首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sialated, presumed-globular form of an atypical pseudocholinesterase (pseudo-ChE) previously described from surgeonfish tissues (Leibel: Comparative Biochemistry and Physiology 1988) has been purified to apparent homogeneity using a combination of salt fractionation along with ion-exchange and concanavalin A-Sepharose affinity chromatographic techniques. An overall 1,400-fold purification has been achieved with a 24% final yield of a cholinesterase (ChE) whose final specific activity is 50 mumol/min-mg. The purified enzyme was subjected to detailed biochemical and physical analysis. The purified pseudo-ChE is a sialated, globular, tetrameric enzyme with an apparent sedimentation coefficient of 11.5 S (+/- 0.5 S) and a molecular weight of 250 kilodaltons. The monomers are apparently not secured by disulfide bridges. The enzyme preferentially hydrolyzes acetyl(thio)choline but also hydrolyzes propionyl(thio)choline at reduced but comparable rates along with a wide variety of other noncholine esters. As such, it demonstrates the relative nonspecificity associated with classical pseudo-ChEs. However, the enzyme exhibits limited, but real, substrate inhibition with all choline esters as does true acetylcholinesterase (AChE). The enzyme is insensitive to the AChE inhibitor BW 284C51, sensitive to one (RO2-0683) of two (RO2-1250) pseudo-ChE inhibitors, and particularly sensitive to paraoxon inhibition (10(3)-10(4)-fold more so than AChE). It exhibits the short thermal half-life characteristic of pseudo-ChEs but not the expected ionic activation/inhibition profile. It is clear from this and other studies of atypical extrasynaptic cholinesterase activities occurring in other vertebrates that the orthodox categorization of cholinesterase as either "true" ("specific"; E.C. 3.1.1.7) or "pseudo" ("nonspecific"; E.C. 3.1.1.8) is inadequate to accommodate the increasing instances of ChE activities that exhibit atypical, intermediate properties.  相似文献   

2.
Acetylcholinesterases (AChEs) have been estimated in the infective juveniles (IJs) of eight different strains of heterorhabditid nematodes. The enzyme content ranged from 45.6 to 421.3 units/10(5) IJs with specific activity 34.0 to 82.6 units/mg protein. The isoenzyme patterns revealed the existence of two-slow-moving isoforms. Heterorhabditis bacteriophora AChE1A has been purified from the IJs of the heterorhabditid nematode strain of the highest enzymatic activity to homogeneity by ammonium sulfate precipitation, gel filtration on Sephacryl S-200 and DEAE-Sepharose. The specific activity of the purified enzyme was 1378.1 units/mg protein with purification fold 17.5 over crude extract. The enzyme has a pH optimum at 7.5. The optimum temperature for enzyme activity and stability was 35 degrees C. The activation energy was calculated to be 9.0 kcal/mol. The enzyme hydrolyzes acetylthiocholine (AcSCh), propionylthiocholine (PrSCh), S-butyrylthiocholine (BuSCh) and benzoylthiocholine (BzSCh) iodides with relative rate 100, 74.6, 41.7 and 22.2%, respectively. It displayed an apparent Michaelis-Menten behavior in the concentration range from 0.1 to 2 mM for the three former substrates with Km values 0.27, 0.42 and 0.59 mM, respectively. H. bacteriophora ChE1A is an AChE since it hydrolyzed AcSChI at higher rate than the other substrates and displayed excess substrate inhibition with AcSChI at concentrations over 2 mM. It was inhibited by eserine and BW284C51, but not by iso-OMPA. Its biochemical properties were compared with those reported for different species of insects as target hosts for heterorhabditid nematodes and animal parasitic nematodes.  相似文献   

3.
Acetylcholinesterases (EC 3.1.1.7, AChE) have varying amounts of carbohydrates attached to the core protein. Sequence analysis of the known primary structures gives evidence for several asparagine-linked carbohydrates. From the differences in molecular mass determined on sodium dodecyl sulfate-polyacrylamide gel before and after deglycosylation with N-glycosidase F (EC 3.2.2.18), it is seen that dimeric AChE from red cell membranes is more heavily glycosylated than the tetrameric brain enzyme. Furthermore, dimeric and tetrameric forms of bovine AChE are more heavily glycosylated than the corresponding human enzymes. Monoclonal antibodies 2E6, 1H11, and 2G8 raised against detergent-soluble AChE from electric organs of Torpedo nacline timilei as well as Elec-39 raised against AChE from Electrophorus electricus cross-reacted with AChE from bovine and human brain but not with AChE from erythrocytes. Treatment of the enzyme with N-glycosidase F abolished binding of monoclonal antibodies, suggesting that the epitope, or part of it, consists of N-linked carbohydrates. Analysis of N-acetylglucosamine sugars revealed the presence of N-acetylglucosamine in all forms of cholinesterases investigated, giving evidence for N-linked glycosylation. On the other hand, N-acetylgalactosamine was not found in AChE from human and bovine brain or in butyrylcholinesterase (EC 3.1.1.8) from human serum, indicating that these forms of cholinesterase did not contain O-linked carbohydrates. Despite the notion that within one species, the different forms of AChE arise from one gene by different splicing, our present results show that dimeric erythrocyte and tetrameric brain AChE must undergo different postsynthetic modifications leading to differences in their glycosylation patterns.  相似文献   

4.
The acetylthiocholine-hydrolyzing enzymatic activity inhibited by the neostigmine and partly physostigmine has been found in extracts from mycelium of fungus Aspergillus niger. The enzyme has been isolated and 15-20 fold purified. The cholinesterase activity of the protein (Kmu 7.10-7 M) is comparable with known for analogous enzymes from higher plants, for its inhibition high concentrations of substrate (greater than 10-3M) are required. The enzyme hydrolyzes acetylthiocholine with rate approximately 1.5 times higher than butyrylthiocholine. Molecular mass of native protein is approximately 600 kDa, subunits -63 and 44 kDa.  相似文献   

5.
Butyryl cholinesterase activity in Glossimetra orientalis was studied histochemically with Gomori's method using butyrylthiocholine as substrate. Eserine sulphate (10(-5) M) was used as inhibitor for AChE. The study reveals that the enzyme is present mainly in the musculature of the reproductive system, excretory canal, nerve cells and fibers, tegument and subtegumentary cells and suckers. The testes, ovary and parenchyma are completely negative. The functional significance of the enzyme in the various locations have been discussed.  相似文献   

6.
Multiple forms of serum cholinesterase (ChE) were compared in 8 species by electrophoretic technique and the following characteristics were noted. The first moving fraction markedly hydrolyzed butyrylthiocholine and the activity was not inhibited by 10(-5)M eserine in the serum of some rabbits tested. Electrophoretic patterns of the ChE were obtained by use of two thiocholines as substrate, and the number of fractions against acetylthiocholine were more than against butyrylthiocholine in dogs, miniature pigs, rabbits, and hamsters. The activities of ChE fractions of dogs (C3), miniature pigs (C1, C2), rabbits (C1), and hamsters (C3) were inhibited by 6.1 X 10(-2)M caffein but not by 10(-4)M ethopropazine, which suggests that the fractions are all true-ChE.  相似文献   

7.
An immunoglobulin M (IgM) monoclonal antibody (mAb Elec-39), obtained against asymmetric acetylcholinesterase (AChE) from Electrophorus electric organs, also reacts with a fraction of globular AChE (amphiphilic G2 form) from Torpedo electric organs. This antibody does not react with asymmetric AChE from Torpedo electric organs or with the enzyme from other tissues of Electrophorus or Torpedo. The corresponding epitope is removed by endoglycosidase F, showing that it is a carbohydrate. The subsets of Torpedo G2 that react or do not react with Elec-39 (Elec-39+ and Elec-39-) differ in their electrophoretic mobility under nondenaturing conditions; the Elec-39+ component also binds the lectins from Pisum sativum and Lens culinaris. Whereas the Elec-39- component is present at the earliest developmental stages examined, an Elec-39+ component becomes distinguishable only around the 70-mm stage. Its proportion increases progressively, but later than the rapid accumulation of the total G2 form. In immunoblots, mAb Elec-39 recognizes a number of proteins other than AChE from various tissues of several species. The specificity of Elec-39 resembles that of a family of anti-carbohydrate antibodies that includes HNK-1, L2, NC-1, NSP-4, as well as IgMs that occur in human neuropathies. Although some human neuropathy IgMs that recognize the myelin-associated glycoprotein did not react with Elec-39+ AChE, mAbs HNK-1, NC-1, and NSP-4 showed the same selectivity as Elec-39 for Torpedo G2 AChE, but differed in the formation of immune complexes.  相似文献   

8.
We recently reported on a non-neuronal secreted acetylcholinesterase (AChE B) from the nematode parasite Nippostrongylus brasiliensis. Here we describe the primary structure and enzymatic properties of a second secreted variant, termed AChE C after the designation of native AChE isoforms from this parasite. As for the former enzyme, AChE C is truncated at the carboxyl terminus in comparison with the Torpedo AChE, and three of the 14 aromatic residues that line the active site gorge are substituted by nonaromatic residues, corresponding to Tyr70 (Ser), Trp279 (Asn) and Phe288 (Met). A recombinant form of AChE C was highly expressed by Pichia pastoris. The enzyme was monomeric and hydrophilic, and displayed a marked preference for acetylthiocholine as substrate. A double mutation (W302F/W345F, corresponding to positions 290 and 331 in Torpedo) rendered the enzyme 10-fold less sensitive to excess substrate inhibition and two times less susceptible to the bis quaternary inhibitor BW284C51, but did not radically affect substrate specificity or sensitivity to the 'peripheral site' inhibitor propidium iodide. In contrast, a triple mutant (M300G/W302F/W345F) efficiently hydrolysed propionylthiocholine and butyrylthiocholine in addition to acetylthiocholine, while remaining insensitive to the butyrylcholinesterase-specific inhibitor iso-OMPA and displaying a similar profile of excess substrate inhibition as the double mutant. These data highlight a conserved pattern of active site architecture for nematode secreted AChEs characterized to date, and provide an explanation for the substrate specificity that might otherwise appear inconsistent with the primary structure in comparison to other invertebrate AChEs.  相似文献   

9.
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are thought to be the result of a gene duplication event early in vertebrate evolution. To learn more about the evolution of these enzymes, we expressed in vitro, characterized, and modeled a recombinant cholinesterase (ChE) from a teleost, the medaka Oryzias latipes. In addition to AChE, O. latipes has a ChE that is different from either vertebrate AChE or BChE, which we are classifying as an atypical BChE, and which may resemble a transitional form between the two. Of the fourteen aromatic amino acids in the catalytic gorge of vertebrate AChE, ten are conserved in the atypical BChE of O. latipes; by contrast, only eight are conserved in vertebrate BChE. Notably, the atypical BChE has one phenylalanine in its acyl pocket, while AChE has two and BChE none. These substitutions could account for the intermediate nature of this atypical BChE. Molecular modeling supports this proposal. The atypical BChE hydrolyzes acetylthiocholine (ATCh) and propionylthiocholine (PTCh) preferentially but butyrylthiocholine (BTCh) to a considerable extent, which is different from the substrate specificity of AChE or BChE. The enzyme shows substrate inhibition with the two smaller substrates but not with the larger substrate BTCh. In comparison, AChE exhibits substrate inhibition, while BChE does not, but may instead show substrate activation. The atypical BChE from O. latipes also shows a mixed pattern of inhibition. It is effectively inhibited by physostigmine, typical of all ChEs. However, although the atypical BChE is efficiently inhibited by the BChE-specific inhibitor ethopropazine, it is not by another BChE inhibitor, iso-OMPA, nor by the AChE-specific inhibitor BW284c51. The atypical BChE is found as a glycophosphatidylinositol-anchored (GPI-anchored) amphiphilic dimer (G(2) (a)), which is unusual for any BChE. We classify the enzyme as an atypical BChE and discuss its implications for the evolution of AChE and BChE and for ecotoxicology.  相似文献   

10.
Oligohaline copepods such as Eurytemora affinis are widespread in estuaries of northwestern Europe. These minute crustaceans are highly sensitive to contamination and thus serve as useful bioindicators for the monitoring of pollutant effects. The use of decreased cholinesterase (ChE) activity as a sublethal biomarker of exposure to neurotoxic compounds supposes that ChE has been defined in copepods. This study reports the partial purification and characterization of ChE extracted from E. affinis. Analysis by non-denaturing PAGE and by isoelectric focusing indicated that the enzyme is probably a single dimeric form of 140 KDa, with a pI of 6.2. This enzyme is likely an acetylcholinesterase (AChE) since it hydrolyzes acetylthiocholine iodide at a higher rate than other substrates, such as butyrylthiocholine and propionylthiocholine, at pH 7.0 and 25 degrees C, and is inhibited by eserine but not by iso-OMPA. The enzyme exhibited high sensitivity to some of the various pollutants tested. The kinetic properties of this ChE were compared with those of other invertebrate ChEs.  相似文献   

11.
Sodium chloride, phosphate buffer and ethanol were studied for their effect on butyryl cholinesterase hydrolysis rate of acetylcholine, acetylthiocholine, butyrylthiocholine and nonion substrate of indophenylacetate. The concentrations of 1.10(-2) = 1.10(-1) M of sodium chloride activated enzymatic hydrolysis of ion substrates at the concentrations lower than 1.10(-4) M but sodium chloride is a competitive inhibitor at higher concentrations. Phosphate buffer also activates substrates enzyme hydrolysis at the concentrations of 2.10(-4) M and lower, but it inhibits incompetitively the nonion substrate indophenylacetate hydrolysis. Ethanol activates butyrylthiocholine hydrolysis and is a competitive inhibitor in acetylthiocholine and indophenylacetate hydrolysis. The observed effects are discussed on the assumption of two forms of butyrylcholinesterase E' and E" existence. These two forms are determined by different kinetic parameters and are in equilibrium.  相似文献   

12.
Summary Posterior and intermediate lobes of pituitary glands of cat, rabbit, beef, and rat were examined histochemically for specific (AChE) and non-specific (BuChE) cholinesterase by light and electron microscopy. Acetylthiocholine was utilized in conjunction with ethopropazine to demonstrate AChE, and butyrylthiocholine with BW 284C51 to demonstrate BuChE. Glandular cells of the intermediate lobe of cat, rabbit and rat contained variable amounts of AChE, whereas those of beef contained BuChE. In the posterior pituitary, AChE was detected in the cat, BuChE in the beef and rat, and both AChE and BuChE in the rabbit. In the posterior lobe of all species examined, cholinesterase, whether true or pseudo enzyme, as the case may be, was localized to certain pituicytes and pituicyte-neuron junctions. These histochemical studies failed to identify cholinergic neurons in the posterior pituitary. Large blood vessels of the pituitary were innervated apparently by adrenergic nerves only. Speculations on the role of pituicyte cholinesterase in posterior pituitary secretion are presented.Supported by the Medical Research Council of Canada.Medical Research Associate of the MRC of Canada.  相似文献   

13.
1. Esterases from tissues of the surgeonfish (Teleostei, Perciformes, Acanthuridae) are characterized electrophoretically and include several carboxylesterases, an acetylesterase, and an atypical pseudocholinesterase (pseudo-ChE). 2. The pseudo-ChE occurs in several isozymic forms including sialated and asialated slightly-anodal forms found principally in liver, and a larger, asialated asymmetric form that barely penetrates the 10% PAGE gel matrix found together with true AChE in epaxial muscle, brain, and eye. 3. Characterization of these three pseudo-ChE activities suggest that they are decidedly atypical in the intermediacy of their substrate and inhibitor specificities relative to classically-defined AChE and pseudo-ChE activities.  相似文献   

14.
Triatoma patagonica Del Ponte (Hemiptera: Reduviidae), a vector of Chagas' disease, is widely distributed in Argentina and is found in sylvatic and peridomiciliary ecotopes, as well as occasionally in human dwellings after the chemical control of Triatoma infestans. Anti-cholinesteratic products can be applied in peridomiciliary areas and thus knowledge of cholinesterase activity during embryonic development in this species might contribute further information relevant to effective chemical control. Cholinesterase activity was characterized by reactions to eserine 10(-5) m, to increasing concentrations of substrate and to varying centrifugal speeds. Acetylcholinesterase activity was detected on day 4 and was significant from day 5. A reduction in cholinesterase activity towards acetylthiocholine (ATC) was observed on days 9 and 10 of development. Cholinesterase activity towards ATC and butyrylthiocholine (BTC) in homogenates of eggs was inhibited by eserine 10(-5) m. The shape of the curve indicating levels of inhibition at different concentrations of ATC was typical of acetylcholinesterase. Activity towards BTC did not appear to be inhibited by excess substrate, which parallels the behaviour of butyrylcholinesterases. Cholinesterase activity towards ATC was reduced in supernatant centrifuged at 15 000 g compared with supernatant centrifuged at 1100 g. The cholinesterase system that hydrolyzes mainly ATC seems to belong to the nervous system, as indicated by its behaviour towards the substrates assayed, its greater insolubility and the fact that it evolves parallel to the development of the nervous system. Knowledge of biochemical changes associated with the development and maturation of the nervous system during embryonic development would contribute to the better understanding of anti-cholinesteratic compounds with ovicidal action that might be used in control campaigns against vectors of Chagas' disease.  相似文献   

15.
Phosphatidylinositol-specific phospholipase C (PIPLC) quantitatively solubilizes acetylcholinesterase (AChE) from purified synaptic plasma membranes and intact synaptosomes of Torpedo ocellata electric organ. The solubilized AChE migrates as a single peak of sedimentation coefficient 7.0S upon sucrose gradient centrifugation, corresponding to a subunit dimer. The catalytic subunit polypeptide of AChE is the only polypeptide detectably solubilized by PIPLC. This selective removal of AChE does not affect the amount of acetylcholine released from intact synaptosomes upon K+ depolarization. PIPLC also quantitatively solubilizes AChE from the surface of intact bovine and rat erythrocytes, but only partially solubilizes AChE from human and mouse erythrocytes. The AChE released from rat and human erythrocytes by PIPLC migrates as a approximately 7S species on sucrose gradients, corresponding to a catalytic subunit dimer. PIPLC does not solubilize particulate AChE from any of the brain regions examined of four mammalian species. Several other phospholipases tested, including a nonspecific phospholipase C from Clostridium welchii, fail to solubilize AChE from Torpedo synaptic plasma membranes, rat erythrocytes, or rat striatum.  相似文献   

16.
Summary The fine structure and distribution of cholinesterase (ChE) activity in the ventral nerve cord of the earthworm (Lumbricus terrestris) was studied, using acetyl- and butyrylthiocholine iodides as substrates and iso-OMPA, 284C51 and eserine as inhibitors to discriminate between acetylcholinesterase (AChE) and other cholinesterase (ns.ChE) activities.The earthworm ventral nerve cord exhibits intense ChE activity. Both AChE and ns.ChE were present and they had identical distribution, being located mainly in the supportive glial cells. Most neurones of the ventral nerve cord contained no histochemically demonstrable activity. The ventral giant nerve cells were observed with the electron microscope to exhibit AChE activity. The enzyme was situated in the membranes of the rough-surfaced endoplasmic reticulum and in peculiar lamellated bodies but not in the membranes of the Golgi complex.  相似文献   

17.
Evidence for the involvement of Ser-203, His-447, and Glu-334 in the catalytic triad of human acetylcholinesterase was provided by substitution of these amino acids by alanine residues. Of 20 amino acid positions mutated so far in human acetylcholinesterase (AChE), these three were unique in abolishing detectable enzymatic activity (less than 0.0003 of wild type), yet allowing proper production, folding, and secretion. This is the first biochemical evidence for the involvement of a glutamate in a hydrolase triad (Schrag, J.D., Li, Y., Wu, M., and Cygler, M. (1991) Nature 351, 761-764), supporting the x-ray crystal structure data of the Torpedo californica acetylcholinesterase (Sussman, J.L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L. and Silman, I. (1991) Science 253, 872-879). Attempts to convert the AChE triad into a Cys-His-Glu or Ser-His-Asp configuration by site-directed mutagenesis did not yield effective AChE activity. Another type of substitution, that of Asp-74 by Gly or Asn, generated an active enzyme with increased resistance to succinylcholine and dibucaine; thus mimicking in an AChE molecule the phenotype of the atypical butyrylcholinesterase natural variant (D70G mutation). Mutations of other carboxylic residues Glu-84, Asp-95, Asp-333, and Asp-349, all conserved among cholinesterases, did not result in detectable alteration in the recombinant AChE, although polypeptide productivity of the D95N mutant was considerably lower. In contrast, complete absence of secreted human AChE polypeptide was observed when Asp-175 or Asp-404 were substituted by Asn. These two aspartates are conserved in the entire cholinesterase/thyroglobulin family and appear to play a role in generating and/or maintaining the folded state of the polypeptide. The x-ray structure of the Torpedo acetylcholinesterase supports this assumption by revealing the participation of these residues in salt bridges between neighboring secondary structure elements.  相似文献   

18.
Summary The supernatant prepared from the brain tissue homogenate incubated in vitro in the presence of PVP or sucrose exhibits a decrease of AChE, SDH as well as of LDH activity. A 0.75% PVP solution inhibits AChE activity by 30%, LDH activity is inhibited by 35% and SDH activity by 40%. A two hours lasting effect of a 7.5% PVP solution at 3° C on enzymatic preparations induces in AChE 20% inhibition of its activity, in LDH an inhibition of 44% and in SDH the inhibition of its activity amounts to 74%. 1 M Sucrose inhibits AChE activity by 34%, LDH activity by 41% and SDH activity is inhibited by 31%. After two hours lasting effect of 1.4 M sucrose at 3° C on the supernatant the AChE activity is inhibited by 22% and that of LDH by 30%. The SDH activity was after a two hours lasting effect of 1 M sucrose at 3° C inhibited by 34%. The inhibition of activity of the above mentioned enzymes localized in brain cortex preparations was compared with the inhibition of activity of the isolated serum cholinesterase. 0.25 M Sucrose inhibited the activity of this enzyme by 25% and 0.75% PVP by 45%. A two hours lasting effect of 7.5% PVP or 1 M sucrose at 3° C on the cholinesterase induced a 40% and 22% inhibition respectively. After double washing of the brain cortical minced tissue, prepared in a 7.5% PVP containing solution, AChE activity was constant. By triple washing of the brain cortical crude mitochondrial fraction, exposed for two hours at 3° C to the effect of 1 M sucrose, SDH activity was also constant.Abbreviations AChE acetylcholinesterase (EC 3.1.1.7.) - INT 2(p-iodophenyl)3-p-nitrophenyl-5-phenyl tetrazolium chloride - LDH lactate dehydrogenase (EC 1.1.1.27.) - PMS phenazine methosulfate - PVP polyvinylpyrrolidone - SDH succinate dehydrogenase (EC 1.3.99.1.)  相似文献   

19.
Assessment of pollution impact in soil ecosystems has become a priority and interest has grown concerning the use of invertebrates as sentinel organisms. Inhibition of cholinesterase (ChE) activity has a great potential as a biomarker of pesticide exposure, and we evaluated the ChE kinetic parameters in the earthworm Eisenia andrei in the presence of acetylthiocholine (ASCh), proprionylthiocholine (PSCh) and butyrylthiocholine (BSCh). The highest ChE activity was found in the presence of ASCh and PSCh (42.45 and 49.82 nmol min(-1) mg protein(-1), respectively). BSCh was hydrolyzed at a rate of 4.04 nmol min(-1) mg protein(-1), but the time course did not reach a plateau under our experimental conditions. Km values were 0.142+/-0.006 and 0.183+/-0.053 mM for ASCh and PSCh, respectively. ASCh and PSCh hydrolysis were significantly inhibited by eserine (IC50 values were 1.44 x 10(-8) and 1.20 x 10(-8) M, respectively) and by carbaryl (IC50 values of 5.75 x 10(-9) and 4.79 x 10(-9) M). The presence of different ChEs in tissues from E. andrei was assessed by using selective inhibitors for AChE (BW284c51) and BChE (iso-OMPA). BW284c51 strongly reduced ASCh and PSCh hydrolysis and slightly affected that of BSCh, while iso-OMPA was without effect in all cases.  相似文献   

20.
Haloxysterols A-D (1-4), new C-24 alkylated sterols, have been isolated from the chloroform soluble fraction of Haloxylon recurvum, along with five known sterols 5-9, which are reported for the first time from this species. Their structures were determined by means of 1D- and 2D-NMR techniques. Compounds 1-9 inhibited cholinesterase enzymes in a concentration-dependent manner with K(i) values ranging between 0.85-25.5 and 1.0-19.0 microM against acetylcholinesterase (AChE; EC 3.1.1.7) and butyrylcholinesterase (BChE; EC 3.1.1.8) enzymes, respectively. Lineweaver-Burk, Dixon plots and their secondary replots indicated that compounds 1-9 are non-competitive inhibitors of both AChE and BChE enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号