首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The second zinc finger fragment of Sp1 (Spl-ZF2), its mutant (Spl-ZF2/HT. E20→H, R23→T), and two mimic analogues (ZF20 and ZF15) were synthesized by stepwise solid phase technique. The CD spectra and UV-visible spectrum with CoCl2 indicated that the formation of zinc finger structure was affected not only by the hy-drophobic amino acids but also by the change of the distance between Cys and His. Gel-retardation electrophoresis as-says indicated that the Grlu and Arg residues are very important for recognition. A single zinc finger like Spl-ZF2 isable to bind DNA sequence specifically.  相似文献   

2.
3.
4.
5.
6.
To improve the DNA hydrolytic activity of the zinc finger nuclease, we have created a new artificial zinc finger nuclease (ZWH4) by connecting two distinct zinc finger domains possessing different types of Zn(II) binding sites (Cys2His2- and His4-types). The overall fold of ZWH4 is similar to that of the wild-type Sp1 zinc finger (Sp1(zf123)) as revealed by circular dichroism spectroscopy. The gel mobility shift assay demonstrated that ZWH4 binds to the GC box DNA, although the DNA-binding affinity is lower than that of Sp1(zf123). Evidently, ZWH4 hydrolyzes the covalently closed circular plasmid DNA (form I) containing the GC box (pBSGC) to the linear duplex DNA (form III) in the presence of a higher concentration (50 times) of the protein than DNA for a 24-h reaction. Of special interest is the fact that the novel mixed zinc finger protein containing the Cys2His2- and His4-type domains was first created. The present results provide the useful information for the redesign strategy of an artificial nuclease based on the zinc finger motif.  相似文献   

7.
8.
The muscleblind‐like (MBNL) proteins 1, 2, and 3, which contain four CCCH zinc finger motifs (ZF1–4), are involved in the differentiation of muscle inclusion by controlling the splicing patterns of several pre‐mRNAs. Especially, MBNL1 plays a crucial role in myotonic dystrophy. The CCCH zinc finger is a sequence motif found in many RNA binding proteins and is suggested to play an important role in the recognition of RNA molecules. Here, we solved the solution structures of both tandem zinc finger (TZF) motifs, TZF12 (comprising ZF1 and ZF2) and TZF34 (ZF3 and ZF4), in MBNL2 from Homo sapiens. In TZF12 of MBNL2, ZF1 and ZF2 adopt a similar fold, as reported previously for the CCCH‐type zinc fingers in the TIS11d protein. The linker between ZF1 and ZF2 in MBNL2 forms an antiparallel β‐sheet with the N‐terminal extension of ZF1. Furthermore, ZF1 and ZF2 in MBNL2 interact with each other through hydrophobic interactions. Consequently, TZF12 forms a single, compact global fold, where ZF1 and ZF2 are approximately symmetrical about the C2 axis. The structure of the second tandem zinc finger (TZF34) in MBNL2 is similar to that of TZF12. This novel three‐dimensional structure of the TZF domains in MBNL2 provides a basis for functional studies of the CCCH‐type zinc finger motifs in the MBNL protein family.  相似文献   

9.
10.
11.
12.
13.
14.
15.
Zic family proteins have five C2H2-type zinc finger (ZF) motifs. We physicochemically characterized the folding properties of Zic ZFs. Alteration of chelation with zinc ions and of hydrophobic interactions changed circular dichroism spectra, suggesting that they caused structural changes. The motifs were heat stable, but electrostatic interactions had little effect on structural stability. These results highlight the importance of chelating interactions and hydrophobic interactions for the stability of the folding structure of Zic ZF proteins.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号