首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphoglucomutase (PGM) is a key enzyme in glucose metabolism, where it catalyzes the interconversion of glucose 1-phosphate (Glc-1-P) and glucose 6-phosphate (Glc-6-P). In this study, we make the novel observation that PGM is also involved in the regulation of cellular Ca(2+) homeostasis in Saccharomyces cerevisiae. When a strain lacking the major isoform of PGM (pgm2Delta) was grown on media containing galactose as sole carbon source, its rate of Ca(2+) uptake was 5-fold higher than an isogenic wild-type strain. This increased rate of Ca(2+) uptake resulted in a 9-fold increase in the steady-state total cellular Ca(2+) level. The fraction of cellular Ca(2+) located in the exchangeable pool in the pgm2Delta strain was found to be as large as the exchangeable fraction observed in wild-type cells, suggesting that the depletion of Golgi Ca(2+) stores is not responsible for the increased rate of Ca(2+) uptake. We also found that growth of the pgm2Delta strain on galactose media is inhibited by 10 microM cyclosporin A, suggesting that activation of the calmodulin/calcineurin signaling pathway is required to activate the Ca(2+) transporters that sequester the increased cytosolic Ca(2+) load caused by this high rate of Ca(2+) uptake. We propose that these Ca(2+)-related alterations are attributable to a reduced metabolic flux between Glc-1-P and Glc-6-P due to a limitation of PGM enzymatic activity in the pgm2Delta strain. Consistent with this hypothesis, we found that this "metabolic bottleneck" resulted in an 8-fold increase in the Glc-1-P level compared with the wild-type strain, while the Glc-6-P and ATP levels were normal. These results suggest that Glc-1-P (or a related metabolite) may participate in the control of Ca(2+) uptake from the environment.  相似文献   

2.
The three electrophoretic variants of phosphoglucomutase in Saccharomyces cerevisiae breeding stocks are produced by two unlinked genes, pgm-1 and pgm-2; pgm-1 contains two known alleles, pgm-1a and pgm-1b, each of which specifies a minor phosphoglucomutase component, and pgm-2 specifies the major phosphoglucomutase component.  相似文献   

3.
4.
Deletion of PDR5 gene (Deltapdr5) in Saccharomyces cerevisiae led to increased resistance to calcium. The cellular Ca2+ level in the presence of high calcium as estimated by reporter assay in Deltapdr5 cells was significantly lower than that in wild-type cells. Membrane Pdr5p levels diminished rapidly during incubation with high calcium in a manner dependent on calcineurin and Pep4p, suggesting a feedback regulatory mechanism for Pdr5p abundance.  相似文献   

5.
Summary Furfural, a Maillard reaction product, was found to inhibit growth and alcohol production by Saccharomyces cerevisiae. Furfural concentrations above 1 mg ml–1 significantly decreased CO2 evolution by resuspended yeast cells. Important glycolytic enzymes such as hexokinase, phosphofructokinase, triosephosphate dehydrogenase, aldolase and alcohol dehydrogenase were assayed in presence of furfural. Dehydrogenases appeared to be the most sensitive enzymes and are probably responsible for the observed inhibition of alcohol production and growth.  相似文献   

6.
The biosynthesis of uroporphyrinogen III, the precursor of hemes, chlorophylls, corrins and related structures, is catalyzed by the porphobilinogenase system (PBGase), a complex of two enzymes, PBG-Deaminase (PBG-D) and Isomerase. Although the separate enzymes have been studied in some detail less work has been performed on the properties of the complex.In this study the kinetic behaviour of the enzyme PBGase in a normal yeast strain, D273-10B, and its derivative B231 has been investigated. Uroporphyrinogen formation was linear with time up to 2 hr at 37°C. The enzyme complex shows classical Michaelis-Menten kinetics. From the double reciprocal plots kinetic parameters were estimated for PBGase and PBG-D.Porphyrins were found to be competitive inhibitors with respect to porphobilinogen (PBG) and these compounds appeared to act as inhibitors by forming dead-end complexes with the free enzyme. 5-Aminolevulinic acid (ALA) also inhibited PBGase and this inhibition was overcome by addition of levulinic acid (2μM). These results indicate that ALA, is not an inhibitor but acts through its conversion into porphyrins which are the true inhibitors.  相似文献   

7.
Mitochondrial dysfunction occurs in many neurodegenerative diseases. The alpha-ketoglutarate dehydrogenase complex (KGDHC) catalyzes a key and arguably rate-limiting step of the tricarboxylic acid cycle (TCA). A reduction in the activity of the KGDHC occurs in brains and cells of patients with many of these disorders and may underlie the abnormal mitochondrial function. Abnormalities in calcium homeostasis also occur in fibroblasts from Alzheimer's disease (AD) patients and in cells bearing mutations that lead to AD. Thus, the present studies test whether the reduction of KGDHC activity can lead to the alterations in mitochondrial function and calcium homeostasis. alpha-Keto-beta-methyl-n-valeric acid (KMV) inhibits KGDHC activity in living N2a cells in a dose- and time-dependent manner. Surprisingly, concentration of KMV that inhibit in situ KGDHC by 80% does not alter the mitochondrial membrane potential (MMP). However, similar concentrations of KMV induce the release of cytochrome c from mitochondria into the cytosol, reduce basal [Ca(2+)](i) by 23% (P<0.005), and diminish the bradykinin (BK)-induced calcium release from the endoplasmic reticulum (ER) by 46% (P<0.005). This result suggests that diminished KGDHC activities do not lead to the Ca(2+) abnormalities in fibroblasts from AD patients or cells bearing PS-1 mutations. The increased release of cytochrome c with diminished KGDHC activities will be expected to activate other pathways including cell death cascades. Reductions in this key mitochondrial enzyme will likely make the cells more vulnerable to metabolic insults that promote cell death.  相似文献   

8.
Calcium (Ca2+) is an important ion that is necessary for the activation of different DNA repair mechanisms. However, the mechanism by which DNA repair and Ca2+ homeostasis cooperate remains unclear. We undertook a systems biology approach to verify the relationship between proteins associated with Ca2+ homeostasis and DNA repair for Saccharomyces cerevisiae. Our data indicate that Pmr1p, a Ca2+ transporter of Golgi complex, interacts with Cod1p, which regulates Ca2+ levels in the endoplasmic reticulum (ER), and with Rad4p, which is a nucleotide excision repair (NER) protein. This information was used to construct single and double mutants defective for Pmr1p, Cod1p, and Rad4p followed by cytotoxic, cytostatic, and cell cycle arrest analyses after cell exposure to different concentrations of 4-nitroquinoline 1-oxide (4-NQO). The results indicated that cod1Δ, cod1Δrad4Δ, and cod1Δpmr1Δ strains have an elevated sensitivity to 4-NQO when compared to its wild-type (WT) strain. Moreover, both cod1Δpmr1Δ and cod1Δrad4Δ strains have a strong arrest at G2/M phases of cell cycle after 4-NQO treatment, while pmr1Δrad4Δ have a similar sensitivity and cell cycle arrest profile when compared to rad4Δ after 4-NQO exposure. Taken together, our results indicate that deletion in Golgi- and ER-associated Ca2+ transporters affect the repair of 4-NQO-induced DNA damage.  相似文献   

9.
10.
11.
The effects of ketoconazole and miconazole uptake on K(+) transport and the internal pH of Saccharomyces cerevisiae were studied. The uptake of both drugs was very fast, linear with concentration and not dependent on glucose, indicating entrance by diffusion and concentrating inside. Low (5.0μM) to intermediate concentrations (40μM) of both drugs produced a glucose-dependent K(+) efflux; higher ones also produced a small influx of protons, probably through a K(+)/H(+) exchanger, resulting in a decrease of the internal pH of the cells and the efflux of material absorbing at 260nm and phosphate. The cell membrane was not permeabilized. The K(+) efflux with miconazole was dependent directly on the medium pH. This efflux results in an increased membrane potential, responsible for an increased Ca(2+) uptake and other effects. These effects were not observed with two triazolic antifungals. A decrease of the Zeta (ζ) potential was observed at low concentrations of miconazole. Although the main effect of these antifungals is the inhibition of ergosterol synthesis, K(+) efflux is an important additional effect to be considered in their therapeutic use. Under certain conditions, the use of single mutants of several transporters involved in the movements of K(+) allowed to identify the participation of several antiporters in the efflux of the cation.  相似文献   

12.
13.
Phosphoglucomutase is inhibited by a complex formed from alpha-D-glucose 1-phosphate (Glc-1-P) and inorganic vanadate (Vi). Both the inhibition at steady state and the rate of approach to steady state are dependent on the concentrations of both Glc-1-P and Vi. Inhibition is competitive versus alpha-D-glucose 1,6-bisphosphate (Glc-P2) and is ascribed to binding of the 6-vanadate ester of Glc-1-P (V-6-Glc-1-P) to the dephospho form of phosphoglucomutase (E). The inhibition constant for V-6-Glc-1-P at pH 7.4 was determined from steady-state kinetic measurements to be 2 x 10(-12) M. The first-order rate constant for approach to steady state increases hyperbolically with inhibitor concentration. The results are consistent with rapid equilibrium binding of V-6-Glc-1-P to E, with dissociation constant 1 x 10(-9) M, followed by rate-limiting conversion of the E.V-6-Glc-1-P complex to another species, E*.V-6-Glc-1-P, with first-order rate constant 4 x 10(-2)s-1. The rate constant determined for the reverse reaction, conversion of E*.V-6-Glc-1-P to E.V-6-Glc-1-P, is 2.5 x 10(-4)s-1. Formation of E*.V-6-Glc-1-P can also occur via binding of glucose 6-vanadate to the phospho form of phosphoglucomutase (E-P) followed by phosphoryl transfer and rearrangement of the enzyme-product complex.  相似文献   

14.
When accumulation of squalene was used as a measure of the flow of carbon into the sterol pathway in whole cells of semi-anaerobic Saccharomyces cerevisiae, both ergosterol and cholesterol were found to be inhibitory. However, at equivalent concentrations in the medium ergosterol was substantially the more potent inhibitor. Marked differences found in the absorption and esterification of the two sterols failed to account for the observed difference in their capacities to act as feedback agents. Cholesterol was much more effectively absorbed as well as esterified, but, when the abilities of the two sterols to lower the squalene level were calculated on the basis of free sterol in the cells, ergosterol remained more effective by a factor of four.  相似文献   

15.
16.
17.
18.
The enzyme phosphoglucomutase functions at a key point in carbohydrate metabolism. In this paper, we show that the synthesis of the major isoform of yeast phosphoglucomutase, encoded by the GAL5 (PGM2) gene, is regulated in a manner that is distinct from that previously described for other enzymes involved in galactose metabolism in the yeast Saccharomyces cerevisiae. Accumulation of this isoform increased four- to sixfold when the culture experienced either glucose depletion or heat shock. However, heat shock induction did not occur unless the cells were under glucose repression. This nonadditive increase in expression suggests that the regulatory mechanisms controlling the heat shock induction and glucose repression of the GAL5 gene are functionally related. We previously demonstrated that phosphoglucomutase is modified by a posttranslational Glc-phosphorylation reaction. We now show that this posttranslational modification, like phosphoglucomutase expression itself, is also regulated by galactose induction and glucose repression. Finally, no evidence was found to indicate that the Glc-phosphorylation of phosphoglucomutase alters its enzymatic activity under the conditions examined.  相似文献   

19.
Cunningham KW 《Cell calcium》2011,50(2):129-138
Fungi and animals constitute sister kingdoms in the eukaryotic domain of life. The major classes of transporters, channels, sensors, and effectors that move and respond to calcium ions were already highly networked in the common ancestor of fungi and animals. Since that time, some key components of the network have been moved, altered, relocalized, lost, or duplicated in the fungal and animal lineages and at the same time some of the regulatory circuitry has been dramatically rewired. Today the calcium transport and signaling networks in fungi provide a fresh perspective on the scene that has emerged from studies of the network in animal cells. This review provides an overview of calcium signaling networks in fungi, particularly the model yeast Saccharomyces cerevisiae, with special attention to the dominant roles of acidic calcium stores in fungal cell physiology.  相似文献   

20.
Summary Cellular lysates with very low total ribonuclease activities are obtained by lysis of Saccharomyces cerevisiae VY1160 osmotic sensitive mutant cells in 1% sorbitol solution. These lysates could be used for isolation of intact polysomes and messenger RNA molecules, or for studying of specific ribonucleases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号