共查询到20条相似文献,搜索用时 0 毫秒
1.
A. S. Taisova O. I. Keppen A. A. Novikov M. G. Naumova Z. G. Fetisova 《Microbiology》2006,75(2):129-135
We determined the concentrations of bacteriochlorophylls (BChl) in the light-harvesting antennae of Oscillochloris trichoides (of the family Oscillochloridaceae belonging to green filamentous mesophilic bacteria) cultivated either with gabaculine, an inhibitor of the C-5 pathway of BChl biosynthesis in a number of bacteria, or at various illumination intensities. We determined the BChl c: BChl a molar ratios in intact cells, in chlorosome-membrane complexes, and in isolated chlorosomes. We revealed that BChl c synthesis in Osc. trichoides was more gabaculine-sensitive than BChl a synthesis. Accordingly, an increase in gabaculine concentrations in the medium resulted in a decrease in the BChl c: BChl a ratio in the tested samples. We suggest that BChl synthesis in Osc. trichoides proceeds via the C-5 pathway, similar to representatives of other families of green bacteria (Chlorobium limicola and Chloroflexus aurantiacus). We demonstrated that the BChl c: BChl a ratio in the chlorosomes varied from 55: 1 to 110: 1, depending on light intensity. This ratio is, therefore, closer to that of Chlorobiaceae, and it significantly exceeds the BChl c: BChl a ratio in Chloroflexaceae. 相似文献
2.
Hans van Gemerden 《Archives of microbiology》1986,146(1):52-56
The utilization of sulfide by phototrophic sulfur bacteria temporarily results in the accumulation of elemental sulfur. In the green sulfur bacteria (Chlorobiaceae), the sulfur is deposited outside the cells, whereas in the purple sulfur bacteria (Chromatiaceae) sulfur is found intracellularly. Consequently, in the latter case, sulfur is unattainable for other individuals. Attempts were made to analyze the impact of the formation of extracellular elemental sulfur compared to the deposition of intracellular sulfur.According to the theory of the continuous cultivation of microorganisms, the steady-state concentration of the limiting substrate is unaffected by the reservoir concentration (S
R).It was observed in sulfide-limited continuous cultures ofChlorobium limicola f.thiosulfatophilum that higherS
R values not only resulted in higher steady-state population densities, but also in increased steady-state concentrations of elemental sulfur. Similar phenomena were observed in sulfide-limited cultures ofChromatium vinosum.It was concluded that the elemental sulfur produced byChlorobium, althouth being deposited extracellularly, is not easily available for other individuals, and apparently remains (in part) attached to the cells. The ecological significance of the data is discussed.Non-standard abbreviations RP
reducing power
- BChl
bacteriochlorophyll
- Ncell
cell material
-
specific growth rate
- {ie52-1}
maximal specific growth rate
-
D
dilution rate
-
K
s
saturation constant
-
s
concentration of limiting substrate
-
S
R
same ass but in reservoir bottle
-
Y
yield factor
- iSo
intracellular elemental sulfur
- eSo
extracellular elemental sulfur
- PHB
poly-beta-hydroxybutyric acid 相似文献
3.
B. K. Pierson S. J. Giovannoni D. A. Stahl R. W. Castenholz 《Archives of microbiology》1985,142(2):164-167
An unusual filamentous, gliding bacterium was found in a few hot springs in Oregon where it formed a nearly unispecific top layer of microbial mats. It contained a bacteriochlorophyll a-like pigment and an abundance of carotenoids. There were no chlorosomes or additional chlorophylls. The organism was aerotolerant and appeared to be photoheterotrophic. It was successfully co-cultured with an aerobic chemoheterotroph in a medium containing glucose and casamino acids. Although it has many characteristics in common with the genus Chloroflexus, the lack of chlorosomes and bacteriochlorophyll c and the aerobic nature of this organism indicate that it should be placed in a new genus. This conclusion is supported by 5S rRNA nucleotide sequence data. 相似文献
4.
The reaction center (RC) of green sulfur bacteria has iron—sulfur clusters as terminal acceptors and is related to the Type I RC found in Heliobacter sp. and in Photosystem I (PS I) of green plants and cyanobacteria. Degenerate primers were used to retrieve the genes coding for one of the RC proteins, PscB, from 11 strains of green sulfur bacteria. PCR using the same primers gave no product with a second group of strains and the protein from these strains did not crossreact with antibodies raised against purified PscB from the first group, suggesting the presence of a high degree of variability. The sequences shared a high degree of similarity in the region coding for the binding motif for the 4Fe–4S centers. However, the N-terminal portion of the deduced protein sequences was highly variable and contained a highly positively charged, low-complexity region with repeated tetrapeptides with two alanines flanked by proline or lysine. The PscB sequences obtained fell into two major groups, and the results suggested a lack of correlation between the pigmentation of the chlorosome antenna system and the reaction center protein. There is also a lack of correlation between the grouping of the pscB sequences and the phylogeny deduced from 16S rRNA.This revised version was published online in October 2005 with corrections to the Cover Date. 相似文献
5.
Resonance Raman experiments were performed on different green bacteria. With blue excitation, i.e. under Soret resonance or preresonance conditions, resonance Raman contributions were essentially arising from the chlorosome pigments. By comparing these spectra and those of isolated chlorosomes, it is possible to evaluate how the latter retain their native structure during the isolation procedures. The structure of bacteriochlorophyll oligomers in chlorosomes was interspecifically compared, in bacteriochlorophyllc- and bacteriochlorophylle- synthesising bacteria. It appears that interactions assumed by the 9-keto carbonyl group are identical inChlorobium limicola, Chlorobium tepidum, andChlorobium phaeobacteroides. In the latter strain, the 3-formyl carbonyl group of bacteriochlorophylle is kept free from intermolecular interactions. By contrast, resonance Raman spectra unambiguously indicate that the structure of bacteriochlorophyll oligomers is slightly different in chlorosomes fromChloroflexus auranticus, either isolated or in the whole bacteria. 相似文献
6.
Chloroflexus aurantiacus can be induced to shift from respiratory to photosynthetic energy production by introducing light and/or lowering the oxygen concentration of a culture. After induction, cells synthesize bacteriochlorophyll and proteins for the formation of a functional photosynthetic apparatus. Bacteriochlorophyll is detectable within 2 h after induction. Chlorosome polypeptides are detected after 8–12 h. Two proteins, Mr 60,000 and Mr 47,000, are present in both induced and noninduced cells and react specifically with antibodies against chlorosome polypeptides. Immunological data suggest that these proteins (Mr 60,000 and 47,000) are polyproteins which are transcribed and translated in the dark. When cells are exposed to light or low oxygen tension these proteins are processed into functional polypeptides required in the assembly of the chlorosome. The reaction center polypeptide (Mr 26,000) appears to be part of a separate genetic control system.Dedicated to Prof. G. Drews on occasion of his 60th birthday 相似文献
7.
The pigment composition of two species of green-colored BChl c-containing green sulfur bacteria (Chlorobium limicola and C. chlorovibrioides) and two species of brown-colored BChl e-containing ones (C. phaeobacteroides and C. phaeovibrioides) incubated at different light intensities have been studied. All species responded to the reduction of light intensity from 50 to 1 Einstein(E) m–2 s–1 by an increase in the specific content of light harvesting pigments, bacteriochlorophylls and carotenoids. At critical light intensities (0.5 to 0.1 E m–2 s–1) only brown-colored chlorobia were able to grow, though at low specific rates (0.002 days–1 mg prot–1). High variations in the relative content of farnesyl-bacteriochlorophyll homologues were found, in particular BChl e
1 and BChl e
4, which were tentatively identified as [M, E] and [I, E] BChlF
e, respectively. The former was almost completely lost upon reduction of light intensity from 50 to 0.1 E m–2 s–1, whereas the latter increased from 7.2 to 38.4% and from 13.6 to 42.0% in C. phaeobacteroides and C. phaeovibrioides, respectively. This increase in the content of highly alkylated pigment molecules inside the chlorosomes of brown species is interpreted as a physiological mechanism to improve the efficiency of energy transfer towards the reaction center. This study provides some clues for understanding the physiological basis of the adaptation of brown species to extremely low light intensities.Abbreviations BChl
bacteriochlorophyll
- [M, E] BChlF
e
8-methyl, 12-ethyl BChl e, esterified with farnesol (F). Analogously: I - isobutyl
- Pr
propyl
- Car
carotenoids
- Chlb
chlorobactene
- HPLC
high performance liquid chromatography
- Isr
isorenieratene
- LHP
light harvesting pigments
- PDA
photodiode array detector
- RC
reaction center
- RCH
relative content of homologues 相似文献
8.
Paula I. van Noort Christof Francke Nicole Schoumans Stephan C. M. Otte Thijs J. Aartsma Jan Amesz 《Photosynthesis research》1994,41(1):193-203
The pigment composition and energy transfer pathways in isolated chlorosomes ofChlorobium phaeovibrioides andChlorobium vibrioforme were studied by means of high performance liquid chromatography (HPLC) and picosecond absorbance difference spectroscopy. Analysis of pigment extracts of the chlorosomes revealed that they contain small amounts of bacteriochlorophyll (BChl)a esterified with phytol, whereas the BChlsc, d ande are predominantly esterified with farnesol. The chlorosomal BChla content inC. phaeovibrioides andC. vibrioforme was found to be 1.5% and 0.9%, respectively. The time resolved absorbance difference spectra showed a bleaching shifted to longer wavelengths as compared to the Qy absorption maxima and in chlorosomes ofC. vibrioforme also an absorbance increase at shorter wavelengths was observed. These spectral features were ascribed to excitation of oligomers of BChle and BChlc/d, respectively. One-color and two-color pump-probe kinetics ofC. phaeovibrioides showed rapid energy transfer to long-wavelength absorbing BChle oligomers, followed by trapping of excitations by BChla with a time constant of about 60 ps. Time resolved anisotropy measurements inC. vibrioforme showed randomization of excitations among BChla molecules with a time constant of about 20 ps, indicating that BChla in the baseplate is organized in clusters. One-color and two-color pump-probe measurements inC. vibrioforme showed rapid energy transfer from short-wavelength to long-wavelength absorbing oligomers with a time constant of about 11 ps. Trapping of excitations by BChla in this species could not be resolved unambiguously due to annihilation processes in the BChla clusters, but may occur with time constants of 15, 70 and 200 ps. 相似文献
9.
The effect of light quality on the selection of natural populations of Green Sulfur Bacteria (Chlorobiaceae) is considered to be a classic factor in the determination of their ecological niches. From the comparison among phototrophic bacterial populations of lakes, it is shown that brown and green pigmented groups of Chlorobiaceae have a differential distribution depending on depth. Statistical analyses prove that green species, which dominate at shallow oxic/anoxic boundaries, are correlated to light spectra enriched in long wavelengths, while brown ones are found when light spectra are enriched in the central region of the spectrum, as in deeper lake layers. Physiological experiments have been made withChlorobium limicola andC. phaeobacteroides cultures placed under different light quality conditions, in order to verify these hypotheses made on a field data basis. Results show that red and white light has more positive effects on the green bacterium than on the brown. Blue and green light illuminations have opposite consequences. Therefore, the effect of shallow depths and Chromatiaceae shading—which also increases the proportion of long wavelengths in light spectra—benefits the bacteriochlorophyll-based strategies of green species. On the other hand, the carotenoid-based strategies of brown ones are favored by the light climates usually dominant at greater depths. Thus, brown species are considered to be singular adaptations of Chlorobiaceae to depth, where bacteriochlorophyll light-harvesting is strongly limited by light quality. 相似文献
10.
11.
Flavocytochrome c-553 of the non-thiosulfateutilizing green sulfur bacterium Chlorobium limicola strain 6330 was partially purified by ion exchange column chromatography and ammonium sulfate fractionation (highest purity index obtained: A280/A417 red=0.96). It is autoxidizable and located in the soluble fraction. This hemoprotein contains a flavin component and one heme per molecule. The dithionite reduced spectrum reveals the typical maxima of a c-type cytochrome: =553,5 nm; =523 nm; =417 nm, while the oxidized form shows a -band at 410 nm and two shoulders at 440 nm and 480 nm indicating the flavin component. The flavocytochrome is a basic protein with an isoelectric point at pH 9.0 (± 0.5), a redox potential of 65 mV, a molecular weight of 56,000. It participates in sulfide oxidation and shows neither adenylylsulfate reductase nor sulfite reductase activity.C. limicola further contains a soluble cytochrome c-555 (highest purity index obtained: A280/A412 ox=0.13; isoelectric point between pH 9.5 and 10) and the non-heme iron-containing proteins rubredoxin and ferredoxin, but lacks cytochrome c-551. Besides these soluble electron transfer proteins a membrane-bound c-type cytochrome (=554,5 nm) can be detected spectrophotometrically.Non-common abbreviations HIPIP high-potential iron sulfur protein - APS adenylylsulfate 相似文献
12.
Gich F Airs RL Danielsen M Keely BJ Abella CA Garcia-Gil J Miller M Borrego CM 《Archives of microbiology》2003,180(6):417-426
The absorption and fluorescence properties of chlorosomes of the filamentous anoxygenic phototrophic bacterium Chloronema sp. strain UdG9001 were analyzed. The chlorosome antenna of Chloronema consists of bacteriochlorophyll (BChl) d and BChl c together with -carotene as the main carotenoid. HPLC analysis combined with APCI LC-MS/MS showed that the chlorosomal BChls comprise a highly diverse array of homologues that differ in both the degree of alkylation of the macrocycle at C-8 and/or C-12 and the alcohol moiety esterified to the propionic acid group at C-17. BChl c and BChl d from Chloronema were mainly esterified with geranylgeraniol (33% of the total), heptadecanol (24%), octadecenol (19%), octadecanol (14%), and hexadecenol (9%). Despite this pigment heterogeneity, fluorescence emission of the chlorosomes showed a single peak centered at 765 nm upon excitation at wavelengths ranging from 710 to 740 nm. This single emission, assigned to BChl c, indicates an energy transfer from BChl d to BChl c within the same chlorosome. Likewise, incubation of chlorosomes under reducing conditions caused a weak increase in fluorescence emission, which indicates a small redox-dependent fluorescence. Finally, protein analysis of Chloronema chlorosomes using SDS-PAGE and MALDI-TOF-MS revealed the presence of a chlorosomal polypeptide with a molecular mass of 5.7 kDa, resembling the CsmA protein found in Chloroflexus aurantiacus and Chlorobium tepidum chlorosomes. Several minor polypeptides were also detected but not identified. These results indicate that, compared with other members of filamentous anoxygenic phototrophic bacteria and green sulfur bacteria, Chloronema possesses an antenna system with novel features that may be of interest for further investigations.Abbreviations
APCI LC-MS/MS
Atmospheric pressure chemical ionization liquid chromatography mass spectrometry
-
BChl
Bacteriochlorophyll
-
Chl.
Chlorobium
-
Cfl.
Chloroflexus
-
MALDI-TOF-MS
Matrix assisted laser desorption/ionization time-of-flight mass spectrometry
-
[Et]
Ethyl
-
[i-Bu]
Isobutyl
-
[Me]
Methyl
-
[neo-Pent]
Neopentyl
-
[n-Pr]
Propyl
-
t
R
Retention time 相似文献
13.
We studied the photosynthetic electron transfer system of membrane-bound and soluble cytochromec inChlorobium tepidum, a thermophilic green sulfur bacterium, using whole cells and membrane preparations. Sulfide and thiosulfate, physiological electron donors, enhanced flash-induced photo-oxidation ofc-type cytochromes in whole cells. In membranes,c-553 cytochromes with two (or three) heme groups served as immediate electron donors for photo-oxidized bacteriochlorophyll (P840) in the reaction center, and appeared to be closely associated with the reaction center complex. The membrane-bound cytochromec-553 had anE
m-value of 180 mV. When isolated soluble cytochromec-553, which has an apparent molecular weight of 10 kDa and seems to correspond to the cytochromec-555 inChlorobium limicola andChlorobium vibrioforme, was added to a membrane suspension, rapid photo-oxidation of both soluble and membrane-bound cytochromesc-553 was observed. The oxidation of soluble cytochromec-553 was inhibited by high salt concentrations. In whole cells, photo-oxidation was observed in the absence of exogenous electron donors and re-reduction was inhibited by stigmatellin, an inhibitor of the cytochromebc complex. These results suggest that the role of membrane-bound and soluble cytochromec inC. tepidum is similar to the role of cytochromec in the photosynthetic electron transfer system of purple bacteria. 相似文献
14.
Christof Klughammer Christine Hager Etana Padan Michael Schütz Ulrich Schreiber Yosepha Shahak Günter Hauska 《Photosynthesis research》1995,43(1):27-34
Reduction of cytochromes in chlorosome-free membranes of Chlorobia was studied anaerobically, with an LED array spectrophotometer. For Chlorobium tepidum these membranes contained 0.2 moles cytochrome per mole of bacteriochlorophyll a. The observed change upon complete reduction of oxidized membranes with dithionite could be satisfactorily fitted with three cytochrome components having absorption peaks at 553 (cyt c), 558 and 563 nm (cyt b), in relative amounts of 5:1:2. About 20% of total cytochrome 553 were reducible by ascorbate. Menaquinol reduced all of the 553-component, and this reduction was sensitive to stigmatellin, NQNO and antimycin A. The reduction was insensitive to KCN. However, it was transient at low concentrations of menaquinol in the absence of KCN, but permanent in its presence, demonstrating that electron transport into an oxidation pool was blocked. The 563-component was only slightly reduced by menaquinol unless NQNO or antimycin were present. The stimulation of cytochrome 563-reduction by these inhibitors was more pronounced in the presence of ferricyanide. This phenomenon reflects oxidant-induced reduction of cytochrome b and demonstrates that a Q-cycle is operative in Chlorobia. Also, sulfide fully reduced cytochrome 553, but more slowly than menaquinol. KCN inhibited in this case, as did stigmatellin, NQNO and antimycin A. NQNO was a better inhibitor than antimycin A. Cytochrome 563 again was hardly reduced unless antimycin A was added. The effect was more difficult to observe with NQNO. This supports the conclusion that sulfide oxidation proceeds via the quinone pool and the cytochrome bc-complex in green sulfur bacteria.Abbreviations BChl
bacteriochlorophyll
- cyt
cytochrome
- NQNO
2-n-nonyl-4-hydroxyquinoline-N-oxide
- SQR
sulfide-quinone reductase
Dedicated to Prof. Dr. Aloys Wild on occasion of his 65th birthday. 相似文献
15.
The diversity of purple and green sulfur bacteria in the multilayered sediments of the Ebro Delta was investigated. Specific oligonucleotide primers for these groups were used for the selective amplification of 16S rRNA gene sequences. Subsequently, amplification products were separated by denaturing gradient gel electrophoresis and sequenced, which yielded a total of 32 sequences. Six of the sequences were related to different cultivated members of the green sulfur bacteria assemblage, whereas seven fell into the cluster of marine or halophilic Chromatiaceae. Six sequences were clustered with the family Ectothiorhodospiraceae, three of the six being closely related to chemotrophic bacteria grouped together with Halorhodospira genus, and the other three forming a group related to the genus Ectothiorhodospira. The last thirteen sequences constituted a cluster where no molecular isolate from microbial mats has so far been reported. Our results indicate that the natural diversity in the ecosystem studied has been significantly underestimated in the past and point out the presence of novel species not related to all known purple sulfur bacteria. Furthermore, the detection of green sulfur bacteria, after only an initial step of enrichment, suggests that -- with the appropriate methodology -- several genera, such as Prosthecochloris, could be established as regular members of marine microbial mats. 相似文献
16.
Morgan-Kiss RM Chan LK Modla S Weber TS Warner M Czymmek KJ Hanson TE 《Photosynthesis research》2009,99(1):11-21
Green sulfur bacteria (GSB) rely on the chlorosome, a light-harvesting apparatus comprised almost entirely of self-organizing
arrays of bacteriochlorophyll (BChl) molecules, to harvest light energy and pass it to the reaction center. In Chlorobaculum tepidum, over 97% of the total BChl is made up of a mixture of four BChl c homologs in the chlorosome that differ in the number and identity of alkyl side chains attached to the chlorin ring. C. tepidum has been reported to vary the distribution of BChl c homologs with growth light intensity, with the highest degree of BChl c alkylation observed under low-light conditions. Here, we provide evidence that this functional response at the level of the
chlorosome can be induced not only by light intensity, but also by temperature and a mutation that prevents phototrophic thiosulfate
oxidation. Furthermore, we show that in conjunction with these functional adjustments, the fraction of cellular volume occupied
by chlorosomes was altered in response to environmental conditions that perturb the balance between energy absorbed by the
light-harvesting apparatus and energy utilized by downstream metabolic reactions. 相似文献
17.
Cultures of Chlorobium thiosulfatophilum form polyglucose during growth. The polyglucose is laid down within the cells as rosette-like granules, which are made up from smaller grains. The size of each granule appears to be limited to less than 30 nm, since an increase in polyglucose content leads to more granules being formed rather than an increase in granule size.The polyglucose in washed cells is fermented in the dark to acetate, propionate, caproate and succinate, of which acetate by far comprises the largest fraction (68%). During incubation of washed cells without hydrogen donor, the level of polyglucose decreases regardless of whether the cells are incubated in the dark or in the light. Since the products formed from polyglucose under the two different conditions are not the same, it is suggested that polyglucose in the dark serves as an energy source, whereas when in the light the role of polyglucose is mainly to provide the cell with reducing power. 相似文献
18.
Two soluble c-type cytochromes (c-553 and c-555) and the nonheme iron-containing protein rubredoxin of the non-thiosulfate-utilizing green sulfur bacterium Pelodictyon luteolum were highly purified by ion exchange column chromatography, gel filtration and ammonium sulfate fractionation. Both cytochrome are small and basic hemoproteins, while rubredoxin is an acidic small nonheme iron protein. Cytochrome c-553 has a molecular weight of 13,000 determined by Sephacryl S-200 chromatography and of 10,700 by electrophoresis on SDS acrylamide gel, an isoelectric point at pH 10.2, a redox-potential of +220 mV. It shows maxima at 413 nm in the oxidized form, and the characteristic three maxima in the reduced state (-band at 553 nm, -band at 523 nm, -band at 417 nm). The best purity index (A
280/A
417) obtained was 0.18. Cytochrome c-555 (best purity index obtained: A
280/A
418=0.17) has an isoelectric point at pH 10.5, a molecular weight of 9,500 (by electrophoresis on SDS acrylamide gel) and a redox-potential of +160mV. The reduced form of this cytochrome shows the typical bands of c-type cytochromes at 555 (551) nm (-band), 523 nm (-band) and 418 nm (-band), while the oxidized form has the -band at 413 nm.Rubredoxin (best purity index obtained: A
280/A
490=3.5) is an acidic small protein. Its molecular weight estimated by gel filtration and SDS acrylamide gel electrophoresis is 27,000 and 6,300 respectively. The monomer of this protein contains one iron atom per molecule. Rubredoxin has an isoelectric point at pH 2.8 and shows maxima at 570 nm, 490 nm and 370 nm in the oxidized form.During anaerobic sulfide oxidation of a growing culture of Pelodictyon luteolum elemental sulfur is the first main product, which appears in the medium. Elemental sulfur is further oxidized to sulfate, after the available sulfide is completely consumed by the cells.Non-common abbreviations C
Chlorobium
- P
Pelodictyon
- SDS
sodium dodecylsulfate
- HIPIP
high-potential-iron-sulfur-protein Offprint requests to: U. Fischer 相似文献
19.
The csmB gene, encoding the 7.5-kDa “Gerola-Olson” protein of chlorosomes, has been cloned and sequenced from the green sulfur bacteria Chlorobium vibrioforme strain 8327D and Chlorobium tepidum. Two potential start codons were identified, and the csmB gene may be translated into a preprotein with an amino-terminal extension. Two forms of the mature CsmB protein (74 or 75 amino acids in length) were identified that differ by the presence or absence of a methionine residue at the amino terminus. The csmB gene of Chl. tepidum is transcribed as an abundant monocistronic mRNA of approximately 350 nucleotides; primer extension mapping of the 5′ endpoint of the csmB mRNA suggests there is strong similarity between the csmB promoter and the σ70 promoters of Escherichia coli. The CsmB protein of Chl. tepidum was overproduced as a histidine-tagged fusion protein in E. coli, purified to homogeneity by Ni2+ chelation affinity chromatography, and used to raise polyclonal antibodies in rabbits. Protease susceptibility mapping and agglutination experiments with isolated chlorosomes using anti-CsmB antibodies indicate that the CsmB protein is a component of the chlorosome envelope. Received: 28 May 1996 / Accepted: 17 July 1996 相似文献
20.
Stephan C. M. Otte Erik Jan van de Meent Peter A. van Veelen Anne S. Pundsnes Jan Amesz 《Photosynthesis research》1993,35(2):159-169
The chlorosomal bacteriochlorophyll (BChl) composition of the green sulfur bacteria Chlorobium vibrioforme and Chlorobium phaeovibrioides was investigated by means of normal-phase high-performance liquid chromatography. From both species a number of homologues was isolated, which were identified by absorption and 252Cf-plasma desorption mass spectroscopy. Besides BChl d, C. vibrioforme contained a significant amount of BChl c, which may provide an explanation for the previous observation of at least two spectrally different pools of BChl in the chlorosomes of green sulfur bacteria (Otte et al. 1991). C. phaeovibrioides contained various homologues of BChl e only. Absorption spectra in acetone of BChl c, d and e, as well as bacteriopheophytin e are presented. No systematic differences were found for the various homologues of each pigment. In addition to farnesol, the mass spectra revealed the presence of various minor esterifying alcohols in both species, including phytol, oleol, cetol and 4-undecyl-2-furanmethanol, as well as an alcohol of low molecular mass, which is tentatively assumed to be decenol.Abbreviations BChl
bacteriochlorophyll
- BPh
bacteriopheophytin (used as a general name for the Mg-free compound, irrespective of the esterifying alcohol)
- HPLC
high-performance liquid chromatography 相似文献