首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phrenic nerve afferents (PNa) have been shown to activate neurons in the spinal cord, brain stem, and forebrain regions. The c-Fos technique has been widely used as a method to identify neuronal regions activated by afferent stimulation. This technique was used to identify central neural areas activated by PNa. The right phrenic nerve of urethane-anesthetized rats was stimulated in the thorax. The spinal cord and brain were sectioned and stained for c-Fos expression. Labeled neurons were found in the dorsal horn laminae I and II of the C3-C5 spinal cord ipsilateral to the site of PNa stimulation. c-Fos-labeled neurons were found bilaterally in the medial subnuclei of the nucleus of the solitary tract, rostral ventral respiratory group, and ventrolateral medullary reticular formation. c-Fos-labeled neurons were found bilaterally in the paraventricular and supraoptic hypothalamic nuclei, in the paraventricular thalamic nucleus, and in the central nucleus of the amygdala. The presence of c-Fos suggests that these neurons are involved in PNa information processing and a component of the central mechanisms regulating respiratory function.  相似文献   

2.
The role of the lateral reticular nucleus and nuclei of the inferior olive in the formation of cerebellar cortical evoked potentials in response to vagus nerve stimulation was determined in experiments on 28 cats anesthetized with chloralose and pentobarbital. After electrolytic destruction of the lateral reticular nucleus, in response to vagus nerve stimulation, especially ipsilateral, lengthening of the latent period and a decrease in amplitude of evoked potentials were observed; after bilateral destruction of this nucleus, evoked potentials could be completely suppressed. It is concluded that the lateral reticular nucleus relays interoceptive impulses in the vagus nerve system on to the cerebellar cortex. Additional evidence was given by the appearance of spike responses of Purkinje cells, in the form of mainly simple discharges, to stimulation of the vagus nerve. After destruction of the nuclei of the inferior olive, the latent period and the number of components of evoked potentials in response to vagus nerve stimulation remained unchanged but their amplitude was reduced. The role of the nuclei of the inferior olive as a regulator of the intensity of the flow of interoceptive impulses to the cerebellum is discussed.N. I. Pirogov Medical Institute, Vinnitsa. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 290–299, May–June, 1977.  相似文献   

3.
Bilateral electrolytic destruction of the paramedian zones of the caudal part of the tegmentum mesencephali caused an increase in the number of neurosecretory cells with low functional activity and the appearance of degenerating forms in the supraoptic nucleus of the hypothalamus (mainly in the medial part of the nucleus, adjacent to the optic chiasma); destruction of individual Herring's bodies was observed in the posterior lobe of the pituitary. The subnormal content of neurosecretory substance in all parts of the supraoptico-hypophyseal neurosecretory system was matched by a low plasma level of vasopressin-antidiuretic hormone. In animals with destructive lesions in the tegmentum mesencephali exposure to nociceptive stimulation activated mainly the neurosecretory cells in the lateral part of the supraoptic nucleus; the loss of neurosecretion from the posterior pituitary was partial; the plasma neurohormone level was much lower than in the control animals after nociceptive stimulation. It is postulated that changes in the response of the supraoptico-hypophyseal system to stress were probably the result of interruption of afferent pathways to the hypothalamus from the tegmentum mesencephali. The result of these experiments suggest that the paramedian zones of the tectum mesencephali exert a modulating influence on the function of this system during stress.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 2, pp. 157–164, March–April, 1977.  相似文献   

4.
The functional activity of the neurosecretory cells in the supraoptic and paraventricular nuclei was studied in male Wistar albino rats at various intervals after electric stimulation of the midbrain reticular formation. These studies showed that such stimulation elicits higher functional activity of the neurosecretory cells in the anterior hypothalamic nuclei, characterized by increased secretory synthesis by these cells and rapid transport of the neurosecretion. These changes were most pronounced 1 h after stimulation of the reticular formation. The changes observed were unidirectional in both neurosecretory centers, but their manifestation was different: in the supraoptic nucleus the reaction was more intense but short lived, in the paraventricular it was less intense but lasted longer.A. A. Bogomolets Institute of Physiology, Academy of Sciences, Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 3, No. 4, pp. 394–400, July–August, 1971.  相似文献   

5.
Orthodromically activated neurons (OAN) are found in the hypothalamic supraoptic area under pituitary stalk stimulation, differing in their dependence on pattern of orthodromic activation and recording site. More than a half of OAN responded to stimulation of the ventral hippocampus and response was consistently excitatory initially. Some similarity was found between the pattern of response of most OAN to pituitary stalk stimulation. Aspects of hippocampal influence on OAN taking account of their location within the supraoptic nucleus area and the perinuclear zone are examined, as well as their presumed morphofunctional connections with antidromically identified neurosecretory cells.A. A. Ukhtomskii Institute of Physiology, State University, Leningrad. Translated from Neirofiziologiya, Vol. 22, No. 5, pp. 596–604, September–October, 1990.  相似文献   

6.
Recent studies of Parkinson's disease indicate that dorsal motor nucleus of nerve vagus is one of the earliest brain areas affected by alpha-synuclein and Lewy bodies pathology. The influence of electrical stimulation of vagus nerve on elemental composition of dopamine related brain structures in rats is investigated. Synchrotron radiation based X-ray fluorescence was applied to the elemental micro-imaging and quantification in thin tissue sections. It was found that elements such as P, S, Cl, K, Ca, Fe, Cu, Zn, Se, Br and Rb are present in motor cortex, corpus striatum, nucleus accumbens, substantia nigra, ventral tectal area, and dorsal motor nucleus of vagus. The topographic analysis shows that macro-elements like P, S, Cl and K are highly concentrated within the fiber bundles of corpus striatum. In contrast the levels of trace elements like Fe and Zn are the lowest in these structures. It was found that statistically significant differences between the animals with electrical stimulation of vagus nerve and the control are observed in the left side of corpus striatum for P (p = 0.04), S (p = 0.02), Cl (p = 0.05), K (p = 0.02), Fe (p = 0.04) and Zn (p = 0.02). The mass fractions of these elements are increased in the group for which the electrical stimulation of vagus nerve was performed. Moreover, the contents of Ca (p = 0.02), Zn (p = 0.07) and Rb (p = 0.04) in substantia nigra of right hemisphere are found to be significantly lower in the group with stimulation of vagus nerve than in the control rats.  相似文献   

7.
The nerve activity of the gastric ramus of the splanchnic (sympathetic) nerve, gastric ramus of the vagus, adrenal ramus of the splanchnic nerve and the superior laryngeal nerve (laryngeal ramus of vagus) were assessed before and after i.c.v. injection of neuropeptides in the rat. TRH stimulated the vagal branch but attenuated the sympathetic outflow to the stomach. In contrast, the sympathetic outflow to the adrenal was enhanced by TRH. SRIF suppressed the activity of all the nerves studied. VIP did not affect the sympathetic outflow to the stomach while suppressing the gastric branch of the vagus. The adrenal sympathetic branch as well as the superior laryngeal nerve was stimulated by VIP. Bombesin suppressed both vagal and sympathetic outflow to the stomach but markedly stimulated the laryngeal branch of the vagus. The adrenal sympathetic nerve was either stimulated or attenuated slightly by bombesin. These results indicate that centrally administered neuropeptides produce reactions specific for each nerve.  相似文献   

8.
The influence of intracerebroventricular injections of the angiotensin II antagonist--saralasin on the cardiovascular reactions elicited by electrical stimulation of different structures of the hypothalamus in rabbit was studied. The saralasin in doses from 1 to 1.5 mg reduced arterial pressure by 9 +/- 0.2 mm Hg and decreased the amplitude of the hypertensive reactions elicited by electrical stimulation of the paraventricular, supraoptic, ventromedial, supramammillary nucleus of the hypothalamus, area hypothalamic anterior and lateral. It has been shown that most suppressing influence of the saralasin on amplitude of the hypertensive reactions elicited by electrical stimulation of the paraventricular (68%) and supraoptic (76%) nucleus of the hypothalamus which contain magnocellular neurosecretory neurons.  相似文献   

9.
Synopsis The distribution of cholinesterase activity was studied histochemically in the autonomic ganglia of the human sympathetic trunk and the vagus nerve using a modified Koelle's technique. It was found that the cytoplasm of both sympathetic and parasympathetic nerve cells contained acetylcholinesterase but the intensity of the enzyme reaction varied from cell to cell in both types of ganglia. Tissue elements surrounding the nerve cells showed a low butyrylcholinesterase activity in the ganglia of the sympathetic trunk but a high one in the terminal ganglia of the vagus nerve. Postganglionic nerves fibres gave a weak reaction for acetylcholinesterase in the sympathetic, but a strong one in the vagus ganglia. The distribution pattern of cholinesterases in human autonomic ganglia was found to be different from that of a variety of laboratory and wild animals.  相似文献   

10.
A procedure to isolate the sympathetic nerve supply to the lung has been developed in the rabbit. Electrical stimulation (50V, 1ms, 10Hz) of these nerves released norepinephrine (NE) which could be measured in the outflows from lungs perfused via the pulmonary artery. On the average 19 ng NE/stimulation period were found in the perfusates. The release of NE from the lung by nerve stimulation is thereby demonstrated by direct measurement of the amine. Infusion of methacholine (1 or 10 ug/ml) and excitation of the vagus nerves inhibited the output of NE. These data suggest existence of a sympathetic-parasympathetic presynaptic balance in the lung.  相似文献   

11.
He G  Hu J  Ma X  Li M  Wang H  Meng J  Jia M  Luo X 《Journal of neurochemistry》2008,106(4):1710-1719
Histamine (HA) was found to be present in the sympathetic nerve terminals of guinea pig hearts and vasa deferentia in our previous study; however, little is known about the functions of this neurogenic HA. In this study, we used guinea pig vasa deferentia to investigate the pre- and post-synaptic functions of HA evoked by different frequencies of sympathetic nerve stimulation. We found that sympathetic nerve stimulation could evoke HA release, which was independent to mast cell degranulator compound 48/80 and mast cell stabilizer cromolyn, but was highly sensitive to Na+ channel blocker tetrodotoxin and chemical sympathectomy with 6-hydroxydopamine. The neurogenically released HA evoked by 12.5 Hz of nerve stimulation activated only pre-synaptic H3 receptors and mediated pre-synaptic inhibitory effects, while under 25 or 50 Hz stimulation condition, HA simultaneously activated both pre-synaptic H3 receptors and post-synaptic H1 receptors. However, the direct contractile responses evoked by sympathetic HA via H1 receptors were observed at 50 Hz. HA release and HA-mediated contractile responses upon sympathetic nerve stimulation were significantly inhibited by pre-treatment of histidine decarboxylase inhibitor α-fluoromethylhistidine. Furthermore, application of exogenous HA could mimic these pre- and post-synaptic effects. Our findings indicate that HA in sympathetic neurons acts as a neurotransmitter and its functions vary from pre-synaptic inhibition, to post-synaptic facilitation, to direct post-synaptic contractile responses according to sympathetic nerve stimulation frequencies.  相似文献   

12.
The effect of parasympathetic and sympathetic nerve stimulation on the secretion of gastric somatostatin and gastrin has been studied in an isolated perfused rat stomach preparation. Stimulation of the vagus nerve inhibited somatostatin secretion and increased gastrin release. Splanchnic nerve stimulation increased somatostatin release during simultaneous atropine perfusion, but not in its absence, whereas gastrin secretion was unchanged. The secretory activity of the gastric D-cell was therefore reciprocally influenced by the sympathetic and parasympathetic nerves but sympathetic stimulation was only effective during muscarinic blockade.  相似文献   

13.
The ultrastructure of neurosecretory cells of the anterior commissural nucleus of rat hypothalamus is similar to that of the supraoptic nucleus and of the "magnocellular" part of the paraventricular nucleus. The only difference is a less expressed granular endoplasmatic reticulum and a smaller diameter of elementary neurosecretory granules (80-150 nm in diameter). Such elementary granules are characteristic of neurosecretory terminals located in the external zone of the median eminence. It is suggested that neurosecretory cells of the anterior commissural nucleus project to this neurohemal region.  相似文献   

14.
电刺激兔肾脏传入神经对血压,心率及加压素释放的影响   总被引:1,自引:0,他引:1  
吕敏  魏顺光 《生理学报》1995,47(5):471-477
本工作以兔为实验对象,观察电刺激肾脏传入神经(ARN)对血压、心率、颈交感神经放电、以及加压素(AVP)合成和释放的影响,并对ARN进入中枢的通路作了观察。结果显示,电刺激ARN可以引起血压下降、心率减慢、颈交感神经放电抑制等反应,ARN的兴奋还可使下丘脑的视上核、室旁核中的AVP含量增加,垂体中AVP含量下降,血浆AVP水平升高。硝普钠的降压实验和静脉注射AVP受体阻断剂AVPa的实验均证实了A  相似文献   

15.
Summary Following the bilateral implantation of puromycin into the paraventricular nuclei of rats, the neurosecretory cells became atrophic and the amount of aldehyde-fuchsin (AF) positive material in the neural lobe decreased. In these rats, urine excretion and water intake increased remarkably. The supraoptic nuclei of the rats were not affected by this treatment. After the unilateral implantation of puromycin in the paraventricular nucleus, the neurosecretory cells of the implanted side became atrophic, while those of the unimplanted side hypertrophied. The neural lobe contained similar amounts of AF-positive material to those of the control rats with unilateral cholesterol implants. In the rats implanted bilaterally with puromycin immediately above the supraoptic nucleus, the neurosecretory cells of this nucleus contained little or no AF-positive material, and urine excretion and water intake increased greatly. The cells of the paraventricular nucleus remained unchanged in these rats.  相似文献   

16.
17.
The aim of our study was to investigate the anorectic and brain stimulatory effects of various doses of exendin-4 (Ex-4) and to investigate the role of the vagus nerve in Ex-4-induced brain activation. A dose-related increase in c-fos mRNA expression was observed following Ex-4 administration (0.155-15.5 μg/kg). Doses of Ex-4 that caused anorexia without aversive effects (0.155, 0.775 μg/kg) induced c-fos expression in the hypothalamic arcuate and paraventricular (PVH; parvocellular) nuclei as well as in the limbic and brainstem structures. Doses of Ex-4 that caused aversion (1.55, 15.5 μg/kg) stimulated the same regions (in a more intense way) and additionally activated the magnocellular hypothalamic structures (supraoptic nucleus and PVH magnocellular). The brain c-fos pattern induced by Ex-4 showed both similarities and differences with that induced by refeeding. Subdiaphragmatic vagotomy significantly blunted the stimulation of c-fos mRNA expression induced by Ex-4 in the nodose ganglion, the medial part of nucleus of the solitary tract, and the parvocellular division of the PVH. Pretreatment with Ex-9-39 (330 μg/kg ip) impaired the neuronal activation evoked by Ex-4 in all brain regions and in the nodose ganglion. Effects of Ex-4 on hypothalamic-pituitary-adrenal axis activity were not altered by vagotomy. Results of this study demonstrate and relate the anorectic and brain stimulatory effects of aversive and nonaversive doses of Ex-4 and indicate that the activation of specific central regions induced by the peripheral administration of Ex-4 is, at least in part, dependent on the integrity of the vagus nerve.  相似文献   

18.
The effect of nerve stimulation on inositol phospholipid hydrolysis in autonomic tissue was assessed by direct measurement of [3H]inositol phosphate production in ganglia that had been preincubated with [3H]inositol. Within minutes, stimulation of the preganglionic nerve increased the [3H]inositol phosphate content of the superior cervical sympathetic ganglion indicating increased hydrolysis of inositol phospholipids. This effect was blocked in a low Ca2+, high Mg2+ medium. It was also greatly reduced when nicotinic and muscarinic antagonists were present together in normal medium. However, neither the nicotinic antagonist nor the muscarinic antagonist alone appeared to be as effective as both in combination. In other experiments, stimulation of the vagus nerve caused dramatic increases in [3H]inositol phosphate in the nodose ganglion but did not increase [3H]inositol phosphate in the nerve itself. This effect was insensitive to the cholinergic antagonists. Thus, neuronal activity increased inositol phospholipid hydrolysis in a sympathetic ganglion rich in synapses, as well as in a sensory ganglion that contains few synapses. In the sympathetic ganglion, synaptic stimulation activated inositol phospholipid hydrolysis and this was primarily due to cholinergic transmission; both nicotinic and muscarinic pathways appeared to be involved.  相似文献   

19.
The effects of water deprivation were investigated in the pattern of response produced by subiculum stimulation in antidromically identified hypothalamic supraoptic neurosecretory cells of lactating rats. In dehydrated animals as compared with the controls, the percentage of neurons responding to subiculum stimulation with an inhibitory action (blockade of antidromic action potential) remained unchanged, although the proportion of differing inhibitory response did alter: numbers of cells with gradually developing inhibitory response increased significantly and fewer cells showed transitory development of inhibition. Inhibitory response emerging as depression of background spike activity showed a quantitative increase, moreover. Plasticity was found to be one distinguishing feature of afferent input from the subiculum to supraoptic nucleus neurosecretory cells and, in particular, a capacity for reorganization under water deprivation.A. A. Ukhtomskii Institute of Physiology, State University, Leningrad. Translated from Neirofiziologiya, Vol. 22, No. 2, pp. 243–249, March–April, 1990.  相似文献   

20.
The purpose of the present study was to identify vagal subnuclei that participate in reflex swallowing in response to electrical stimulation of the left superior laryngeal nerve (SLN). SLN stimulation at 10 Hz evoked primary peristalsis, including oropharyngeal and esophageal peristalsis, and LES relaxation. It also induced c-fos expression in interneurons in the interstitial (SolI), intermediate (SolIM), central (SolCe), dorsomedial (SolDM) and commissural (SolC) solitary subnuclei. Neurons in parvicellular reticular nucleus (PCRt) and area postrema (AP) and motoneurons in the semicompact (NAsc), loose (NAl), and compact (NAc) formations of the nucleus ambiguus and both rostral (DMVr) and caudal (DMVc) parts of the dorsal motor nucleus of vagus were also activated. The activated neurons represent all neurons concerned with afferent SLN-mediated reflexes, including the swallowing-related neurons. SLN stimulation at 5 Hz elicited oropharyngeal and LES but not esophageal responses and evoked c-fos expression in neurons in SolI, SolIM, SolDM, PCRt, AP, NAsc, NAl, and DMVc but not in SolCe, NAc, or DMVr. These data are consistent with the role of SolI, SolIM, SolDM, NAsc, NAl, and DMVc circuit in oropharyngeal peristalsis and LES relaxation and SolCe, NAc, DMVc, and DMVr in esophageal peristalsis and LES responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号