首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 Nephridial diversity is high in Phyllodocida (Annelida) and ranges from protonephridia to metanephridia. The nephridia of Tomopteris helgolandica (Tomopteridae) can be characterized as metanephridia which bear a multiciliated solenocyte. This cell is medially apposed to the proximal part of the nephridial duct and bears several cilia, each of which is surrounded by a ring of 13 microvilli. An extracellular matrix connects the microvilli and thus leads to the impression of a tube surrounding the central cilium. Each tube separately enters a subjacent duct cell and the cilia extend into a cup-shaped compartment within the duct cell. This compartment is not connected to the duct. The funnel consists of eight multiciliated cells and is connected to the nephridial duct, which initially runs intercellularly and later percellularly. The last duct cell bears a neck-like process which pierces the subepidermal basal membrane and is connected to epidermal cells forming a small invagination, the nephropore. The nephridia of T. helgolandica develop from a band of cells and all structural components are differentiated at an early developmental stage. Further development is characterized by enlargment of the funnel, ciliogenesis in the solenocyte, merging of different sections of the duct and, finally, the formation of the nephropore. An evaluation of the nephridia of T. helgolandica leads to the hypothesis that the nephridial diversity in Phyllodocida can be explained by the retainment of different stages in the transition of protonephridia into metanephridia; this is caused by the formation of a ciliated funnel at different ontogenetic stages. Although the protonephridia in Phyllodocida are regarded as primary nephridial organs, protonephridia are also presumed to have evolved secondarily in progenetic interstitial species of the Annelida by an incomplete differentiation of the nephridial anlage. Accepted: 18 December 1996  相似文献   

2.
Summary The actinotrocha of Phoronis muelleri has one pair of ectodermally derived, monociliated protonephridia. The duct runs mainly between the epidermis and the lining of the hyposphere coelom, pierces the septum and extends into the blastocoel. The proximal part is branched and closed up by terminal complexes consisting of two morphologically different cells which both serve filtration. During metamorphosis, the terminal complexes and the branches of the duct are cast off. The cells degenerate, pass into the remaining duct and are endocytosed by the duct cells. After metamorphosis the remaining part of the protonephridial duct is U-shaped, blindly closed and borders on the prospective lophophoral vessel. In a later stage the duct receives a ciliated funnel, which consists of monociliated epithelio-muscle cells and is a derivative of the lining of the metacoel. Thus, a part of the protonephridial duct of the larva and the whole metanephridial duct of the adult are identical. Aspects of a possible homology between phoronid nephridia and such organs in other bilaterians are discussed.  相似文献   

3.
In early developmental stages of Erpobdella octoculata two pairs of transitory nephridia occur which degenerate during the formation of the body segments. Because in the ground pattern of Annelida the first nephridia formed during ontogenesis are protonephridia, it can be assumed that the transitory nephridia of E. octoculata are homologous to the larval protonephridia (head kidneys) of Polychaeta. To test this hypothesis two cryptolarvae of E. octoculata were investigated ultrastructurally. Both pairs of transitory nephridia are serially arranged to either side of the midgut vestigium. Each organ consists of a coiled duct that opens separately to the exterior by an intraepidermal nephridiopore cell. The duct is percellular and formed by seventeen cells. Adluminal adherens and septate junctions connect all duct cells; the most proximal duct cell completely encloses the terminal end of the duct lumen. A filtration structure characteristic for protonephridia is lacking. Additionally, the entire organ lacks an inner ciliation. Morphologically and ultrastructurally the transitory nephridia of E. octoculata show far reaching congruencies with the segmental metanephridia in different species of the Hirudinea. These congruencies support the assumption that formation of transitory nephridia and definitive metanephridia in Hirudinea depends on the same genetic information. The same inherited information is assumed to cause the development of larval head kidneys and subsequently formed nephridia in different species of the Polychaeta. Thus, the presumed identical fate of a segmentally repeated nephridial anlage supports the hypothesis of a homology between the transitory nephridia in Hirudinea species and the protonephridial head kidneys in the ground pattern of the Polychaeta. We, therefore, assume that functional constraints lead to a modification of the protonephridial head kidneys in Hirudinea and explain ultrastructural differences between the transitory nephridia in Hirudinea and the protonephridia in Polychaeta. Accepted: 11 December 2000  相似文献   

4.
Adult specimens of Terebratulina retusa and Crania anomala have one pair of metanephridia. Each metanephridium is composed of a ciliated nephridial funnel (nephrostome) and an outleading nephridial canal, thus, these organs are open ducts connecting the metacoel of the animal with the outer medium. In both species, the inner side of a nephrostome is lined by a columnar monociliated epithelium which contacts the coelothel within one of the two ileoparietal bands. The coelothel contains basal filaments (in C. anomala these are definite myofilaments). The canal epithelium also consists of monociliated columnar cells which differ from the nephrostome epithelial cells in size and some cell components. Within the nephropore, the canal epithelium makes contact with the so-called inner mantle epithelium which lines the mantle cavity. The nephrostome epithelial cells and the canal epithelial cells never contain any contractile filaments. There are always continuous transitions between these different epithelia and distinct borders cannot be observed. The present results, especially in comparison to Phoronida, do not contradict the hypothesis of a coelothelially derived nephridial funnel and an ectodermal nephridial duct in Brachiopoda. But with regard to the differences between Phoronida and Brachiopoda (larval protonephridia and podocytes in the adults are unknown in Brachiopoda), further investigations have to be done to test the hypothesis of such heterogeneously assembled metanephridia.  相似文献   

5.
A single pair of protonephridia is the typical larval excretory organ of molluscs. Their presence in postlarval developmental stages was discovered only recently. We found that the protonephridia of the polyplacophoran mollusc, Lepidochitona corrugata, achieve their most elaborate differentiation and become largest during the postlarval period. This study describes the protonephridia of L. corrugata using light and electron microscopy and interactive three‐dimensional visualization. We focus on the postlarval developmental period, in which the protonephridia consist of three parts: the terminal part with the ultrafiltration sites at the distal end, the voluminous protonephridial kidney, and the efferent nephroduct leading to the nephropore. The ultrafiltration sites show filtration slits between regularly arranged thin pedicles. The ciliary flame originates from both the terminal cell and the duct cells of the terminal portion. The efferent duct also shows ciliation. The most conspicuous structures, the protonephridial kidneys, are voluminous swellings composed of reabsorptive cells (“nephrocytes”). These cells exhibit strong vacuolization and an infolding system increasing the basal surface. The protonephridial kidneys, previously not reported at such a level of organization in molluscs, strikingly resemble (metanephridial) kidneys of adult molluscan excretory systems. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

6.
Protonephridia and Metanephridia - their relation within the Bilateria   总被引:3,自引:0,他引:3  
Two different kinds of nephridia occur within the Bilateria, protonephridia closed up by a terminal cell and metanephridia opening into the coelomic cavity. Both initially filter and subsequently modify intercellular fluids. Whereas metanephridia are strictly correlated to a coelom, proto-nephria occur in acoelomate as well as in coelomate organisms. Protonephridia of different bilaterian taxa correspond to each other in several structural features. Therefore, it is hypothesized that protonephridia are homologous organs throughout the Bilateria. They must have evolved once as one pair of monociliated organs orinatinng from the ectoderm and consistin of one terminal, one duct and one nephropore cell In the ground pattern of the Bilateria the cilium of the terminal cell has only one rootlet and is surrounded by resumably eight strengthened and elongated microvilli. Cilium and microvilli extend into the hollow cyinder of the terminal cell, which is oriented distally and is attached to the adjacent duct cell by desmosomes. This cylinder is perforated by clefts and represents the supporting structure of the filtration barrier consisting of extracellular matrix. In the Annelida and Phoronida, the metanehridia at the postlarval stages are ontogenetically preceded by protonephridia in the larva, but far reaching structural and developmental differ ences exist between the metanephridia of both. In horonids the rotonephrdial duct of the larva is retained in the postlarva and acquires a coelothelially derived funnel, whereas in annelids the metanephridia are uniform organs orihating from a solid anlage, which is a repetition of the protonehridial anlage of the larva. The differences contradict a homology of the metanephridia in Annegda and Phoronida. We therefore have to conclude that metanephridia must have evolved indeendently, at least two times. The comparative analysis of nephridia in the Bilateria allows the following hyothesis: Pro tonephridia were evolved in a monohasic acoelomate organism in the stem fineage of the Bilateria. During the evolution of biphasic life cycles consisting of an acoelomate larva and a coelomate adult, the information about the differentiation of protonephridia has been preserved in the early acoelomate developmental (larval) stages. During postlarval development and the formation of a coelom the protonephridia have either been retained or modified into meta nephridia. Accordin to the differences between the metanehridia of phoronids and annelids, we emphasize that. tiere is no possibility to trace back all bilaterian taxa with a coelom to a common stem species.  相似文献   

7.
Rhogocytes, terminal cells of protonephridia, and podocytes of metanephridial systems share an architectural feature that creates an apparent sieving device. The sieve serves to ultrafilter body fluid during the excretion and osmoregulation process carried out by nephridial systems, but its function in rhogocytes is unclear. Rhogocytes are molluscan hemocoelic cells that appear to have various functions related to metabolism of metal ions, including synthesis of hemocyanin in some gastropods and metal detoxification in pteriomorph bivalves. A hypothesis that proposed developmental and possibly evolutionary conversion between protonephridial terminal cells and rhogocytes has never been further explored; indeed, information on the occurrence of rhogocytes in molluscan developmental stages is meager. We used transmission electron microscopy to show that rhogocytes are present within larvae of eight species of gastropods sampled from the three major gastropod clades with a feeding larval stage in the life history. In larvae of a heterobranch gastropod, a rhogocyte was located next to each terminal cell of a pair of protonephridia that flanked the foregut, whereas all six species of caenogastropod larvae and a neritimorph larva that we examined had rhogocytes, but no protonephridia, in this location. We did not find ring‐shaped profiles of hemocyanin decamers within rhogocytes of larvae or pre‐hatch embryos. Rhogocytes in newly released larvae of Nerita melanotragus contained orderly bundles of cylinders, but the diameter of the cylinders was only 70% of the diameter typical of hemocyanin multidecamers. By examining embryos of the caenogastropod Nassarius mendicus at four successive developmental time points that bracketed the occurrence of larval hatching, we found that terminal cells from non‐functional protonephridia in pre‐hatch embryos transformed into rhogocytes around the time of hatching. This empirical evidence of ontogenetic transformation of protonephridial terminal cells into rhogocytes might be interpreted as developmental recapitulation of an evolutionary transition that occurred early in molluscan history.  相似文献   

8.
The larval nephridia of the brackish-water polychaete Nereis diversicolor are described for the first time, and have been studied to determine if their times of development and structural characteristics are consistent with a role in the osmotic regulation of the larva. As shown in serial paraffin sections and by interference-contrast optics, the nephridia of the three-setiger larva consist of a single pair of very large metanephridia, arising in the 3rd larval setiger, but with their elongated terminal ducts and coiled ciliated tubules pushed forward into the 2nd setiger; their open metanephrostomes and anterior anchoring filaments lie dorsal to the 2nd set of setae. In contrast, the definitive or juvenile metanephridia, arising in the 4th and subsequently formed setigerous segments, have short terminal ducts and coiled ciliated tubules confined to the segments on which their external nephropores open; their nephrostomes are ventrally located and open into the rear of the next anterior segment. These findings are in contrast to the claims of Edouard Meyer (1887), who described two pairs of closed protonephridia in the 2nd and 3rd larval setigers of Perinereis cultrifera. Although it is not excluded that the single larval pair of metanephridia of N. diversicolor may arise as protonephridia, Meyer's claim of two pairs of larval protonephridia was an observational error. The larval nephridia of the marine Platynereis dumerilii resemble in form, but are considerably smaller than, those of N. diversicolor. It is concluded that the hypertrophied pair of larval metanephridia of N. diversicolor is an evolutionary adaptation to existence in habitats of low and unpredictably varying salinity. Their development occurs irrespective of the prevailing salinity; hence, it must be genetically determined.  相似文献   

9.
During spiralian development, the first pair of nephridia forms anterior to the mouth. Each organ consists of a few cells, which is characteristic for spiralian larvae. In nemerteans, one of the unambiguously spiralian taxa, so far protonephridia, has been reported only in advanced pilidium larvae, where they likely persist as juvenile and adult nephridia. These organs have not been recorded in larvae of the basally branching nemertean taxa. In search for these organs, we examined the ultrastructure of pelagic planuliform larvae of the palaeonemerteans Carinoma mutabilis and Cephalothrix (Procephalothrix) filiformis. In both species, a pair of protonephridia is located at the level of the stomodaeum. Each protonephridium of C. mutabilis consists of two terminal cells, two duct cells and one nephropore cell, while that of C. filiformis consists of three terminal cells, three duct cells and one nephropore cell. In C. mutabilis and in C. filiformis, all terminal cells contribute to forming a compound filtration structure. In both species, the protonephridia seem to develop subepidermally, since in C. filiformis, the nephropore cells pierce the larval epidermis and in C. mutabilis, the nephropores are initially covered by the binucleated multiciliated trophoblast cells. On the fifth day, these cells degenerate, so that the protonephridium becomes functional. The occurrence of protonephridia in the larvae of both paleonemertean species is in accordance with the hypothesis that a common ancestor of Nemertea and Trochozoa had a larval stage with a pair of protonephridia. This does not contradict previous hypotheses on placing the Nemertea as an ingroup of the Trochozoa or Spiralia (= Lophotrochozoa). Whether these protonephridia are restricted to the larval phase or whether they are transformed into the adult protonephridia, like those of the pilidium larva, remains to be answered.  相似文献   

10.
Developmental and free-living stages of the chordoid larva of the cycliophoran species, Symbion pandora Funch and Kristensen 1995, were studied using light and electron microscopy. In the free-living stage of the larva, about 200 μm long, four ciliated areas are found: two anterior bands, a ventral ciliated field, and a posterior unit on the ventral side of the foot. The nervous system consists of a dorsal brain and a pair of ventral longitudinal nerves. A gut is absent. A pair of protonephridia, each with a single multiciliated terminal cell and at least one duct cell, is present. Nephridiopores are not localized. A pair of corsal ciliated organs is posterior to the brain. The homology between these and the apical organ of a trochophore larva is discussed. A distinctive longitudinal rod, the chordoid organ, consists of vacuolized cells with circular myofilaments. The organ is comparable to a similar structure in gastrotrichs. In the discussion of the phylogenetic position of Cycliophora among protostomians, important morphological observations that are described in the present study indicate that, despite some dissimilarities, the chordoid larva is a modified trochophore. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Larval protonephridia appear as paired ectodermal invaginations on the posterior body end of the larva (actinotrocha), at early stages of its development. The protonephridium of the early actinotrocha has a straight canal and one group of solenocytes distally. The protonephridium of the late actinotrocha has a U-shaped canal and two (upper and lower) groups of solenocytes. After metamorphosis, solenocytes degenerate and the canal is connected with metacoel. The metanephridial funnel is formed from the upper metacoelomic wall epithelium and the lateral mesentery. The definitive nephridium consists of two parts: the ectodermal canal (derived from the protonephridial canal) and the mesodermal funnel, a derivative of the coelomic epithelium. Thus, the phoronid excretory organ is a nephromixium. Consecutive stages of the evolution of nephridia in phoronids are discussed.  相似文献   

12.
Abstract The neural gland complex of Ascidia interrupta consists of three parts: dorsal tubercle, ciliated duct, and neural gland. The dorsal tubercle protrudes above the pharyngeal lining and bears a ciliated funnel. The funnel opens into a ciliated duct which opens into the neural gland, a blind sac in a blood sinus below the brain. Funnel and duct cells are joined by adhaerens junctions and, apically, by putative tight junctions. The neural gland wall is a loose, irregular, non-ciliated epithelium of phagocytes. Adhaerens, but not tight, junctions join the cells. Secretory cells were not observed. Tracers delivered onto the dorsal tubercle and dissolved in seawater around undissected animals are transported unidirectionally inward into the neural gland. The continuous ciliary incurrent moves the tracers across the wall of the neural gland and into the pharyngeal blood vessels. Small particulates and large macromolecules, however, are removed from the water stream by endocytosis on neural gland cells. Large particulates delivered onto the dorsal tubercle do not enter the system but rather are rejected by cilia on the surface of the tubercle. The neural gland complex is interpreted as an organ of blood volume regulation that consists of a pump (cilia) and coarse (tubercle) and fine (gland) filters. Analogous and homologous systems are discussed.  相似文献   

13.
Abstract The gonochoristic syllid Petitia amphophthalma is one of the truly interstitial polychaetes. P. amphophthalma does not show any epitokous modifications at maturity such as those that usually occur in syllids. The reproductive structures are unique: the male genital organs consist of a seminal vesicle in chaetigers 6–10, subdivided into a dorsal part tightly filled with spermatozoa and a ventral part with contents in different stages of spermatogenesis, one pair of sperm ducts and conspicuous gland cells situated in chaetigers 10 and 11. Their glandular secretions are discharged into the sperm duct together with those of other types of gland cells that form the duct. The oocytes develop freely within the body cavity of the females. Each of the fertile segments possesses a paired oviduct ending in a large ciliated funnel. Sperm ducts and oviducts are probably modifications of excretory organs; nephridia are absent in segments where gonoducts occur. A direct sperm transfer by lytic opening of the integument of the female and internal fertilization are inferred. Copyright © 1996 Published by Elsevier Science Ltd on behalf of the Royal Swedish Academy of Sciences  相似文献   

14.
THE FUNCTIONAL ORGANIZATION OF FILTRATION NEPHRIDIA   总被引:4,自引:0,他引:4  
(1) Based on the classical studies of Goodrich, protonephridia are believed to be phylogenetic antecedents of metanephridia. It is argued here that the primary factor determining the type of nephridium expressed is body size rather than phylogenetic status. (2) The proposed model defines a nephridium functionally and predicts two general configurations for filtration nephridia in animals. (3) Application of the model to metanephridial and protonephridial systems indicates differences in the sites of ultrafiltration and mechanisms of pressure generation. (4) Metanephridial systems function by muscle-mediated filtration of vascular fluid into a coelomic space before modification by an excretory duct. (5) Protonephridial systems function by cilia-mediated filtration of extracellular fluid into the lumen of a protonephridial terminal cell before modification in an adjoining duct. (6) The model predicts a correlation between animals with blood vessels and metanephridia, and animals without blood vessels and protonephridia. The correlation is shown to be nearly perfect. (7) Exceptions to the model are discussed. (8) Original experimental evidence is given for the permeability of the protonephridial terminal cell to iron dextran and its reabsorption by the protonephridial duct in the polychaete, Glycera dibranchiata. (9) Experimental data for proto- and metanephridial systems are summarized and shown to support the proposed model. (10) The ultrastructure of the exceptional amphioxus ‘protonephridium’ is reviewed and original data are presented. Its organization is structurally and perhaps functionally intermediate between proto- and metanephridial systems. (11) An original ultrastructural comparison is made of monociliated nitration cells in a size range of larval invertebrates from five phyla. Filtration cells that are structurally intermediate between protonephridial solenocytes and metanephridial podocytes are noted in larvae intermediate in body size between the two extremes. The comparative data suggest that (i) podocytes and solenocytes are homologous cells and (ii) that body size is correlated with which of the two designs is expressed. (12) The fates of larval podocytes are followed through metamorphosis in three species. The results confirm the equivalence of podocytes and solenocytes as suggested by the comparative analysis. They further indicate that which morph is expressed is a function of body design factors discussed in the model. (13) Protonephridia are believed to be primitive to metanephridia because they occur in presumably primitive animals and in ontogenetic stages of many animals with metanephridia as adults. It is suggested here that the distribution of protonephridia is related to small body size and the lack of blood vessels, regardless of phylogenetic status. The occurrence of protonephridia in the larvae of species with metanephridia as adults is explained similarly as a function of the small larval size and lack of blood vessels.  相似文献   

15.
Recent molecular analyses consistently resolve the “spoon worms” (Echiura) as a subgroup of the Annelida, but their closest relatives among annelids still remain unclear. Since the adult morphology of echiurans yields limited insight into their ancestry, we focused on characters of their larval anatomy to contribute to this discussion. Electron microscopical studies of the larval protonephridia (so-called head kidneys) of the echiuran species Thalassema thalassemum revealed distinct correspondences to character states in serpulid polychaetes, although a close relationship between Echiura and Serpulidae is not supported by any phylogenetic analysis. The larval head kidneys of T. thalassemum consist of only two cells, a terminal cell and a duct cell. The terminal cell forms a tuft of six cilia projecting into the lumen of the terminal cell. The cilia are devoid of circumciliary microvilli. A filter structure is formed by two to three layers of elongate microvilli that surround the lumen of the terminal cell in a tubular manner. A thin layer of extracellular matrix (ECM) encloses the outer microvilli of the tubular structure. The tips of the microvilli project into the lumen of the adjacent duct cell but are not directly connected to it. However, mechanic coupling is facilitated by the surrounding ECM and abundant hemidesmosomes. The distal end of the multiciliary duct cell forms the external opening of the nephridium; a specialized nephropore cell is absent. Apart from the multiciliarity of the duct cell, details of the head kidneys in T. thalassemum reveal no support for the current assumption that Echiura is closely related to Capitellida and/or Terebelliformia. Available data for other echiuran species, however, suggest that the head kidneys of T. thalassemum show a derived state within Echiura.  相似文献   

16.
This study details the gross and microscopic anatomy of the pelvic kidney in male Ambystoma maculatum. The nephron of male Ambystoma maculatum is divided into six distinct regions leading sequentially away from a renal corpuscle: (1) neck segment, which communicates with the coelomic cavity via a ventrally positioned pleuroperitoneal funnel, (2) proximal tubule, (3) intermediate segment, (4) distal tubule, (5) collecting tubule, and (6) collecting duct. The proximal tubule is divided into a vacuolated proximal region and a distal lysosomic region. The basal plasma membrane is modified into intertwining microvillus lamellae. The epithelium of the distal tubule varies little along its length and is demarcated by columns of mitochondria with their long axes oriented perpendicular to the basal lamina. The distal tubule possesses highly interdigitating microvillus lamellae from the lateral membranes and pronounced foot processes of the basal membrane that are not intertwined, but perpendicular to the basal lamina. The collecting tubule is lined by an epithelium with dark and light cells. Light cells are similar to those observed in the distal tuble except with less mitochondria and microvillus lamellae of the lateral and basal plasma membrane. Dark cells possess dark euchromatic nuclei and are filled with numerous small mitochondria. The epithelium of the neck segment, pleuroperitoneal funnel, and intermediate segment is composed entirely of ciliated cells with cilia protruding from only the central portion of the apical plasma membrane. The collecting duct is lined by a highly secretory epithelium that produces numerous membrane bound granules that stain positively for neutral carbohydrates and proteins. Apically positioned ciliated cells are intercalated between secretory cells. The collecting ducts anastomose caudally and unite with the Wolffian duct via a common collecting duct. The Wolffian duct is secretory, but not to the extent of the collecting duct, synthesizes neutral carbohydrates and proteins, and is also lined by apical ciliated cells intercalated between secretory cells. Although functional aspects associated with the morphological variation along the length of the proximal portions of the nephron have been investigated, the role of a highly secretory collecting duct has not. Historical data that implicated secretory activity concordant with mating activity, and similarity of structure and chemistry to sexual segments of the kidneys in other vertebrates, lead us to believe that the collecting duct functions as a secondary sexual organ in Ambystoma maculatum. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
18.
Morphological variation among larval body plans must be placed into a phylogenetic and ecological context to assess whether similar morphologies are the result of phylogenetic constraints or convergent selective pressures. Investigations are needed of the diverse larval forms within the Lophotrochozoa, especially the larvae of phoronids and brachiopods. The actinotroch larva of Phoronis pallida (Phoronida) was reared in the laboratory to metamorphic competence. Larval development and growth were followed with video microscopy, SEM, and confocal microscopy. Early developmental features were similar to other phoronid species. Gastrulation was accomplished by embolic invagination of the vegetal hemisphere. Mesenchymal cells were found in the remaining blastocoelic space after invagination began. Mesenchymal cells formed the body wall musculature during the differentiation of larval features. Body wall musculature served as the framework from which all other larval muscles proliferated. Larval growth correlated best with developmental stage rather than age. Consistent with other phoronid species, differentiation of juvenile tissues occurred most rapidly at the latest stages of larval development. The minimum precompetency period of P. pallida was estimated to be approximately 4-6 weeks. Previously published studies have documented that the planktonic embryos of P. pallida develop faster than the brooded embryos of P. vancouverensis. However, these data showed that the difference in developmental rate between the two species decreased in succeeding larval stages. There may be convergent selective pressures that result in similar timing to metamorphic competence among phoronid and brachiopod planktotrophic larval types. Morphological differences between these larval types result from heterochronic developmental shifts in the differentiation of juvenile tissue. Similarities in the larval morphology of phoronids and basal deuterostomes are likely the result of functional and developmental constraints rather than a shared (recent) evolutionary origin. These constraints are imposed by the functional design of embryological stages, feeding structures, and swimming structures.  相似文献   

19.
The structure of the cellular cyst which encapsulates the parasitic copepod, Scolecodes huntsmani, in the subendostylar blood vessel of the ascidian, Styela gibbsii, is described from light and electron microscopic studies. The cells comprising the cyst are contributed by the ascidian. The cells are columnar, contain large central reservoirs of glycogen and lipid, and have a conspicuous Golgi apparatus, many small cisternae of smooth endoplasmic reticulum and peripheral mitochondria. The cells are held together by complex basal interdigitations and a short apical zonula occludens. Long cilia emerge in circular clusters from the cell apices and beat in the lumen of the cyst. As atypical of a columnar epithelial layer, the nuclei are staggered in position in the cells and there is no basal lamina. One end of the cyst is blind, but the other end, which may be either anterior or posterior with respect to the longitudinal axis of the host, narrows to a profusely ciliated duct which opens through the wall of the blood vessel to the atrium of the ascidian by a ciliated funnel. The effective beat of the cilia of the duct and the funnel is outward toward the atrium. The first nauplii of the copepod emerge from the incubatory pouch of the adult and pass to the exterior sea water through the cyst funnel and the atrium and atrial siphon of the ascidian. As in other notodelphyid copepods, the life cycle of this incarcerated form also involves free-living naupliar stages followed by two free-living copepodid stages. The provision of an egress for the first nauplii is, therefore, important to the survival of the species. The adult females of Scolecodes, which range in length from 2 to 14.6 mm, are sluggish when removed from the cyst and fail to survive in sea water for more than 24 hours. The males, which have only been obtained when parasitic fifth copepodids molt in culture, are much smaller, averaging 0.8 mm, and are very active. Since one dead male has been found inside the cyst of an adult female and females are often found with attached spermatophores, it is suggested that the funnel of the cyst may also serve as an entrance for the males. Evidence is presented for the formation of the cyst as an accumulation of totipotent lymphocytes around the copepod. Cysts of parasitic developmental stages (third through fifth copepodids) are also described. All of these cysts and those of immature adult females lack funnels to the atrium. The funnel of the cyst of mature females is formed, in part, by modified cells of the wall of the blood vessel, but is induced after the major portion of the cellular cyst has been formed. Cells in the general circulation of the ascidian and those inside the lumen of the cyst are compared. The cells in the lumen of the mature cyst do not arise by diapedesis of blood cells from the subendostylar blood vessel, but by conversion and migration of cells composing the cyst proper. These cells have been found in the guts of the copepods and they may serve as a nutritive source. The ascidian appears not to be harmed by the association, but the copepod gains in many ways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号