首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Activities of trout liver glucose dehydrogenase (GDH, EC 1.1.1.47) and glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) were increased after a sudden drop in water temperature, but not in long-time cold acclimated as compared with warm acclimated trout. 2. Possibly, the activities of GDH and G6PD were temporarily increased in connection with metabolic adaptation to the lower temperature. 3. The activities of GDH and G6PD were not changed by the stress of handling. 4. Partially purified trout liver GDH has a lower activation energy with glucose than with glucose-6-phosphate as substrate, and the Km (glucose) decreases with decreasing assay temperature. 5. At low temperatures, the activity of trout liver GDH with glucose as substrate may be comparable to that of glucose-6-phosphate. 6. Partially purified beef liver GDH has a high activation energy with glucose as substrate, and the Km (glucose) does not change with the assay temperature. 7. Hexokinase (HK, EC 2.7.1.1) and GDH activities were unchanged when trout were deprived of food for 4 weeks. Apparently, the trout liver glucose utilization did not adapt to the starvation.  相似文献   

2.
Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in Kupffer cell function, especially in phagocytosis activity. Although it was suggested that Kupffer G6PD may be upregulated in Kupffer phagocytosis/activation, direct morphological evidence has been lacking. Acid phosphatase (ACP), a representative lysosomal enzyme, can be used as a cytochemical marker for phagocyte activation. Using an ultrastructural enzyme-cytochemical dual staining method, I simultaneously localized G6PD and ACP activity in mouse Kupffer cells on a cell-by-cell basis, and examined whether or not cytochemically detectable G6PD activity increases in phagocytosing/activated mouse Kupffer cells. Glucose-6-phosphate dehydrogenase labelings were observed in the cytoplasm and on the cytosolic side of the endoplasmic reticulum, and ACP labelings were seen in the lysosomes. In phagocytosing Kupffer cells, in which ACP deposits were observed not only in the lysosomes but also on the phagosomal membranes and phagosomal contents, G6PD labelings were denser than dormant Kupffer cells. Enzyme-cytochemically detectable G6PD activity increases in phagocytosing/activated mouse Kupffer cells. Kupffer cell G6PD, activated in phagocytosing Kupffer cells, may play an important role not only in liver defense but also in liver disease pathogenesis/pathophysiology.  相似文献   

3.
Although various tissue macrophages possess high glucose-6-phosphate dehydrogenase (G6PD) activity, which is reported to be closely associated with their phagocytotic/bactericidal function, the fine subcellular localization of this enzyme in liver resident macrophages (Kupffer cells) has not been determined. We have investigated the subcellular localization of G6PD in Kupffer cells in rat liver, using a newly developed enzyme-cytochemical (copper-ferrocyanide) method. Electron-dense precipitates indicating G6PD activity were clearly visible in the cytoplasm and on the cytosolic side of the endoplasmic reticulum of Kupffer cells. Cytochemical controls ensured specific detection of the enzymatic activity. Rat Kupffer cells abundantly possessed enzyme-cytochemically detectable G6PD activity. Kupffer cell G6PD may play a role in liver defense by delivering NADPH to NADPH-dependent enzymes. G6PD enzyme-cytochemistry may be a useful tool for the study of Kupffer cell functions.  相似文献   

4.
The induction of NADPH-generating enzymes by polychlorinated biphenyls (PCB) in rats was investigated. The administration of PCB to rats for 3 and 14 days increased the activities of malic enzyme (ME, EC 1.1.1.40), glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49), and 6-phosphogluconate dehydrogenase (6PGD, EC 1.1.1.44) about 2-fold above the control level in the liver. Hepatic mRNA levels of ME, G6PD, and 6PGD, except for G6PD mRNA of the 14-day group, were also elevated to the same degree as the enzyme activities in PCB-treated rats. In rats fed a PCB-containing diet for 1 day, the hepatic mRNA levels of ME and G6PD were elevated prior to the induction of enzyme activity. In the kidney, lung, spleen, heart, and testis, the mRNA levels of ME, G6PD, and 6PGD were not affected by PCB. The induction of hepatic NADPH-generating enzymes would imply an increased demand of NADPH in the liver of rats fed with a PCB-containing diet.  相似文献   

5.
Immunological studies on glucose 6-phosphate dehydrogenase of rat liver   总被引:1,自引:0,他引:1  
Glucose 6-phosphate dehydrogenase (G6PD) was purified from the supernatant fraction of rat liver to a homogeneous preparation by a specific elution with substrate. A specific antibody against the purified enzyme was prepared in rabbits and was shown to completely inhibit the enzyme activity and precipitate the enzyme protein of liver supernatant. With this antiserum, liver supernatants with varying specific G6PD activities obtained under several experimental conditions and supernatants from other tissues examined all formed single precipitin lines, which fused with each other in the Ouchterlony double-diffusion system. Three interconvertible microheterogeneous forms of G6PD in liver, supernatant were immunologically indistinguishable from each other. The G6PDs in participate fractions of liver were, however, distinct from the supernatant enzyme both in inhibition of the enzyme activity and in formation of precipitation by the specific antiserum. Liver supernatant G6PD, which was inactivated with various reagents or by heating, showed a simultaneous loss of ability to form precipitin line. Aggregation and disaggregation of the dehydrogenase to the tetramer and monomer, respectively, also resulted in loss of immunological reactivity. The increase in G6PD activity in the cytoplasm of carbon tetrachloride-treated or glucose casein-refed rat liver was accompanied by a proportional increase in the quantity of immunologically reactive G6PD protein.  相似文献   

6.
We studied the regulation of glucose-6-phosphate dehydrogenase (G6PD) gene expression by chronic hypoxia. G6PD mRNA level and activity were increased in PC12 cells by hypoxia in a dose- and time-dependent manner. Cobalt chloride and dimethyloxalylglycine, which can mimic hypoxia, also activated G6PD gene expression. Interestingly, hypoxia-induced G6PD expression followed a time course much slower than that of phosphoglycerate kinase 1 (PGK1), a hypoxia-inducible factor (HIF)-dependent glycolytic enzyme. Hypoxic-G6PD induction was almost negligible in non-excitable Buffalo rat liver cells, although in these cells PGK1 was strongly upregulated by low PO(2). Furthermore, G6PD but not PGK1 induction was blocked by the antioxidants glutathione and N-acetylcysteine. These results suggest the dependence of G6PD gene expression on HIF and intracellular redox status and the differential hypoxic regulation of glucose-metabolizing enzymes.  相似文献   

7.
Favism is a life-threatening hemolytic anemia resulting from the intake of fava beans by susceptible individuals with low erythrocytic glucose 6-phosphate dehydrogenase (G6PD) activity. However, little is known about the metabolomic changes in plasma and liver after the intake of fava beans in G6PD normal and deficient states. In this study, gas chromatography/mass spectrometry was used to analyze the plasma and liver metabolic alterations underlying the effects of fava beans in C3H- and G6PD-deficient (G6PDx) mice, and to find potential biomarkers and metabolic changes associated with favism. Our results showed that fava beans induced oxidative stress in both C3H and G6PDx mice. Significantly, metabolomic differences were observed in plasma and liver between the control and fava bean treated groups of both C3H and G6PDx mice. The levels of 7 and 21 metabolites in plasma showed significant differences between C3H-control (C3H-C)- and C3H fava beans-treated (C3H-FB) mice, and G6PDx-control (G6PDx-C)- and G6PDx fava beans-treated (G6PDx-FB) mice, respectively. Similarly, the levels of 7 and 25 metabolites in the liver showed significant differences between C3H and C3H-FB, and G6PDx and G6PDx-FB, respectively. The levels of oleic acid, linoleic acid, and creatinine were significantly increased in the plasma of both C3H-FB and G6PDx-FB mice. In the liver, more metabolic alterations were observed in G6PDx-FB mice than in C3H-FB mice, and were involved in a sugar, fatty acids, amino acids, cholesterol biosynthesis, the urea cycle, and the nucleotide metabolic pathway. These findings suggest that oleic acid, linoleic acid, and creatinine may be potential biomarkers of the response to fava beans in C3H and G6PDx mice and therefore that oleic acid and linoleic acid may be involved in oxidative stress induced by fava beans. This study demonstrates that G6PD activity in mice can affect their metabolic pathways in response to fava beans.  相似文献   

8.
Glucose-6-phosphate dehydrogenase (G6PD; EC 1.1.1.49) is the key regulatory enzyme of the pentose phosphate pathway and produces NADPH and riboses. In this study, the kinetic properties of G6PD activity were determined in situ in chemically induced hepatocellular carcinomas, and extralesional and control parenchyma in rat livers and were directly compared with those of the second NADPH-producing enzyme of the pentose phosphate pathway, phosphogluconate dehydrogenase (PGD). Distribution patterns of G6PD activity, protein, and mRNA levels were also compared to establish the regulation mechanisms of G6PD activity. In (pre)neoplastic lesions, the V(max) of G6PD was 150-fold higher and the K(m) for G6P was 10-fold higher than in control liver parenchyma, whereas in extralesional parenchyma, the V(max) was similar to that in normal parenchyma but the K(m) was fivefold lower. This means that virtual fluxes at physiological substrate concentrations are 20-fold higher in lesions and twofold higher in extralesional parenchyma than in normal parenchyma. The V(max) of PGD was fivefold higher in lesions than in normal and extralesional liver parenchyma, whereas the K(m) was not affected. Amounts of G6PD protein and mRNA were similar in lesions and in extralesional liver parenchyma. These results demonstrate that G6PD is strongly activated post-translationally in (pre)neoplastic lesions to produce NADPH.  相似文献   

9.
S W Eber  M Gahr  W Schr?ter 《Blut》1985,51(2):109-115
Two new inheritable variants of glucose-6-phosphate dehydrogenase have been found in two unrelated German families. Patients with one variant (G6PD Iserlohn, also referred to as G6PD I) suffered from intermittent hemolytic crises caused by fava beans; patients with the other variant (G6PD Regensburg, G6PD II) disclosed chronic nonspherocytic hemolytic anemia aggravated by drug treatment. Due to their unusual biochemical characteristics, the new variants were designated G6PD Iserlohn and G6PD Regensburg. Both variants showed a reduction of enzyme activity to about 6% of the normal in erythrocytes, normal electrophoretic mobility, increased affinity for glucose-6-phosphate, a reduced affinity for NADP and a pH optimum in the neutral region (7.0 and 7.5). G6PD Iserlohn had a decreased affinity for the inhibitor NADPH; G6PD Regensburg had a normal inhibitor constant. Deamino NADP was utilized at an increased rate by G6PD Regensburg. G6PD Iserlohn was thermostable, G6PD Regensburg mildly instable. G6PD activity in leukocytes was normal in G6PD Iserlohn and reduced to the same degree as in erythrocytets in G6PD Regensburg. The cause of the decreased activity of G6PD Iserlohn appears to be in vivo instability; in G6PD Regensburg further mechanisms might include reduced specific activity or reduced synthesis of the variant enzyme.  相似文献   

10.
Rat liver glucose-6-phosphate dehydrogenase (G6PD) is one of several proteins involved in lipid metabolism whose synthesis is regulated by diet. In experiments reported here, rats were fasted or fed diets until a new steady state level of G6PD was produced. Livers were used to measure G6PD activity, synthesis and mRNA simultaneously. Since accurate quantitation of G6PD mRNA by Northern blots was found to be difficult in noninduced animals a new solution hybridization assay was also used. Noninduced rats have approx. One molecule of G6PD mRNA per liver cell. Changes in G6PD mRNA are larger than previously reported and, at the steady state, can completely account for the 33-fold change in G6PD activity and synthesis when fasted rats are refed a high carbohydrate diet. In contrast, a high fat carbohydrate-free diet does not increase G6PD mRNA and dibutyryl cAMP lowers G6PD mRNA. Since changes in G6PD synthesis and activity are closely correlated, degradation of G6PD is not significantly regulated.  相似文献   

11.
A genetically determined absence of mitochondrial malic enzyme (EC 1.1.1.40) in c3H/c6H mice is accompanied by a four-fold increase in liver glucose-6-phosphate dehydrogenase and a two-fold increase for 6-phosphogluconate dehydrogenase activity. Smaller increases in the activity of serine dehydratase and glutamic oxaloacetic transaminase are observed while the level of glutamic pyruvate transaminase activity is reduced in the liver of deficient mice. Unexpectedly, the level of activity of total malic enzyme in the livers of mitochondrial malic enzyme-deficient mice is increased approximately 50% compared to littermate controls. No similar increase in soluble malic enzyme activity is observed in heart of kidney tissue of mutant mice and the levels of total malic enzyme in these tissues are in accord with expected levels of activity in mitochondrial malic enzyme-deficient mice. The divergence in levels of enzyme activity between mutant and wild-type mice begins at 19--21 days of age. Immunoinactivation experiments with monospecific antisera to the soluble malic enzyme and glucose-6-phosphate dehydrogenase demonstrate that the activity increases represent increases in the amount of enzyme protein. The alterations are not consistent with a single hormonal response.  相似文献   

12.
Kinetic and electrophoretic properties of 230--300 fold purified preparations of glucose-6-phosphate dehydrogenase (G6PD) from red cells of donors and patients with acute drug hemolytic anemia due to G6PD deficiency were studied. A new abnormal variant of G6PD isolated from red cell of a patient with acute drug hemolytic anemia, which was not described in literature, has been discovered. The abnormal enzyme differs from the normal by decreased Michaelis constant for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (NADP), by increased utilization of analogues of substrates--2-deoxy-glucose-6-phosphate and particularly deamino-NADP, by low thermal stability, by the character of pH-dependence, by the appearance of a single band of G6PD activity in polyacrylamide gel electrophoresis.  相似文献   

13.
G6PD (glucose-6-phosphate dehydrogenase) is the rate-limiting enzyme in the oxidative pentose phosphate pathway that can generate cytosolic NADPH for biosynthesis and oxidative defense. Since cytosolic NADPH can be compensatively produced by other sources, the enzymatic activity deficiency alleles of G6PD are well tolerated in somatic cells but the effect of null mutations is unclear. Herein, we show that G6PD KO sensitizes cells to the stresses induced by hydrogen peroxide, superoxide, hypoxia, and the inhibition of the electron transport chain. This effect can be completely reversed by the expressions of natural mutants associated with G6PD deficiency, even without dehydrogenase activity, exactly like the WT G6PD. Furthermore, we demonstrate that G6PD can physically interact with AMPK (AMPK-activated protein kinase) to facilitate its activity and directly bind to NAMPT (nicotinamide phosphoribosyltransferase) to promote its activity and maintain the NAD(P)H/NAD(P)+ homeostasis. These functions are necessary to the antistress ability of cells but independent of the dehydrogenase activity of G6PD. In addition, the WT G6PD and naturally inactive mutant also can similarly regulate the metabolism of glucose, glutamine, fatty acid synthesis, and GSH and interact with the involved enzymes. Therefore, our findings reveal the previously unidentified functions of G6PD that can act as the important physiological neutralizer of stresses independently of its enzymatic activity.  相似文献   

14.
Physico-chemical properties of erythrocyte glucose-6-phosphate dehydrogenase including erythrocyte G6PD activity, Michaelis constants, KmG6P and NADP, pH optimum, thermostability and molecular weight were investigated in “brown-howler” monkeys and then compared with the values of human G6PD B(+). The values of Michaelis constants (KmG6P and NADP) pH optimum were the same as the values of human G6PD B(+). The human G6PD has a dimeric form in the assay conditions employed in the present study, monkey enzyme showing great similariy with human one. Otherwise, the thermostability differed from the human G6PD. The simian enzymatic activity was about four times higher than the human G6PD. A comparison of physico-chemical properties of glucose-6-phosphate dehydrogenase among primates is also presented.  相似文献   

15.
Summary Male and female rat liver were studied during post-natal development. A correlation was found between biochemically determined hydroxylations and enzymhisto-chemically determined NADPH-nitro-BT reductase and Naphthol-AS-D esterase. No correlation was found between glucose-6-phosphate dehydrogenase or iso-citric acid dehydrogenase activity and hydroxylations. The difference in hydroxylating capacity between male and female rats may be caused by the fact that the number of cells with hydroxylating activity in the liver lobule, as judged by the NADPH-nitro-BT reductase and Naphthol-AS-D esterase activity, is higher in male than in female rats.List of Abbreviations NADH reduced nicotinamide adenine dinucleotide - NADPH reduced nicotinamide adenine dinucleotide phosphate - G6PD glucose-6-phosphate dehydrogenase - ICD iso-citric acid dehydrogenase - G6Pase glucose-6-phosphatase - NADPH -nitro-BT red - NADPH Nitro-blue tetrazolium reductase - SDH succinic acid dehydrogenase - TCA trichloracetic acid  相似文献   

16.
The specific activity and enzyme protein concentration of the developmentally regulated enzyme glucose 6-phosphate dehydrogenase (G6PD) were measured in the developing aggregates and supporting mycelium of a fruiting-impaired variant strain of Agaricus bisporus. The nonregulated enzymes mannitol dehydrogenase (MD) and hexokinase (HK) were assayed for comparison. G6PD activity was higher in aggregates than in the mycelium, whereas MD and HK activities varied little between mycelium and aggregates. Enzyme protein levels varied in a way different from enzyme activity, suggesting the presence of inactive enzyme at times during development. The raised level of G6PD in aggregates provides a possible mechanism for the increased mannitol concentration previously observed in aggregates. There was no parallel to the rapid increase in G6PD activity associated with primordium development of normally fruiting strains growing on compost.  相似文献   

17.
Glucose-6-phosphate dehydrogenase (G6PD) is involved in the generation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) and the maintenance of cellular redox balance. We previously showed that G6PD-deficient fibroblasts undergo growth retardation and premature cellular senescence. In the present study, we demonstrate abatement of both the intracellular G6PD activity and the ratio NADPH/NADP(+) during the serial passage of G6PD-deficient cells. This was accompanied by a significant increase in the level of 8-hydroxy-2-deoxyguanosine (8-OHdG). This suggests that the lowered resistance to oxidative stress and accumulative oxidative damage may account for the premature senescence of these cells. Consistent with this, the G6PD-deficient cells had an increased propensity for hydrogen peroxide (H(2)O(2))-induced senescence; these cells exhibited such senescent phenotypes as large, flattened morphology and increased senescence-associated beta-galactosidase (SA-beta-Gal) staining. Decreases in both the intracellular G6PD activity and the NADPH/NADP(+) ratio were concomitant with an increase in 8-OHdG level in H(2)O(2)-induced senescent cells. Exogenous expression of G6PD protected the deficient cells from stress-induced senescence. No significant telomere shortening occurred upon repetitive treatment with H(2)O(2). Simultaneous induction of p16(INK4a) and p53 was detected in G6PD-deficient but not in normal fibroblasts during H(2)O(2)-induced senescence. Our findings support the notion that G6PD status, and thus proper redox balance, is a determinant of cellular senescence.  相似文献   

18.
A new form of cytoplasmic glucose-6-phosphate dehydrogenase (E.C.1.1.1.49) was purified from rat liver by protamine sulfate precipitation, ammonium sulfate fractionation, ion exchange chromatography with diethylaminoethyl cellulose, and affinity chromatography with Cibacron blue agarose and NADP agarose. This form of the enzyme has a specific activity of over 600 units/mg of protein and gives essentially a single band by polyacrylamide gel electrophoresis. The form of the enzyme isolated by this purification method is 3 times more active than the form purified from liver by previously reported procedures. The relative mass of this pure glucose-6-phosphate dehydrogenase enzyme was determined by disc gel electrophoresis to be 269,000. This high activity glucose-6-phosphate dehydrogenase enzyme, after inactivation by reaction with palmityl-CoA, was no longer precipitated by specific rabbit and goat antisera to this purified enzyme. Thus, the possibility still exists that starved fat-refed animals contain glucose-6-phosphate dehydrogenase (G6PD) enzyme protein in an inactivated form no longer detectable by either enzyme activity or immunoprecipitation.  相似文献   

19.
In this experimental study, the effect of fish n-3 fatty acids was studied on the some important enzymes of carbohydrate metabolism, hexokinase (HK), glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), lactate dehydrogenase (LDH), and malate dehydrogenase (MDH) in rat liver. Wistar albino rats of experimental group (n= 9) were supplemented fish omega-3 fatty acids (n-3 PUFA) as 0.4 g/kg bw. by gavage for 30 days in addition to their normal diet. Isotonic solution was given to the control group (n= 8) by the same way. At 30th day, the rats were killed by decapitation under ether anesthesia, autopsied and liver was removed. Spectrophotometric methods were used to determine the activities of above-mentioned enzymes in the liver. The n-3 PUFA caused increases in the activities of HK, G6PD, LDH, and MDH in comparison with control. These increases were statistically significant (P < 0.01) except 6PGD activity. As a result, n-3 PUFA may regulate the metabolic function of liver effectively by increasing HK, G6PD, 6PGD, LDH, and MDH enzyme activities of rat liver when added in enough amounts to the regular diet.  相似文献   

20.
Biosynthesis of steroid hormones in the cortex of the adrenal gland takes place in smooth endoplasmic reticulum and mitochondria and requires NADPH. Four enzymes produce NADPH: glucose-6-phosphate dehydrogenase (G6PD), the key regulatory enzyme of the pentose phosphate pathway, phosphogluconate dehydrogenase (PGD), the third enzyme of that pathway, malate dehydrogenase (MDH), and isocitrate dehydrogenase (ICDH). However, the contribution of each enzyme to NADPH production in the cortex of adrenal gland has not been established. Therefore, activity of G6PD, PGD, MDH, and ICDH was localized and quantified in rat adrenocortical tissue using metabolic mapping, image analysis, and electron microscopy. The four enzymes have similar localization patterns in adrenal gland with highest activities in the zona fasciculata of the cortex. G6PD activity was strongest, PGD, MDH, and ICDH activity was approximately 60%, 15%, and 7% of G6PD activity, respectively. The K(m) value of G6PD for glucose-6-phosphate was two times higher than the K(m) value of PGD for phosphogluconate. As a consequence, virtual flux rates through G6PD and PGD are largely similar. It is concluded that G6PD and PGD provide the major part of NADPH in adrenocortical cells. Their activity is localized in the cytoplasm associated with free ribosomes and membranes of the smooth endoplasmic reticulum, indicating that NADPH-demanding processes related to biosynthesis of steroid hormones take place at these sites. Complete inhibition of G6PD by androsterones suggests that there is feedback regulation of steroid hormone biosynthesis via G6PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号