首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two open reading frames (ORFs), designated ORF95 and ORF162, downstream of the Klebsiella pneumoniae sigma 54 structural gene (rpoN) have been sequenced and shown to encode polypeptides of 12 kD and 16 kD, respectively. ORFs homologous to ORF95 are present downstream of four out of five rpoN genes sequenced to date from a range of Gram-negative bacteria, and ORF162 is also conserved, at least in Pseudomonas putida. Chromosomal mutations have been created in each gene using a kan cassette and both have the same phenotype, i.e. they cause an increase in the level of expression from sigma 54-dependent promoters. We propose that the products of both genes function to modulate the activity of E sigma 54, although a physiological role for these proteins has not yet been identified.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Cassette mutagenesis has been used to study the role of a helix-turn-helix (HTH) motif in the novel RNA polymerase sigma factor sigma 54 of Klebsiella pneumoniae. Of the four residues which are predicted to be solvent-exposed in the second helix, the first (Glu-378) tolerated all substitutions, and some mutations of this residue increased expression from sigma 54-dependent promoters. Certain substitutions in the third exposed residue (Ser-382) produced a promoter-specific phenotype and all substitutions in the fourth residue (Arg-383) inactivated the protein, identifying this residue as being likely to be involved in base-specific interactions with the promoter. In vivo footprinting indicated that the inactive HTH mutants of sigma 54 were defective in interaction with both the -24 and -12 regions of the glnAp2 promoter.  相似文献   

19.
Topoisomerase I and DNA gyrase are the major topoisomerase activities responsible for the regulation of DNA supercoiling in the bacterium Escherichia coli . The P1 promoter of topA has previously been shown to be a σ32-dependent heat-shock promoter. A mutant strain with a deletion of P1 was constructed. This mutant is >10-fold more sensitive to heat treatment (52°C) than the wild type. After brief treatment at 42°C, wild-type Escherichia coli acquires an enhanced resistance to the effects of a subsequent 52°C treatment. This is not the case for the P1 deletion mutant, which, and under these conditions, is about 100-fold less thermotolerant than the wild type. The presence of a plasmid expressing topoisomerase I restored the heat-survival level of the mutant to that of the wild type. During heat shock, the superhelical density of a plasmid with the heat-inducible rpoD promoter is increased in the P1 deletion mutant. We also note that the pulse-labelling pattern of proteins at 42°C (displayed on SDS–polyacrylamide gels) is different in the mutant, and, most notably, the amounts of DnaK and of GroEL protein are reduced. A model is proposed in order to unify these observations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号