首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We determined the concentrations of bacteriochlorophylls (BChl) in the light-harvesting antennae of Oscillochloris trichoides (of the family Oscillochloridaceae belonging to green filamentous mesophilic bacteria) cultivated either with gabaculine, an inhibitor of the C-5 pathway of BChl biosynthesis in a number of bacteria, or at various illumination intensities. We determined the BChl c: BChl a molar ratios in intact cells, in chlorosome-membrane complexes, and in isolated chlorosomes. We revealed that BChl c synthesis in Osc. trichoides was more gabaculine-sensitive than BChl a synthesis. Accordingly, an increase in gabaculine concentrations in the medium resulted in a decrease in the BChl c: BChl a ratio in the tested samples. We suggest that BChl synthesis in Osc. trichoides proceeds via the C-5 pathway, similar to representatives of other families of green bacteria (Chlorobium limicola and Chloroflexus aurantiacus). We demonstrated that the BChl c: BChl a ratio in the chlorosomes varied from 55: 1 to 110: 1, depending on light intensity. This ratio is, therefore, closer to that of Chlorobiaceae, and it significantly exceeds the BChl c: BChl a ratio in Chloroflexaceae.  相似文献   

2.
The utilization of sulfide by phototrophic sulfur bacteria temporarily results in the accumulation of elemental sulfur. In the green sulfur bacteria (Chlorobiaceae), the sulfur is deposited outside the cells, whereas in the purple sulfur bacteria (Chromatiaceae) sulfur is found intracellularly. Consequently, in the latter case, sulfur is unattainable for other individuals. Attempts were made to analyze the impact of the formation of extracellular elemental sulfur compared to the deposition of intracellular sulfur.According to the theory of the continuous cultivation of microorganisms, the steady-state concentration of the limiting substrate is unaffected by the reservoir concentration (S R).It was observed in sulfide-limited continuous cultures ofChlorobium limicola f.thiosulfatophilum that higherS R values not only resulted in higher steady-state population densities, but also in increased steady-state concentrations of elemental sulfur. Similar phenomena were observed in sulfide-limited cultures ofChromatium vinosum.It was concluded that the elemental sulfur produced byChlorobium, althouth being deposited extracellularly, is not easily available for other individuals, and apparently remains (in part) attached to the cells. The ecological significance of the data is discussed.Non-standard abbreviations RP reducing power - BChl bacteriochlorophyll - Ncell cell material - specific growth rate - {ie52-1} maximal specific growth rate - D dilution rate - K s saturation constant - s concentration of limiting substrate - S R same ass but in reservoir bottle - Y yield factor - iSo intracellular elemental sulfur - eSo extracellular elemental sulfur - PHB poly-beta-hydroxybutyric acid  相似文献   

3.
The reaction center (RC) of green sulfur bacteria has iron—sulfur clusters as terminal acceptors and is related to the Type I RC found in Heliobacter sp. and in Photosystem I (PS I) of green plants and cyanobacteria. Degenerate primers were used to retrieve the genes coding for one of the RC proteins, PscB, from 11 strains of green sulfur bacteria. PCR using the same primers gave no product with a second group of strains and the protein from these strains did not crossreact with antibodies raised against purified PscB from the first group, suggesting the presence of a high degree of variability. The sequences shared a high degree of similarity in the region coding for the binding motif for the 4Fe–4S centers. However, the N-terminal portion of the deduced protein sequences was highly variable and contained a highly positively charged, low-complexity region with repeated tetrapeptides with two alanines flanked by proline or lysine. The PscB sequences obtained fell into two major groups, and the results suggested a lack of correlation between the pigmentation of the chlorosome antenna system and the reaction center protein. There is also a lack of correlation between the grouping of the pscB sequences and the phylogeny deduced from 16S rRNA.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

4.
The pigment composition of two species of green-colored BChl c-containing green sulfur bacteria (Chlorobium limicola and C. chlorovibrioides) and two species of brown-colored BChl e-containing ones (C. phaeobacteroides and C. phaeovibrioides) incubated at different light intensities have been studied. All species responded to the reduction of light intensity from 50 to 1 Einstein(E) m–2 s–1 by an increase in the specific content of light harvesting pigments, bacteriochlorophylls and carotenoids. At critical light intensities (0.5 to 0.1 E m–2 s–1) only brown-colored chlorobia were able to grow, though at low specific rates (0.002 days–1 mg prot–1). High variations in the relative content of farnesyl-bacteriochlorophyll homologues were found, in particular BChl e 1 and BChl e 4, which were tentatively identified as [M, E] and [I, E] BChlF e, respectively. The former was almost completely lost upon reduction of light intensity from 50 to 0.1 E m–2 s–1, whereas the latter increased from 7.2 to 38.4% and from 13.6 to 42.0% in C. phaeobacteroides and C. phaeovibrioides, respectively. This increase in the content of highly alkylated pigment molecules inside the chlorosomes of brown species is interpreted as a physiological mechanism to improve the efficiency of energy transfer towards the reaction center. This study provides some clues for understanding the physiological basis of the adaptation of brown species to extremely low light intensities.Abbreviations BChl bacteriochlorophyll - [M, E] BChlF e 8-methyl, 12-ethyl BChl e, esterified with farnesol (F). Analogously: I - isobutyl - Pr propyl - Car carotenoids - Chlb chlorobactene - HPLC high performance liquid chromatography - Isr isorenieratene - LHP light harvesting pigments - PDA photodiode array detector - RC reaction center - RCH relative content of homologues  相似文献   

5.
Resonance Raman experiments were performed on different green bacteria. With blue excitation, i.e. under Soret resonance or preresonance conditions, resonance Raman contributions were essentially arising from the chlorosome pigments. By comparing these spectra and those of isolated chlorosomes, it is possible to evaluate how the latter retain their native structure during the isolation procedures. The structure of bacteriochlorophyll oligomers in chlorosomes was interspecifically compared, in bacteriochlorophyllc- and bacteriochlorophylle- synthesising bacteria. It appears that interactions assumed by the 9-keto carbonyl group are identical inChlorobium limicola, Chlorobium tepidum, andChlorobium phaeobacteroides. In the latter strain, the 3-formyl carbonyl group of bacteriochlorophylle is kept free from intermolecular interactions. By contrast, resonance Raman spectra unambiguously indicate that the structure of bacteriochlorophyll oligomers is slightly different in chlorosomes fromChloroflexus auranticus, either isolated or in the whole bacteria.  相似文献   

6.
The pigment composition and energy transfer pathways in isolated chlorosomes ofChlorobium phaeovibrioides andChlorobium vibrioforme were studied by means of high performance liquid chromatography (HPLC) and picosecond absorbance difference spectroscopy. Analysis of pigment extracts of the chlorosomes revealed that they contain small amounts of bacteriochlorophyll (BChl)a esterified with phytol, whereas the BChlsc, d ande are predominantly esterified with farnesol. The chlorosomal BChla content inC. phaeovibrioides andC. vibrioforme was found to be 1.5% and 0.9%, respectively. The time resolved absorbance difference spectra showed a bleaching shifted to longer wavelengths as compared to the Qy absorption maxima and in chlorosomes ofC. vibrioforme also an absorbance increase at shorter wavelengths was observed. These spectral features were ascribed to excitation of oligomers of BChle and BChlc/d, respectively. One-color and two-color pump-probe kinetics ofC. phaeovibrioides showed rapid energy transfer to long-wavelength absorbing BChle oligomers, followed by trapping of excitations by BChla with a time constant of about 60 ps. Time resolved anisotropy measurements inC. vibrioforme showed randomization of excitations among BChla molecules with a time constant of about 20 ps, indicating that BChla in the baseplate is organized in clusters. One-color and two-color pump-probe measurements inC. vibrioforme showed rapid energy transfer from short-wavelength to long-wavelength absorbing oligomers with a time constant of about 11 ps. Trapping of excitations by BChla in this species could not be resolved unambiguously due to annihilation processes in the BChla clusters, but may occur with time constants of 15, 70 and 200 ps.  相似文献   

7.
The time dependent assembly of the photosynthetic apparatus was studied in Rhodospirillum rubrum after transfer of cells growing aerobically in the dark to low aeration. While bacteriochlorophyll (Bchl) cellular levels increase continuously levels of soluble cytochrome c 2do not change significantly. Absorption spectra of membranes isolated at different times after transfer reveal that incorporation of carotenoids lags behind incorporation of Bchl. However, a carotenoid fraction exhibiting spectral properties of spirilloxanthin isomers was isolated apart from membranes. This carotenoid fraction even was present in homogenates from Bchl-free, aerobically grown cells. Incorporation of U-14C-proteinhydrolyzate into membrane proteins showed that proteins are mainly formed which are specific for photosynthetic membranes. Although the proportion of reaction center (RC) Bchl per light harvesting (LH) Bchl does not change the proportions of membrane proteins present in RC and LH preparations change initially. But later on the proportions of the different proteins also reach constant values. Concerning proteins characteristic for cytoplasmic membranes a differential incorporation of label can be observed. The data indicate that the photosynthetic apparatus in Rhodospirillum rubrum is assembled through a sequential mechanism.Abbreviations Bchl bacteriochlorophyll - LH light harvesting - RC reaction center - R. Rhodospirillum - R. Rhodopseudomonas  相似文献   

8.
An unusual filamentous, gliding bacterium was found in a few hot springs in Oregon where it formed a nearly unispecific top layer of microbial mats. It contained a bacteriochlorophyll a-like pigment and an abundance of carotenoids. There were no chlorosomes or additional chlorophylls. The organism was aerotolerant and appeared to be photoheterotrophic. It was successfully co-cultured with an aerobic chemoheterotroph in a medium containing glucose and casamino acids. Although it has many characteristics in common with the genus Chloroflexus, the lack of chlorosomes and bacteriochlorophyll c and the aerobic nature of this organism indicate that it should be placed in a new genus. This conclusion is supported by 5S rRNA nucleotide sequence data.  相似文献   

9.
The effect of light quality on the selection of natural populations of Green Sulfur Bacteria (Chlorobiaceae) is considered to be a classic factor in the determination of their ecological niches. From the comparison among phototrophic bacterial populations of lakes, it is shown that brown and green pigmented groups of Chlorobiaceae have a differential distribution depending on depth. Statistical analyses prove that green species, which dominate at shallow oxic/anoxic boundaries, are correlated to light spectra enriched in long wavelengths, while brown ones are found when light spectra are enriched in the central region of the spectrum, as in deeper lake layers. Physiological experiments have been made withChlorobium limicola andC. phaeobacteroides cultures placed under different light quality conditions, in order to verify these hypotheses made on a field data basis. Results show that red and white light has more positive effects on the green bacterium than on the brown. Blue and green light illuminations have opposite consequences. Therefore, the effect of shallow depths and Chromatiaceae shading—which also increases the proportion of long wavelengths in light spectra—benefits the bacteriochlorophyll-based strategies of green species. On the other hand, the carotenoid-based strategies of brown ones are favored by the light climates usually dominant at greater depths. Thus, brown species are considered to be singular adaptations of Chlorobiaceae to depth, where bacteriochlorophyll light-harvesting is strongly limited by light quality.  相似文献   

10.
11.
The absorption and fluorescence properties of chlorosomes of the filamentous anoxygenic phototrophic bacterium Chloronema sp. strain UdG9001 were analyzed. The chlorosome antenna of Chloronema consists of bacteriochlorophyll (BChl) d and BChl c together with -carotene as the main carotenoid. HPLC analysis combined with APCI LC-MS/MS showed that the chlorosomal BChls comprise a highly diverse array of homologues that differ in both the degree of alkylation of the macrocycle at C-8 and/or C-12 and the alcohol moiety esterified to the propionic acid group at C-17. BChl c and BChl d from Chloronema were mainly esterified with geranylgeraniol (33% of the total), heptadecanol (24%), octadecenol (19%), octadecanol (14%), and hexadecenol (9%). Despite this pigment heterogeneity, fluorescence emission of the chlorosomes showed a single peak centered at 765 nm upon excitation at wavelengths ranging from 710 to 740 nm. This single emission, assigned to BChl c, indicates an energy transfer from BChl d to BChl c within the same chlorosome. Likewise, incubation of chlorosomes under reducing conditions caused a weak increase in fluorescence emission, which indicates a small redox-dependent fluorescence. Finally, protein analysis of Chloronema chlorosomes using SDS-PAGE and MALDI-TOF-MS revealed the presence of a chlorosomal polypeptide with a molecular mass of 5.7 kDa, resembling the CsmA protein found in Chloroflexus aurantiacus and Chlorobium tepidum chlorosomes. Several minor polypeptides were also detected but not identified. These results indicate that, compared with other members of filamentous anoxygenic phototrophic bacteria and green sulfur bacteria, Chloronema possesses an antenna system with novel features that may be of interest for further investigations.Abbreviations APCI LC-MS/MS Atmospheric pressure chemical ionization liquid chromatography mass spectrometry - BChl Bacteriochlorophyll - Chl. Chlorobium - Cfl. Chloroflexus - MALDI-TOF-MS Matrix assisted laser desorption/ionization time-of-flight mass spectrometry - [Et] Ethyl - [i-Bu] Isobutyl - [Me] Methyl - [neo-Pent] Neopentyl - [n-Pr] Propyl - t R Retention time  相似文献   

12.
Targeted mutagenesis was used to investigate the roles of the CsmA and CsmC proteins of the chlorosomes of the green bacteria Chlorobium tepidum and Chlorobium vibrioforme 8327. Under the photoautotrophic growth conditions employed, CsmA is required for the viability of the cells but CsmC is dispensable. The absence of CsmC caused a small red shift in the near-infrared absorption maximum of bacteriochlorophyll d in whole cells and chlorosomes, but chlorosomes were assembled in and could be isolated from the csmC mutant. The doubling time of the csmC mutant was approximately twice that of the wild-type strain. Fluorescence emission measurements suggested that energy transfer from the bulk bacteriochlorophyll d to another pigment, perhaps bacteriochlorophyll a, emitting at 800–804 nm, was less efficient in the csmC mutant cells than in wild-type cells. These studies establish that transformation and homologous recombination can be employed in targeted mutagenesis of Chlorobium sp. and further demonstrate that chlorosome proteins play important roles in the structure and function of these light-harvesting organelles.  相似文献   

13.
Chloroflexus aurantiacus can be induced to shift from respiratory to photosynthetic energy production by introducing light and/or lowering the oxygen concentration of a culture. After induction, cells synthesize bacteriochlorophyll and proteins for the formation of a functional photosynthetic apparatus. Bacteriochlorophyll is detectable within 2 h after induction. Chlorosome polypeptides are detected after 8–12 h. Two proteins, Mr 60,000 and Mr 47,000, are present in both induced and noninduced cells and react specifically with antibodies against chlorosome polypeptides. Immunological data suggest that these proteins (Mr 60,000 and 47,000) are polyproteins which are transcribed and translated in the dark. When cells are exposed to light or low oxygen tension these proteins are processed into functional polypeptides required in the assembly of the chlorosome. The reaction center polypeptide (Mr 26,000) appears to be part of a separate genetic control system.Dedicated to Prof. G. Drews on occasion of his 60th birthday  相似文献   

14.
【目的】揭示浑善达克沙地不同类型生物土壤结皮(Biological soil crusts,BSCs)及其下层土壤好氧不产氧光营养细菌(Aerobic anoxygenic phototrophic bacteria,AAPB)群落结构及多样性。【方法】利用Illumina Mi Seq二代高通量测序平台对puf M基因进行测序,使用生物信息学分析方法对序列进行比对分析AAPB的群落结构和多样性。【结果】生物土壤结皮及其下层土壤中,Proteobacteria和Alpha-Proteobacteria是优势门和纲,主要有6个属Bradyrhizobium(9.69%–90.02%)、Brevundimonas(0.83%–16.04%)、Methylobacterium(1.74%–12.56%)、Rhodospirillum(0.91%–32.87%)、Roseiflexus(0.02%–1.79%)和Sphingomonas(0.13%–11.23%);结皮层样品间及下层土壤样品间AAPB种类相似,但丰度有差异;随结皮的发育,结皮层及其下层土壤中AAPB群落多样性升高。【结论】浑善达克沙地BSCs中AAPB群落结构相对复杂,与水体和一般土壤环境中的组成区别明显;AAPB多样性高,且多样性随发育阶段升高而升高,预示着AAPB在荒漠生态系统稳定中有重要的作用。  相似文献   

15.
Flavocytochrome c-553 of the non-thiosulfateutilizing green sulfur bacterium Chlorobium limicola strain 6330 was partially purified by ion exchange column chromatography and ammonium sulfate fractionation (highest purity index obtained: A 280/A 417 red=0.96). It is autoxidizable and located in the soluble fraction. This hemoprotein contains a flavin component and one heme per molecule. The dithionite reduced spectrum reveals the typical maxima of a c-type cytochrome: =553,5 nm; =523 nm; =417 nm, while the oxidized form shows a -band at 410 nm and two shoulders at 440 nm and 480 nm indicating the flavin component. The flavocytochrome is a basic protein with an isoelectric point at pH 9.0 (± 0.5), a redox potential of 65 mV, a molecular weight of 56,000. It participates in sulfide oxidation and shows neither adenylylsulfate reductase nor sulfite reductase activity. C. limicola further contains a soluble cytochrome c-555 (highest purity index obtained: A 280/A 412 ox=0.13; isoelectric point between pH 9.5 and 10) and the non-heme iron-containing proteins rubredoxin and ferredoxin, but lacks cytochrome c-551. Besides these soluble electron transfer proteins a membrane-bound c-type cytochrome (=554,5 nm) can be detected spectrophotometrically.Non-common abbreviations HIPIP high-potential iron sulfur protein - APS adenylylsulfate  相似文献   

16.
1. Dry weight yields from mixed cultures ofProsthecochloris aestuarii orChlorobium limicola with the sulfur reducingDesulfuromonas acetoxidans were determined on different growth limiting amounts of acetate, ethanol or propanol. The obtained yields agreed well with values predicted from stoichiometric calculations. 2. From mixed cultures of twoChlorobium limicola strains withDesulfovibrio desulfuricans orD. gigas on ethanol as the growth limiting substrate, dry weight yields were obtained as calculated for the complete utilization of the ethanol by the mixed cultures. 3. Dry weight yield determinations for two pure cultures ofChlorobium limicola with different growth limiting amounts of sulfide in the absence and presence of excess acetate confirmed that acetate is incorporated byChlorobium in a fixed proportion to sulfide; compared to the yield in the absence of acetate the yield is increased two to threefold in the presence of acetate. 4. The lowest possible sulfide concentrations necessary for optimal growth of mixed cultures of eitherProsthecochloris orChlorobium withDesulfuromonas on acetate were 7–8 mg H2S per liter of medium. 5. Doubling times at the growth rate limiting light intensities of 5, 10, 20, 50, 100 and 200 lux were determined under optimal growth conditions for the following phototrophic bacteria:Prosthecochloris aestuarii, Chlorobium phaeovibriodes, Chromatium vinosum andRhodopseudomonas capsulata. Reasonably good growth was still obtained withProsthecochloris at 10 and 5 lux light intensity at which no growth of the purple bacteria could be observed.  相似文献   

17.
A mutant devoid of cytochrome c-554 (CT0075) in Chlorobium tepidum (syn. Chlorobaculum tepidum) exhibited a decreased growth rate but normal growth yield when compared to the wild type. From quantitative determinations of sulfur compounds in media, the mutant was found to oxidize thiosulfate more slowly than the wild type but completely to sulfate as the wild type. This indicates that cytochrome c-554 would increase the rate of thiosulfate oxidation by serving as an efficient electron carrier but is not indispensable for thiosulfate oxidation itself. On the other hand, mutants in which a portion of the soxB gene (CT1021) was replaced with the aacC1 cassette did not grow at all in a medium containing only thiosulfate as an electron source. They exhibited partial growth yields in media containing only sulfide when compared to the wild type. This indicates that SoxB is not only essential for thiosulfate oxidation but also responsible for sulfide oxidation. An alternative electron carrier or electron transfer path would thus be operating between the Sox system and the reaction center in the mutant devoid of cytochrome c-554. Cytochrome c-554 might function in any other pathway(s) as well as the thiosulfate oxidation one, since even green sulfur bacteria that cannot oxidize thiosulfate contain a cycA gene encoding this electron carrier.  相似文献   

18.
The diversity of purple and green sulfur bacteria in the multilayered sediments of the Ebro Delta was investigated. Specific oligonucleotide primers for these groups were used for the selective amplification of 16S rRNA gene sequences. Subsequently, amplification products were separated by denaturing gradient gel electrophoresis and sequenced, which yielded a total of 32 sequences. Six of the sequences were related to different cultivated members of the green sulfur bacteria assemblage, whereas seven fell into the cluster of marine or halophilic Chromatiaceae. Six sequences were clustered with the family Ectothiorhodospiraceae, three of the six being closely related to chemotrophic bacteria grouped together with Halorhodospira genus, and the other three forming a group related to the genus Ectothiorhodospira. The last thirteen sequences constituted a cluster where no molecular isolate from microbial mats has so far been reported. Our results indicate that the natural diversity in the ecosystem studied has been significantly underestimated in the past and point out the presence of novel species not related to all known purple sulfur bacteria. Furthermore, the detection of green sulfur bacteria, after only an initial step of enrichment, suggests that -- with the appropriate methodology -- several genera, such as Prosthecochloris, could be established as regular members of marine microbial mats.  相似文献   

19.
We studied the photosynthetic electron transfer system of membrane-bound and soluble cytochromec inChlorobium tepidum, a thermophilic green sulfur bacterium, using whole cells and membrane preparations. Sulfide and thiosulfate, physiological electron donors, enhanced flash-induced photo-oxidation ofc-type cytochromes in whole cells. In membranes,c-553 cytochromes with two (or three) heme groups served as immediate electron donors for photo-oxidized bacteriochlorophyll (P840) in the reaction center, and appeared to be closely associated with the reaction center complex. The membrane-bound cytochromec-553 had anE m-value of 180 mV. When isolated soluble cytochromec-553, which has an apparent molecular weight of 10 kDa and seems to correspond to the cytochromec-555 inChlorobium limicola andChlorobium vibrioforme, was added to a membrane suspension, rapid photo-oxidation of both soluble and membrane-bound cytochromesc-553 was observed. The oxidation of soluble cytochromec-553 was inhibited by high salt concentrations. In whole cells, photo-oxidation was observed in the absence of exogenous electron donors and re-reduction was inhibited by stigmatellin, an inhibitor of the cytochromebc complex. These results suggest that the role of membrane-bound and soluble cytochromec inC. tepidum is similar to the role of cytochromec in the photosynthetic electron transfer system of purple bacteria.  相似文献   

20.
Reduction of cytochromes in chlorosome-free membranes of Chlorobia was studied anaerobically, with an LED array spectrophotometer. For Chlorobium tepidum these membranes contained 0.2 moles cytochrome per mole of bacteriochlorophyll a. The observed change upon complete reduction of oxidized membranes with dithionite could be satisfactorily fitted with three cytochrome components having absorption peaks at 553 (cyt c), 558 and 563 nm (cyt b), in relative amounts of 5:1:2. About 20% of total cytochrome 553 were reducible by ascorbate. Menaquinol reduced all of the 553-component, and this reduction was sensitive to stigmatellin, NQNO and antimycin A. The reduction was insensitive to KCN. However, it was transient at low concentrations of menaquinol in the absence of KCN, but permanent in its presence, demonstrating that electron transport into an oxidation pool was blocked. The 563-component was only slightly reduced by menaquinol unless NQNO or antimycin were present. The stimulation of cytochrome 563-reduction by these inhibitors was more pronounced in the presence of ferricyanide. This phenomenon reflects oxidant-induced reduction of cytochrome b and demonstrates that a Q-cycle is operative in Chlorobia. Also, sulfide fully reduced cytochrome 553, but more slowly than menaquinol. KCN inhibited in this case, as did stigmatellin, NQNO and antimycin A. NQNO was a better inhibitor than antimycin A. Cytochrome 563 again was hardly reduced unless antimycin A was added. The effect was more difficult to observe with NQNO. This supports the conclusion that sulfide oxidation proceeds via the quinone pool and the cytochrome bc-complex in green sulfur bacteria.Abbreviations BChl bacteriochlorophyll - cyt cytochrome - NQNO 2-n-nonyl-4-hydroxyquinoline-N-oxide - SQR sulfide-quinone reductase Dedicated to Prof. Dr. Aloys Wild on occasion of his 65th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号