首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The second zinc finger fragment of Sp1 (Spl-ZF2), its mutant (Spl-ZF2/HT. E20→H, R23→T), and two mimic analogues (ZF20 and ZF15) were synthesized by stepwise solid phase technique. The CD spectra and UV-visible spectrum with CoCl2 indicated that the formation of zinc finger structure was affected not only by the hy-drophobic amino acids but also by the change of the distance between Cys and His. Gel-retardation electrophoresis as-says indicated that the Grlu and Arg residues are very important for recognition. A single zinc finger like Spl-ZF2 isable to bind DNA sequence specifically.  相似文献   

2.
DNA repair is regulated on many levels by ubiquitination. In order to identify novel connections between DNA repair pathways and ubiquitin signaling, we used mass spectrometry to identify proteins that interact with lysine 6-linked polyubiquitin chains. From this proteomic screen, we identified the DNA repair protein WRNIP1 (Werner helicase-interacting protein 1), along with nucleosome assembly protein 1, as novel ubiquitin-interacting proteins. We found that a small zinc finger domain at the N terminus of WRNIP1 is sufficient and necessary for noncovalent ubiquitin binding. This ubiquitin-binding zinc finger (UBZ) domain binds polyubiquitin but not monoubiquitin and appears to show no specificity for polyubiquitin chain linkage. A homologous zinc finger domain in RAD18 also binds polyubiquitin, suggesting a wider role for the UBZ domain in DNA repair. The WRNIP1 ubiquitin-binding function, along with its previously established ATPase activity, suggests that WRNIP1 plays a role in the metabolism of ubiquitinated proteins. Supporting this model, deletion of MGS1, the yeast homolog of WRNIP1, slows the rate of ubiquitin turnover, rendering yeast resistant to cycloheximide. We also find that WRNIP1 is heavily modified with ubiquitin and SUMO, revealing complex layers in the involvement of ubiquitin pathway proteins in the regulation of DNA repair. The novel ubiquitin-binding ability of WRNIP1 sheds light on the role of UBZ domain-containing proteins in postreplication DNA repair.  相似文献   

3.
AOBP, a DNA-binding protein in pumpkin, contains a Dof domain that is composed of 52 amino acid residues and is highly conserved in several DNA-binding proteins of higher plants. The Dof domain has a significant resemblance to Cys2/Cys2 zinc finger DNA-binding domains of steroid hormone receptors and GATA1, but has a longer putative loop where an extra Cys residue is conserved. We show that the Dof domain in AOBP functions as a zinc finger DNA-binding domain and suggest that the Cys residue uniquely conserved in the putative loop might negatively regulate the binding to DNA.  相似文献   

4.
5.
Two-dimensional NMR spectroscopic and computational methods were employed for the structure determination of an 18-residue peptide with the amino acid sequence of the C-terminal retroviral-type (r.t.) zinc finger domain from the nucleocapsid protein (NCP) of HIV-1 [Zn(HIV1-F2)]. Unlike results obtained for the first retroviral-type zinc finger peptide, Zn(HIV1-F1), [Summers et al. (1990) Biochemistry 29, 329], broad signals indicative of conformational lability were observed in the 1H NMR spectrum of Zn-(HIV1-F2) at 25 degrees C. The NMR signals narrowed upon cooling to -2 degrees C, enabling complete 1H NMR signal assignment via standard two-dimensional (2D) NMR methods. Distance restraints obtained from qualitative analysis of 2D nuclear Overhauser effect (NOESY) data were used to generate 30 distance geometry (DG) structures with penalties (penalty = sum of the squared differences between interatomic distances defined in the restraints file and in the DG structures) in the range 0.02-0.03 A2. All structures were qualitatively consistent with the experimental NOESY spectrum based on comparisons with 2D NOESY back-calculated spectra. Superposition of the backbone atoms (C, C alpha, N) for residues C(1)-C(14) gave pairwise RMSD values in the range 0.16-0.75 A. The folding of Zn(HIV1-F2) is very similar to that observed for Zn(HIV1-F1). Small differences observed between the two finger domains are localized to residues between His(9) and Cys(14), with residues M(11)-C(14) forming a 3(10) helical corner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The connection of functional modules is effective for the design of DNA binding molecules with the desired sequence specificity. C(2)H(2)-type zinc finger proteins have a tandemly repeated array structure consisting of independent finger modules and are expected to recognize any DNA sequences by permutation, multi-connection, and the substitution of various sets of zinc fingers. To investigate the effects of the replacement of the terminal finger on the DNA recognition by other fingers, we have constructed the three zinc finger peptides with finger substitution at the N- or C-terminus, Sp1(zf223), Sp1(zf323), and Sp1(zf321). From the results of gel mobility shift assays, each mutant peptide binds preferentially to the target sequence that is predicted if the fingers act in a modular fashion. The methylation interference analyses demonstrate that in the cases of the N-terminal finger substitution mutants, Sp1(zf223) and Sp1(zf323), the N-terminal finger recognizes bases to different extents from that of the wild-type peptide, Sp1(zf123). Of special interest is the fact that the N-terminal finger of the C-terminal finger substitution mutant, Sp1(zf321), shows a distinct base recognition from those of Sp1(zf123) and Sp1(zf323). DNase I footprinting analyses indicate that the C-terminal finger (active finger) induces a conformational change in the DNA in the region for the binding of the N-terminal finger (passive finger). The present results strongly suggest that the extent of base recognition of the N-terminal finger is dominated by the binding of the C-terminal finger. This information provides an important clue for the creation of a zinc finger peptide with the desired specificity, which is applicable to the design of novel drugs and biological tools.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
The monoallelic expression of imprinted genes is regulated by DNA methylation marks that originate from the oocyte or sperm. Li et al. (2008) show in this issue of Developmental Cell that the KRAB zinc finger protein Zfp57 contributes to the embryonic maintenance of these imprints. At one locus, Zfp57 is also involved in imprint establishment. These findings provide a mechanistic interpretation for Mackay et al.'s recently reported ZFP57 mutations in patients with transient neonatal diabetes.  相似文献   

15.
Full length murine WT1 and its zinc finger domain were separately inserted into Escherichia coli expression vectors with various fusion tags on either terminus by Gateway technology (Invitrogen) and expression of soluble protein was assessed. Fusion proteins including the four zinc finger domains of WT1 were used to optimize expression and purification conditions and to characterize WT1:DNA interactions in the absence of WT1:WT1 interactions. Zinc finger protein for in vitro characterization was prepared by IMAC purification of WT1 residues 321-443 with a thioredoxin-hexahistidine N-terminal fusion, followed by 3C protease cleavage to liberate the zinc fingers and cation exchange chromatography to isolate the zinc fingers and reduce the level of the truncated forms. Titration of zinc finger domain with a binding site from the PDGFA promoter gave a K(d) of 100±30nM for the -KTS isoform and 130±40nM for the +KTS isoform. The zinc finger domain was also co-crystallized with a double-stranded DNA oligonucleotide, yielding crystals that diffract to 5.5?. Using protocols established for the zinc finger domain, we expressed soluble full-length WT1 with an N-terminal thioredoxin domain and purified the fusion protein by IMAC. In electro-mobility shift assays, purified full-length WT1 bound double-stranded oligonucleotides containing known WT1 binding sites, but not control oligonucleotides. Two molecules of WT1 bind an oligonucleotide presenting the full PDGFA promoter, demonstrating that active full-length WT1 can be produced in E. coli and used to investigate WT1 dimerization in complex with DNA in vitro.  相似文献   

16.
Fruit fly FTZ-F1, silkworm BmFTZ-F1, and mouse embryonal long terminal repeat-binding protein are members of the nuclear hormone receptor superfamily, which recognizes the same sequence, 5'-PyCAAGGPyCPu-3'. Among these proteins, a 30-amino-acid basic region abutting the C-terminal end of the zinc finger motif, designated the FTZ-F1 box, is conserved. Gel mobility shift competition by various mutant peptides of the DNA-binding region revealed that the FTZ-F1 box as well as the zinc finger motif is involved in the high-affinity binding of FTZ-F1 to its target site. Using a gel mobility shift matrix competition assay, we demonstrated that the FTZ-F1 box governs the recognition of the first three bases, while the zinc finger region recognizes the remaining part of the binding sequence. We also showed that the DNA-binding region of FTZ-F1 recognizes and binds to DNA as a monomer. Occurrence of the FTZ-F1 box sequence in other members of the nuclear hormone receptor superfamily raises the possibility that these receptors constitute a unique subfamily which binds to DNA as a monomer.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号