首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular ATP: an unexpected role as a signaler in plants   总被引:3,自引:0,他引:3  
ATP and other nucleoside triphosphates not only drive energy-dependent reactions inside cells, but can also function outside the plasma membrane in the extracellular matrix, where they function as agonists that can induce diverse physiological responses without being hydrolyzed. This external role of ATP is well established in animal cells but only recently has it become apparent that extracellular ATP (eATP) can also function as a signaling agent in plants. Recent data have shown that eATP and other nucleotides can induce an increase in the cytosolic Ca(2+) concentration and diverse downstream changes that influence plant growth and defense responses. Ectoapyrase enzymes that regulate the eATP concentration also have an impact on plant growth. These results beg the question of whether there is a receptor that can bind to eATP and transduce this into signaling changes. Answering this will be key to understanding how eATP and ectoapyrases influence plant growth and development.  相似文献   

2.
FRD3 controls iron localization in Arabidopsis   总被引:2,自引:0,他引:2  
Green LS  Rogers EE 《Plant physiology》2004,136(1):2523-2531
The frd3 mutant of Arabidopsis exhibits constitutive expression of its iron uptake responses and is chlorotic. These phenotypes are consistent with defects either in iron deficiency signaling or in iron translocation and localization. Here we present several experiments demonstrating that a functional FRD3 gene is necessary for correct iron localization in both the root and shoot of Arabidopsis plants. Reciprocal grafting experiments with frd3 and wild-type Arabidopsis plants reveal that the phenotype of a grafted plant is determined by the genotype of the root, not by the genotype of the shoot. This indicates that FRD3 function is root-specific and points to a role for FRD3 in delivering iron to the shoot in a usable form. When grown under certain conditions, frd3 mutant plants overaccumulate iron in their shoot tissues. However, we demonstrate by direct measurement of iron levels in shoot protoplasts that intracellular iron levels in frd3 are only about one-half the levels in wild type. Histochemical staining for iron reveals that frd3 mutants accumulate high levels of ferric iron in their root vascular cylinder, the same tissues in which the FRD3 gene is expressed. Taken together, these results clearly indicate a role for FRD3 in iron localization in Arabidopsis. Specifically, FRD3 is likely to function in root xylem loading of an iron chelator or other factor necessary for efficient iron uptake out of the xylem or apoplastic space and into leaf cells.  相似文献   

3.
Iron-uptake and storage are tightly regulated to guarantee sufficient iron for essential cellular processes and to prevent the production of damaging free radicals. A non-classical class I MHC molecule, the hemochromatosis factor (HFE), has been shown to regulate iron metabolism, potentially via its interaction with the transferrin receptor. Whereas, the effect of human HFE (hHFE) on transferrin/transferrin receptor association, as well as on transferrin receptor recycling and the level of cellular iron pools in various cell lines was analyzed, very little is known about the mouse HFE (mHFE) protein. In the following study, our aim was to analyze in more detail the function of mHFE. Surprisingly, we observed that over-expression of mHFE, but not of hHFE, in a mouse transformed cell line, results in a most significant inhibition of transferrin-uptake which correlated with apoptotic cell death. mHFE inhibited transferrin-uptake immediately following transfection and this inhibition persisted in the surviving stable transfectants. Concomitantly, cellular iron derived from transferrin-iron uptake was dramatically limited. The activation of a non-transferrin bound iron-uptake pathway that functions in the stable mHFE-transfected clones could explain their normal growth curves and survival. The hypothesis that iron starvation can induce iron-uptake by a novel transferrin-independent pathway is discussed.  相似文献   

4.
5.
The present study was undertaken to investigate the possible inhibition of growth in Pseudomonas aeruginosa by interfering with its iron-uptake mechanism. Cobalt was employed as a possible competitive inhibitor of iron-uptake because of its similar size. The results indicate that cobalt competes effectively with iron for uptake by the bacterial cells and interference with iron-uptake could provide an effective means for inhibiting growth in P. aeruginosa.  相似文献   

6.
Iron chlorosis is very common on alkaline soils such as calcareous ones, since iron availability is limited by high pH. Under these conditions of iron deficiency, graminaceous plant species induce special mechanisms for iron acquisition, involving enhanced release of iron chelators called phytosiderophores. On the other hand, it is known that most of salt soils have alkaline pH. So, plants growing on this kind of soils are often subjected simultaneously to salinity and iron deficiency. This work aimed at (i) studying the physiological responses of barley (Hordeum vulgare L.) to iron deficiency, and (ii) evaluating the effect of salt on the iron nutrition and the phytosiderophore release. For this purpose, seedlings of Hordeum vulgare L. were cultivated under controlled conditions, either in a complete nutrient solution with or without NaCl, or in an iron free nutrient solution containing or not NaCl. The plant morphological aspect, chlorophyll content of young leaves, iron status, biomass production, and phytosiderophore release by roots were assessed. Plants subjected to Fe deficiency exhibited a severe chlorosis, accompanied by a significant biomass reduction. These plants developed more lateral roots than the control with a highly stimulated phytosiderophore release. However, the latter was greatly diminished when iron deficiency was associated to salinity. A depressive effect of salt on iron acquisition in plants subjected only to salt stress which was also observed and further confirmed by the important decrease of efficiency in iron acquisition. These results suggest that salinity may reduce capacity of plants to acquire iron from alkaline soils by inhibiting phytosiderophore release.  相似文献   

7.
8.
Non-host resistance is the most general form of disease resistance in plants because it is effective against most phytopathogens. The importance of hypersensitive responses (HRs) in non-host resistance of Nicotiana species to the oomycete Phytophthora is clear. INF1 elicitin, an elicitor obtained from the late-blight pathogen Phytophthora infestans , is sufficient to induce a typical HR in Nicotiana species. The molecular mechanisms that underlie the non-host resistance component of plant defence responses have been investigated using differential-display polymerase chain reaction (PCR) in a model HR system between INF1 elicitin and tobacco BY-2 cells. Differential-display PCR has revealed that Cdc27B is down-regulated in tobacco BY-2 cells after treatment with INF1 elicitin. Cdc27B is one of 13 essential components of the anaphase-promoting complex or cyclosome (APC/C)-type E3 ubiquitin ligase complex in yeast. This APC/C-type E3 ubiquitin ligase complex regulates G2-to-M phase transition of the cell cycle by proteolytic degradation. In this study, we investigated the roles of this gene, NbCdc27B , in plant defence responses using virus-induced gene silencing. Suppression of NbCdc27B in Nicotiana benthamiana plants induced defence responses and a gain of resistance to Colletotrichum lagenarium fungus. Elicitin-induced hypersensitive cell death (HCD) was inhibited mildly in plants silenced with tobacco rattle virus::Cdc27B. Cdc27B could manage the signalling pathways of plant defence responses as a negative regulator without HCD.  相似文献   

9.
Plant pathogenic bacterial type III effectors subdue host responses   总被引:2,自引:0,他引:2  
Like animals, plants sense bacterial pathogens through surface-localized pattern recognition receptors (PRRs) and intracellular nucleotide-binding leucine-rich repeat proteins (NB-LRR) and trigger defense responses. Many plant-pathogenic bacteria secrete a large repertoire of effector proteins into host cells to modulate host responses, enabling successful infection and multiplication in plants. A number of these effector proteins target plant innate immunity signaling pathways, while others induce specific host genes to enhance plant susceptibility. Substantial progress has been made in the past two years concerning biochemical function of effectors and their host targets. These advances provide new insights into regulatory mechanisms of plant immunity and host-pathogen co-evolution.  相似文献   

10.

Background and aims

Iron is an essential nutrient for plant growth. Although abundant in soil, iron is poorly available. Therefore, plants have evolved mechanisms for iron mobilization and uptake from the rhizospheric environment. In this study, we examined the physiological responses to iron deficiency in Medicago truncatula plants exposed to volatile organic compounds (VOCs) produced by Arthrobacter agilis UMCV2.

Methods

The VOC profiles of the plant and bacterium were determined separately and during interaction assays using gas chromatography. M. truncatula plants exposed to A. agilis VOCs and pure dimethylhexadecylamine were transferred to conditions of iron deficiency, and parameters associated with iron nutritional status were measured.

Results

The relative abundance of the bacterial VOC dimethylhexadecylamine increased 12-fold when in co-cultures of A. agilis and M. truncatula, compared to axenic cultures. Plants exposed to bacterial VOCs or dimethylhexadecylamine exhibited a higher rhizosphere acidification capacity, enhanced ferric reductase activity, higher biomass generation, and elevated chlorophyll and iron content relative to controls.

Conclusions

The VOCs emitted by A. agilis UMCV2 induce iron acquisition mechanisms in vitro in the Strategy I plant M. truncatula. Dimethylhexadecylamine is the signal molecule responsible for producing the beneficial effects.  相似文献   

11.
Iron-sufficient Azotobacter salinestris cells bound large amounts of 55Fe to cell-associated catechol melanin in an energy-independent manner. Iron was mobilized from the cell surface by citric acid and transported into the cell in a process that was inhibited by azide, carbonyl cyanide m-chlorophenyl-hydrazone (CCCP), KCl or RbCl, the latter two known to inhibit Na+-dependent activities in A. salinestris. Iron-limited cells produced a hydroxamate compound (HDX) which promoted 55Fe-uptake into iron-limited cells in a two step process. Initial uptake was inhibited by azide or CCCP, but not by KCl, while subsequent uptake was blocked by all inhibitors. Citric acid also mediated energy-dependent 55Fe-uptake in iron-limited cells, but initial iron-uptake was less sensitive to CCCP than HDX-mediated iron-uptake. The results show that melanin serves as an iron trap, probably to protect the cells from oxidative damage mediated by H2O2 and the Fenton reaction. A model for HDX siderophore-mediated iron-uptake is proposed which requires energy to concentrate iron in the periplasm and H+/Na+-dependent events to bring iron into the cell.  相似文献   

12.
The effective acquisition of iron is a pre-requisite for survival of all organisms, especially parasites that have a high iron requirement. In mammals, iron homeostasis is meticulously regulated; extracellular free iron is essentially unavailable and host iron availability has a crucial role in the host-pathogen relationship. Therefore, pathogens use specialized and effective mechanisms to acquire iron. In this review, we summarize the iron-uptake systems in eukaryotic unicellular organisms with particular focus on the pathogenic species: Candida albicans, Tritrichomonas foetus, Trypanosoma brucei and Leishmania spp. We describe the diversity of their iron-uptake mechanisms and highlight the importance of the process for virulence.  相似文献   

13.
The role of the exopolysaccharides (EPSs) produced by plant pathogenic bacteria has not completely clarified, they are considered either molecules able to avoid or delay the activation of plant defences, or acting as signal in the plant-pathogen cross-talk. In order to understand whether EPSs are recognized by infected plant cells and are able to induce the activation of plant defence responses, their capability to induce metabolic alteration in tobacco cells has been analysed. The results indicate that several EPSs, even if not chemically related, induce increases in phenylalanine ammonia-lyase, a marker enzyme of defence responses of plants against stress; but others are completely ineffective. The EPSs affecting phenylalanine ammonia-lyase also induce an increase in hydrogen peroxide production. Moreover, they alter the metabolism of ascorbate, another parameter indicative of the presence of stress conditions and the involvement of which in the hypersensitive reaction has been recently reported. The possibility that specific EPSs could act as signals in the plant-pathogenic bacteria interaction is discussed.  相似文献   

14.
Hong Y  Pan X  Welti R  Wang X 《The Plant cell》2008,20(3):803-816
Rapid activation of phospholipase D (PLD), which hydrolyzes membrane lipids to generate phosphatidic acid (PA), occurs under various hyperosmotic conditions, including salinity and water deficiency. The Arabidopsis thaliana PLD family has 12 members, and the function of PLD activation in hyperosmotic stress responses has remained elusive. Here, we show that knockout (KO) and overexpression (OE) of previously uncharacterized PLDalpha3 alter plant response to salinity and water deficit. PLDalpha3 uses multiple phospholipids as substrates with distinguishable preferences, and alterations of PLDalpha3 result in changes in PA level and membrane lipid composition. PLDalpha3-KO plants display increased sensitivities to salinity and water deficiency and also tend to induce abscisic acid-responsive genes more readily than wild-type plants, whereas PLDalpha3-OE plants have decreased sensitivities. In addition, PLDalpha3-KO plants flower later than wild-type plants in slightly dry conditions, whereas PLDalpha3-OE plants flower earlier. These data suggest that PLDalpha3 positively mediates plant responses to hyperosmotic stresses and that increased PLDalpha3 expression and associated lipid changes promote root growth, flowering, and stress avoidance.  相似文献   

15.
Mining iron: iron uptake and transport in plants   总被引:7,自引:0,他引:7  
Kim SA  Guerinot ML 《FEBS letters》2007,581(12):2273-2280
  相似文献   

16.
Iron, despite being an essential micronutrient, becomes toxic if present at high levels. As a result, plants possess carefully regulated mechanisms to acquire iron from the soil. The ferric reductase defective3 (frd3) mutant of Arabidopsis (Arabidopsis thaliana) is chlorotic and exhibits constitutive expression of its iron uptake responses. Consequently, frd3 mutants overaccumulate iron; yet, paradoxically, the frd3 phenotypes are due to a reduction in the amount of iron present inside frd3 leaf cells. The FRD3 protein belongs to the multidrug and toxin efflux family, members of which are known to export low-M(r) organic molecules. We therefore hypothesized that FRD3 loads an iron chelator necessary for the correct distribution of iron throughout the plant into the xylem. One such potential chelator is citrate. Xylem exudate from frd3 plants contains significantly less citrate and iron than the exudate from wild-type plants. Additionally, supplementation of growth media with citrate rescues the frd3 phenotypes. The ectopic expression of FRD3-GFP results in enhanced tolerance to aluminum in Arabidopsis roots, a hallmark of organic acid exudation. Consistent with this result, approximately 3 times more citrate was detected in root exudate from plants ectopically expressing FRD3-GFP. Finally, heterologous studies in Xenopus laevis oocytes reveal that FRD3 mediates the transport of citrate. These results all strongly support the hypothesis that FRD3 effluxes citrate into the root vasculature, a process important for the translocation of iron to the leaves, as well as confirm previous reports suggesting that iron moves through the xylem as a ferric-citrate complex. Our results provide additional answers to long-standing questions about iron chelation in the vasculature and organic acid transport.  相似文献   

17.
18.
In well aerated soils, iron exists, mainly as scarcely soluble oxides and oxi-hydroxides and, therefore, not freely available to plants uptake, notwithstanding its abundance. Multifaceted strategies involving reductase activities, proton processes, specialized storage proteins, and other, act in concert to mobilize iron from the environment, to take it up and to distribute it inside the plant. Because of its fundamental role in plant productivity several questions concerning homeostasis of iron in plants are currently a matter of intense debate. We discuss some recent studies on Strategy I responses in dicotyledonous plants focusing on metabolic change induced by iron deficiency, mainly concerning the involvement of mitochondria.Key words: Fe deficiency, glycolysis, mitochondria, reducing equivalents, respiratory chain, TCA cycle  相似文献   

19.
PAMP (pathogen-associated molecular pattern) recognition plays an important role during the innate immune response in both plants and animals. Lipopolysaccharides (LPS) derived from Gram-negative bacteria are representative of typical PAMP molecules and have been reported to induce defense-related responses, including the suppression of the hypersensitive response, the expression of defense genes and systemic resistance in plants. However, the details regarding the precise molecular mechanisms underlying these cellular responses, such as the molecular machinery involved in the perception and transduction of LPS molecules, remain largely unknown. Furthermore, the biological activities of LPS on plants have so far been reported only in dicots and no information is thus available regarding their functions in monocots. In our current study, we report that LPS preparations for various becteria, including plant pathogens and non-pathogens, can induce defense responses in rice cells, including reactive oxygen generation and defense gene expression. In addition, global analysis of gene expression induced by two PAMPs, LPS and chitin oligosaccharide, also reveals a close correlation between the gene responses induced by these factors. This indicates that there is a convergence of signaling cascades downstream of their corresponding receptors. Furthermore, we show that the defense responses induced by LPS in the rice cells are associated with programmed cell death (PCD), which is a finding that has not been previously reported for the functional role of these molecules in plant cells. Interestingly, PCD induction by the LPS was not detected in cultured Arabidopsis thaliana cells.  相似文献   

20.
The small GTP-binding protein family including Rac proteins represents a paradigm for signaling molecules shared by animal and plants. In mammalian cells, Rac induces the activation of NADPH oxidase leading to superoxide production. In plants, evidence suggests that resistance to pathogens depends on superoxide that is generated via NADPH oxidase-like enzymes. We have identified four closely related Rho/Rac genes from Zea mays that exhibit a high degree of homology to the human Rac. We hypothesized that these plant Rac proteins could function as their mammalian counterpart and activate an enzymatic complex that leads to superoxide production. Here, we show that like human Rac1, activated Zea mays Rac genes can induce superoxide production, when expressed in a mammalian system: NIH 3T3 cells. Our results suggest that in plants, Rac proteins can function as activators of oxidative burst and indicate the remarkable functional and structural conservation of Rho/Rac proteins between plant and animal kingdoms during evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号