stimulated a foraging behavior characterized by intense walking activity. However, flight activity resumed to normal levels 1 h after the oviposition experience on the PHC occurred. For parasitoids conditioned on the PHC for at least 1 min the recorded proportion making oriented flights to the PHC was significantly higher than that for naive females. In contrast, oviposition experience in the absence of plant material did not influence theA. erviflight response. Oviposition attempts on aphid dummies without egg release did not reduce flight activity. WhenA. ervifemales were exposed to glass beads coated withAc. pisumcornicle secretion, a priming effect was observed, resulting, compared with naive females, in a significantly higher rate of oriented flights to the PHC. In contrast, oviposition attempts visually induced by colored aphid dummies did not influence flight behavior. A strong reaction to volatile cues from uninfested plants was induced by oviposition experience on newly infested broad bean plants. This appears to be a case of associative learning. In fact, uninfested broad bean plants are basically unattractive to naiveA. ervifemales. The results demonstrate that adult experience has a considerable influence onA. ervibehavior and may have important implications for biological control of natural pest aphid populations.  相似文献   

5.
Several aphid honeydews were incorporated into sucrose solutions and presented to hop aphids, Phorodon humuli (Schrank), as artificial diets in free-choice bioassays. Small additions of honeydew collected from two species of aphid feeding on hop, Humulus lupulus L., arrested the searching behavior of the hop aphid and appeared to stimulate prolonged periods of ingestion. This effect was more dependent on the host plant honeydew source than the species of aphid that produced the honeydew. Aphid honeydews collected from plants other than hop (non-hosts to P. humuli) contained hop aphid phagostimulants that were less effective. Our results indicate that analysis of aphid honeydew could help describe chemical cues involved in the recognition of appropriate host plants by aphid species.  相似文献   

6.
Parasitoid disturbance populations in agroecosystems can be maintained through the provision of habitat refuges with host resources. However, specialized herbivores that feed on different host plants have been shown to form host-specialized races. Parasitoids may subsequently specialize on these herbivore host races and therefore prefer parasitizing insects from the refuge, avoiding foraging on the crop. Evidence is therefore required that parasitoids are able to move between the refuge and the crop and that the refuge is a source of parasitoids, without being an important source of herbivore pests. A North-South transect trough the Chilean Central Valley was sampled, including apple orchards and surrounding Pyracantha coccinea (M. Roem) (Rosales: Rosacea) hedges that were host of Eriosoma lanigerum (Hemiptera: Aphididae), a globally important aphid pest of cultivated apples. At each orchard, aphid colonies were collected and taken back to the laboratory to sample the emerging hymenopteran parasitoid Aphelinus mali (Hymenoptera: Aphelinidae). Aphid and parasitoid individuals were genotyped using species-specific microsatellite loci and genetic variability was assessed. By studying genetic variation, natural geographic barriers of the aphid pest became evident and some evidence for incipient host-plant specialization was found. However, this had no effect on the population-genetic features of its most important parasitoid. In conclusion, the lack of genetic differentiation among the parasitoids suggests the existence of a single large and panmictic population, which could parasite aphids on apple orchards and on P. coccinea hedges. The latter could thus comprise a suitable and putative refuge for parasitoids, which could be used to increase the effectiveness of biological control. Moreover, the strong geographical differentiation of the aphid suggests local reinfestations occur mainly from other apple orchards with only low reinfestation from P. cocinnea hedges. Finally, we propose that the putative refuge could act as a source of parasitoids without being a major source of aphids.  相似文献   

7.
1. Phytophagous insects frequently manipulate their host‐plant to improve their immediate environment. This generally implies substantial modifications of host metabolism, and sometimes an alteration of nitrogen allocation within the host‐plant. However, the outcome of plant manipulation on amino acid or protein content can be modulated by environmental factors and host‐plant traits. 2. It was investigated whether the pseudogall induced by the aphid Phloeomyzus passerinii (Signoret) (Aphididae: Phloeomyzinae) in the bark of its host‐plant affects the amino acid content in bark tissues, and whether the strength of the modification is modulated by the fertilisation regime and/or the resistance level of the host‐plant. The development of aphid colonies on a resistant and a susceptible poplar genotype, under three fertilisation regimes, was studied. After the development of colonies, the free and protein‐bound amino acid content of the infested bark were quantified. 3. Fertilisation enhanced poplar growth and increased the free amino acid content of bark tissues. Infestation also triggered accumulations of both free and protein‐bound amino acids in the feeding sites, but in the susceptible genotype only. The increase in amino acid content was more pronounced when fertilisation was low, and fertilisation did not enhance aphid development. 4. In conclusion, infestation by P. passerinii triggers an accumulation of amino acids, but the effect is influenced by both the fertilisation regime and the resistance level of the host‐plant. This suggests that P. passerinii could affect the allocation of nutrients within trees during outbreaks.  相似文献   

8.
During summer the parasitoid Aphelinus mali may certainly reduce the infestation of woolly apple aphid (Eriosoma lanigerum), but studies on the single interaction rarely indicate sufficient biological control in the period May-June. In this period chemical control by spirotetramat or pirimicarb remains indispensable in order to anticipate on dense migration waves and subsequent colonization of extension shoots by E. lanigerum. The limited parasitation by A. mali around flowering is linked with a delayed emergence from diapause and with a slower reproduction rate than its host. In 2010 and 2011 the first adult flights monitored on yellow sticky traps corresponded perfectly with the currently used prediction models for A. mali. Further accurate monitoring all along the season enabled also to determine a well defined endo-parasitic phase of A. mali occurring after the small peak observed around flowering. During this endo-parasitic phase A. mali larvae reside inside their mummified host. Compounds with higher acute toxicity on A. mali adults, like chloronicotinyl insecticides (CNI's), are preferably positioned here. Selectivity in the time can then be claimed. Respecting this principle, the further parasitation potential of A. mali in summer is not hampered. Preservation of the first peak of flights of A. mali in the pre-flowering period is essential for an exponential flight increase. This is essential for the parasitation of E. lanigerum in summer, which constitutes a valuable complement in the integrated control strategy.  相似文献   

9.
Abstract.
  • 1 We tested switching behaviour in four species of aphidiid parasitoids, using a two-aphid experimental system consisting of second-instar nymphs of pea aphid (Acyrthosiphon pisum (Harris)) and alfalfa aphid (Macrosiphum creelii Davis) feeding on broad beans in the laboratory.
  • 2 Aphidius ervi Haliday, A.pisivorus Smith, A.smithi Sharma & Subba Rao, and Pram pequodorum Viereck showed an innate preference for pea aphid when both host species were provided in equal numbers.
  • 3 Wasps encountered both aphid species equally but differed in their acceptance of alfalfa aphid. Females of A.pisivorus and P.pequodorum accepted alfalfa aphids when few pea aphids were available, but A. smithi always concentrated attacks on pea aphid. Aphidius ervi super-parasitized an increasing proportion of pea aphids as their availability declined.
  • 4 Switching to the alfalfa aphid occurred in A.ervi and P.pequodorum (but not in A.pisivorus and A.smithi) under the condition of a 1:3 ratio of pea aphids:alfalfa aphids. Wasps did not switch when more pea aphids than alfalfa aphids were provided (3:1 ratio).
  • 5 Alfalfa aphids were more likely than pea aphids to escape from parasitoid attack.
  • 6 Switching to the most abundant host may not be adaptive in these four species of aphid parasitoids. A foraging wasp incurs a potentially higher cost in lost opportunity time when attacking (and failing to oviposit in) alfalfa aphids. In addition, alfalfa aphids may have lower host quality than pea aphids, a difference that could influence offspring fitness.
  相似文献   

10.
李伟  甘雅玲  盛承发 《昆虫学报》2007,50(2):202-206
利用扫描电镜观察了努利虫疠霉Pandora nouryi (Remaudière & Hennebert) Humber初生分生孢子接种桃蚜Myzus persicae (Sulzer)后孢子萌发、入侵以及菌体突破虫体的整个侵染过程。结果表明:附着于虫体表面的初生分生孢子在3~5 h后即有60%以上的萌发率,萌发的孢子形成芽管或产生球形或棍棒状的附着胞;12 h后大部分孢子均已萌发,并成功入侵寄主虫体;接种60 h后,呈掌状分枝的假根首先从桃蚜胸部的腹面突破虫体长出体外,明显区别于新蚜虫疠霉Pandora neoaphidis (Remaudière & Hennebert) Humber假根突破虫体的位置;假囊状体不多见,且仅分布于蚜虫身体两侧,这可在一定程度上解释努利虫疠霉产孢对湿度条件要求较高的生物学现象。  相似文献   

11.
Variation among aphid genotypes leads them to preferentially colonize different host-plant genotypes. In a natural community, different genotypes within a species are expected to coexist on a single host plant, and these aphids can interact, potentially, altering host-plant preferences. Using a model aphid (Sitobion avenae) and barley (Hordeum vulgare) system, we compared aphid preference and performance in one- or two-genotype colonies in pots with genetically diverse host plants (6 genotypes) or genetically uniform host plants (1 genotype per pot). Aphid host preference was shown to differ when a second aphid genotype was present, with one aphid genotype exhibiting a preference change due to the genotypic identity of the second aphid. The population growth rate of the aphids was not influenced by the competitor, and thus, we conclude that these effects are due to aphid distribution (preference) rather than effects through performance. Our work demonstrates that within a complex ecological community, an individual’s behavior can be influenced by interactions with other genotypes within the same species, as well as interactions with genotypes of other species.  相似文献   

12.
Phytophagous insects generally feed on a restricted range of host plants, using a number of different sensory and behavioural mechanisms to locate and recognize their host plants. Phloem-feeding aphids have been shown to exhibit genetic variation for host preference of different plant species and genetic variation within a plant species can also have an effect on aphid preference and acceptance. It is known that genotypic interactions between barley genotypes and Sitobion avenae aphid genotypes influence aphid fitness, but it is unknown if these different aphid genotypes exhibit active host choice (preference) for the different barley genotypes. Active host choice by aphid genotypes for particular plant genotypes would lead to assortative association (non-random association) between the different aphid and plant genotypes. The performance of each aphid genotype on the plant genotypes also has the ability to enhance these interactions, especially if the aphid genotypes choose the plant genotype that also infers the greatest fitness. In this study, we demonstrate that different aphid genotypes exhibit differential preference and performance for different barley genotypes. Three out of four aphid genotypes exhibited preference for (or against) particular barley genotypes that were not concordant with differences in their reproductive rate on the specific barley genotype. This suggests active host choice of aphids is the primary mechanism for the observed pattern of non-random associations between aphid and barley genotypes. In a community context, such genetic associations between the aphids and barley can lead to population-level changes within the aphid species. These interactions may also have evolutionary effects on the surrounding interacting community, especially in ecosystems of limited species and genetic diversity.  相似文献   

13.
We analyzed the behavioral interactions between two species of honeydew-collecting ants (Lasius niger, Myrmica laevinodis) and foraging females of four species of aphid hyperparasitoids (Aphidencyrtus aphidivorus, Dendrocerus carpenteri, Pachyneuron aphidis, Asaphes vulgaris) usingAphis fabae ssp.cirsiiacanthoidis andLysiphlebus cardui on thistles as aphid and primary parasitoid, respectively. The observed interaction patterns and foraging parameters varied within hyperparasitoid species and revealed different strategies based upon behavioral and morphological constraints.D. carpenteri generally tried to avoid ant encounters. This avoidance strategy was successful in interactions withM. laevinodis but failed when encountering the more aggressiveL. niger, which caused about 26% adult mortality. In contrast,A. aphidivorus, P. aphidis, andA. vulgaris possess jumping ability and were hardly exposed to mortality risks. The escape reaction jump off was used as soon as ants made physical contact with foraging females. While the flight strategy ofP. aphidis is connected with cryptic movement patterns without avoidance behavior,A. aphidivorus first avoided ants and jumped off only as a last resort. Similar patterns, but less expressive, are displayed byA. vulgaris. We suggest that these different strategies are responsible for different foraging success in ant-attended resources in field.  相似文献   

14.
We designed an experiment to test whether two species of aphid feeding on different species of host plant influence each others population dynamics via shared parasitoids (apparent competition) or other indirect processes. Pea aphid ( Acyrthosiphon pisum ) colonies declined faster towards mid-summer when there were nearby colonies of nettle aphid ( Microlophium carnosum ), though the significance of the difference ( P  = 0.06) was just short of the traditional 0.05 level. Observations suggested that parasitoids were not responsible for this difference, however, and that it was highly likely to be caused by aphid-specific predators.  相似文献   

15.
Abstract. Field observations were made on the responses of males and gynoparae of three host-alternating aphid species, the blackberry-cereal aphid, Sitobion fragariae (Walker), the bird cherry-oat aphid, Rhopalosiphum padi (L.) and the damson-hop aphid, Phorodon humuli (Schrank) to species-specific sex pheromones released from transparent and coloured water traps.Pheromone traps caught significantly more males than did control traps without pheromone, whereas transparent, light green, yellow and orange traps caught most insects.Measurements of the distance over which sex pheromones function indicated that male P.humuli detect the pheromone 2–6 m from the source and can fly upwind to a source in wind speeds of 0.7 m s-1.In all three species significantly more gynoparae were caught in pheromone traps than in control traps, suggesting that pheromone released by adult sexual females may assist late-flying gynoparae to locate a suitable host plant on which to deposit their progeny.The response is relatively stronger for males than gynoparae, but the pheromones appear to act as both sex and aggregation pheromones.  相似文献   

16.
Host evaluation behaviour was examined in three species of aphid parasitoids,Aphidius ervi haliday,A. pisivorus Smith, andA. smithi Sharma & Subba Rao (Hymenoptera: Aphidiidae). Parasitoids were provided under laboratory conditions with three kinds of hosts representing two aphid species: (green) pea aphid,Acyrthosiphon pisum (Harris), and green and pink colour morphs of the alfalfa aphid,Macrosiphum creelii Davis. Females of all threeAphidius species distinguished between aphids on the basis of colour, movement, and host species. Patterns of host acceptance by parasitoids were species-specific. InA. ervi, host preference was the same in light and dark conditions: pea aphid>green alfalfa aphid≫pink alfalfa aphid. In contrast,A. pisivorus attacked and accepted pea aphid and green alfalfa aphid equally in the light and preferred both of these over pink alfalfa aphid; however, it made no distinction between pea aphid and pink alfalfa aphid in the dark. Females ofA. smithi attacked all three kinds of hosts (pea aphid>green alfalfa aphid≫pink alfalfa aphid) but apparently laid eggs only in pea aphid. The frequencies of attack and oviposition by all wasps were higher on ‘normal’ pea aphids than on those anaesthetized with CO2. Host recognition is confirmed by chemical cues in the aphid cuticle that are detected during antennation, and host acceptance is dependent on an assessment of host quality during ovipositor probing.  相似文献   

17.
Defining host ranges in parasitoid insects is important both from a theoretical and an applied point of view. Based on the literature, some species seem able to use a wide range of hosts, while field studies indicate possible local host specialization. In koinobiont endoparasitoid species, such specialization could involve physiological processes. We tested the ability of two strains of the cosmopolitan and polyphagous parasitoid Diaeretiella rapae, to develop in three of its recorded aphid host species. Both strains produced high parasitism rates on the cabbage aphid Brevicoryne brassicae and the green peach aphid Myzus persicae but almost no progeny on the cherry-oat aphid Rhopalosiphum padi. This last species was less attacked by female parasitoids. Moreover, parasitoid eggs and larvae were smaller than in the two other host aphid species and their development was delayed. This abnormal development appeared to be due to an incomplete host regulation process, probably related to the low number and the size of teratocytes produced by D. rapae in R. padi individuals. Such a failure as far as gaining control of the host's metabolism is concerned could play an important role in shaping the host range of parasitoid insects, leading to local variation of the host spectrum in populations from various geographical areas.  相似文献   

18.
Models of disease dynamics commonly make the assumption of spatial homogeneity in the underlying host population. However, insect behavior may result in spatially heterogeneous populations with which pathogens interact. We modified a simulation model of temporal and spatial population dynamics of the Russian wheat aphid, Diuraphis noxia, on preferred or nonpreferred host plants, by incorporating effects of the entomopathogenic fungus, Beauveria bassiana. Epizootic parameters included time from inoculation of aphids until death, duration of sporulation, and estimated exposure probability. Simulations first predicted results of previously described experiments in which D. noxia adults were inoculated with conidial suspensions or water and placed on wheat or oat seedlings in 81-plant grids in cages. Subsequently, large-scale simulations were run for hypothetical field situations on 50 × 50-plant grids of wheat or oat. With B. bassiana present for both cage and larger scale simulations, results indicated that, on oat, an expanding infection front lagged behind the expanding aphid population front. Continual aphid movement from hosts resulted in many escapes, and the aphid population persisted at slightly reduced levels. On the preferred wheat host, patterns developed with pockets of infected aphids and other pockets of healthy aphids. Localized aphid populations that escaped initial infestation were able to proliferate, whereas other local populations were greatly reduced or became extinct due to lack of movement from the hosts, resulting in increased exposure to pathogen inoculum. Thus, proliferation and fluctuation of the pathogen were strongly influenced by the plant hosts' effects on aphid movement behavior. Incorporating spatial dynamics into disease models should prove useful in other efforts to predict biological control efficacy by entomopathogenic fungi in heterogeneous habitats.  相似文献   

19.
Three aphid species were compared with respect to ability of enhancing the nutritional quality of their host plants. Rhopalosiphum padi, which does not induce macroscopic changes in its host plants, was compared with Schizaphis graminum and Diuraphis noxia, both of which induce distinctive types of chlorotic lesions. Phloem sap samples were collected from severed stylets of feeding aphids and from exudates of cut leaves of plants uninfested or infested with each aphid species. Samples were analyzed for concentrations of individual amino acids.Compared to R. padi, S. graminum ingested phloem sap with a two-fold higher concentration of amino acids and a much higher proportion of essential amino acids. Similar differences between these two aphid species were observed on both wheat and barley. For each aphid species, the absolute concentrations of amino acids and the relative proportions of essential amino acids were similar between the two host plants. Effects of D. noxia were similar to those of S. graminum, though less dramatic. Exudates from leaves infested with each aphid species showed relative concentrations of individual amino acids that were similar to those in the corresponding stylet exudates. Based on comparison of stylet exudates and cut leaf exudates from infested and uninfested plants, R. padi seems to have little effect on amino acid composition of phloem. Changes in the phloem induced by both S. graminum and D. noxia appear to be systemic, affecting at least the whole leaf they are feeding on. The changes observed for D. noxia and for S. graminum are likely to be nutritionally advantageous for the aphids and are expected to affect the aphids' dependence on nutritional supplementation by intracellular symbionts (Buchnera).  相似文献   

20.
Plants provide aphids with unbalanced and low concentrations of amino acids. Likely, intracellular symbionts improve the aphid nutrition by participating to the synthesis of essential amino acids. To compare the aphid amino acid uptakes from the host plant and the aphids amino acid excretion into the honeydew, host plant exudates (phloem + xylem) from infested and uninfested Vicia faba L. plants were compared to the honeydew produced by two aphid species (Acyrthosiphon pisum Harris and Megoura viciae Buckton) feeding on V. faba. Our results show that an aphid infestation modifies the amino acid composition of the infested broad bean plant since the global concentration of amino acids significantly increased in the host plant in response to aphid infestations. Specifically, the concentrations of the two amino acids glutamine and asparagine were strongly enhanced. The amino acid profiles from honeydews were similar for the two aphid species, but the concentrations found in the honeydews were generally lower than those measured in the exudates of infested plants (aphids uptakes). This work also highlights that aphids take large amounts of amino acids from the host plant, especially glutamine and asparagine, which are converted into glutamic and aspartic acids but also into other essential amino acids. The amino acid profiles differed between the host plant exudates and the aphid excretion product. Finally, this study highlights that the pea aphid, a “specialist” for the V. faba host plant, induced more important modifications into the host plant amino acid composition than the “generalist” aphid M. viciae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号