首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two main types of conformational fluctuations, local and global, are characteristic of the native protein structure and are detectable by hydrogen exchange. The probability of such fluctuations changes to a different degree during hemoglobin (Hb) oxygenation, changes in pH, and splitting of the intersubunit contracts. For comparison with the effect of heme removal, the rate of the hydrogen-deuterium (H-D) exchange of peptide H atoms (PHs) of human apoHb was studied by IR spectroscopy at pH 5.5–9.0 and temperatures of 10–38°C. The removal of heme increased the H-D exchange rate for 80% of Hb PHs with the exchange retardation factor P ~ 102-108. For the majority of PHs, the probability of local fluctuations depended weakly on the temperature; changes in enthalpy upon such local conformational transitions were ΔH op o = 0–15 kcal/M. Global fluctuations, displaying a stronger temperature dependence, did not arise with an increase in temperature to 38°C at pH 7.0, although apoHb began slowly denaturing and aggregating under these conditions. Destabilization of the apoHb structure with a concurrent decrease in pH to 5.5 and temperature to 10°C intensified global fluctuations in the native protein structure with ΔH op o < 0. The mechanism underlying the overall intensification of local fluctuations upon the heme removal, the specific features of apoHb heat denaturation under conditions close to those of in vivo Hb self-assembly, and the analogies between low-temperature global fluctuations and cold denaturation of globular proteins are discussed.  相似文献   

2.
The rate of the H-D exchange of the peptide NH atoms of the different forms of human Hb was studied at the range of pH 5-10 and temperature 10-63 degrees C by the IR spectroscopy. The pH-dependence of the H-D exchange rate is accordance with the EX2 mechanism. Two pH-dependent conformers of ligand forms of Hb existes at 10-30 degrees C with lower probability of local fluctuations of the alkaline conformer. The difference between two conformers vanishes at 40 degrees C with the appearance of the third conformer with higher probability of local fluctuations. The deoxyHb at 20 degrees C and pH range 6-9 has no pH-dependent conformers and the probability of local fluctuations is considerably reduced in comparison to the acid conformer of ligand Hb. Upon the destabilization of the ligand Hb structure by the pH decreasing to 5.0 at 20 degrees C or the temperature increasing up to 50-60 degrees C at pH 7.1 the global fluctuations of the native structure are intensified providing the H-D exchange of the slowest exchanging NH atoms. The nature of the local and global fluctuations and possible similarity between the two pH-dependent conformers of ligand Hb and its functional R and R2 states revealed by the X-ray analysis and NMR spectroscopy were discussed.  相似文献   

3.
Abaturov LV  Nosova NG 《Biofizika》2007,52(3):409-424
The studies by IR spectroscopy of the temperature dependence of the H-D exchange rate of the RNase A peptide NH atoms permit one to characterize two types of conformation fluctuations, local and global. A comparison with the temperature dependence of the proteolytic degradation rate of RNase A shows that similar in nature fluctuations allow for the H-D exchange of NH atoms and the splitting of peptide bonds of the native protein. In the low temperature region, both processes occur through local fluctuations, by way of the EX2 mechanism, and in the high temperature region, they occur through global fluctuations with the overall denaturation desorganization of the native structure, by way of the EX1 mechanism. The biphasic dependence of the rate of H-D exchange and proteolytic degradation of RNase A on urea concentration is also explained by the combination of local and global fluctuations.  相似文献   

4.
IR spectroscopy was used to study the rate of hydrogen-deuterium (H-D) exchange of peptide NH atoms in different forms of human hemoglobin (Hb) at pH 5–10 and temperatures of 10–63°C. The pH dependence of the H-D exchange rate fits the EX2 mechanism. At 10–30°C, there are two pH-dependent conformers of liganded Hb forms, the fluctuation probability being lower for the alkaline conformer. The differences between the conformers disappear at 40°C, where a third conformer, with a higher probability of local fluctuations, appears. Deoxyhemoglobin has no pH-dependent conformers in the pH range 6–9 at 20°C, and the probability of local fluctuations is considerably decreased compared to the acid conformer of liganded Hb. The destabilization of the liganded Hb structure by decreasing the pH to 5.0 at 20°C or increasing the temperature to 50–60°C at pH 7.1 enhances global fluctuations of the native structure ensuring the H-D exchange of slowly exchanging NH atoms. The mechanisms of local and high-temperature global fluctuations, as well as the possible similarity between the two pH-dependent conformers of liganded Hb and its functional R and R2 states revealed by X-ray analysis and NMR spectroscopy, are discussed.  相似文献   

5.
The rate of the H-D exchange of the peptide NH atoms of the isolated alpha and beta subunits of human Hb were studied at the pH range 5.5-9.0 and 20 degrees C by the IR spectroscopy. The factor retardation of the exchange rate of subunits -P in the range -10(2)-10(7). In comparison with tetramer Hb the probability of local fluctuations (1/P) is increased to a slightly greater extent for the monomeric alpha subunits then for the tetramer beta subunits. Unlike Hb oxygenation of subunits does not influence on the probability of the local fluctuations and subunits have no the pH-dependent change of the value 1/P observable for the ligand Hb. The possible mechanisms of the overall intensification of the local fluctuations upon the splitting of the Hb tetrameric contacts between subunits are discussed with the inviting of the structural crystallographic data.  相似文献   

6.
IR spectroscopy was used to study the rate of hydrogen-deuterium (H-D) exchange of peptide NH atoms in isolated α and β subunits of human hemoglobin (Hb) at pH 5.5–9.0 and 20°C. The H-D exchange occurs by the EX2 mechanism. The retardation factor of subunit exchange rate (P) is in a range of approximately 102–107. Compared to tetrameric Hb, the probability of local fluctuations (1/P) increases to a slightly greater extent in monomeric α subunits than in tetrameric β subunits. Unlike in the whole Hb molecule, oxygenation of its subunits has no effect on the probability of local fluctuations, and the subunits show no pH-dependent changes in 1/P values (observed for liganded Hb). Probable mechanisms accounting for overall intensification of local fluctuations upon the cleavage of contacts between subunits of the tetrameric Hb molecule are discussed with regard to structural crystallographic data.  相似文献   

7.
Analysis of the proteolytic degradation of the native protein structure carried out by the comparison of the temperature dependence of the hydrogen exchange and proteolytic splitting rates of the hen egg-white lysozyme and human Hb and apoHb. Acceleration of the burst-like (all or none) proteolytic degradation in the high temperature range is provided by the intensification of the global fluctuations with overall unfolding revealed by hydrogen exchange. For Hb and apoHb the rate of burst-like proteolytic degradation and hydrogen exchange weakly depends on temperature in the range, where hydrogen exchange reveals only local fluctuations of the native protein structure. The splitting of the two proteins proceeds by the selfaccelerated burst-like mechanism with the initial rate-limiting single cleavage owing to the local fluctuation of the native structure. The local fluctuations play important role also upon the intracellular burst-like degradation of native proteins.  相似文献   

8.
The exchange reaction of the peptide NH protons of a microbial protease inhibitor (Streptomyces subtilisin inhibitor) with deuterium atoms in 2H2O (p2H 6.8) has been studied by proton magnetic resonance in the temperature range 56-71 degrees C. Both slowly and rapidly exchanging processes have been observed. The number of slowly exchanging protons is estimated to be 25 +/- 2 per subunit of the protein molecule. The decay of the slowly exchanging proton signals follows a single time-exponential function at each temperature. The observed first-order rate constants have been analyzed to give the denaturated fraction of the protein as a function of temperature with a consequent enthalpy (56 kcal/mol) and an entropy (137 cal/degree per mol) of denaturation. The results indicate the high conformational stability of this protein against heat denaturation.  相似文献   

9.
The mechanisms involved in degradation of the native protein structure was analyzed by comparing the temperature dependences of the hydrogen exchange (HE) and proteolytic cleavage rates of hen egg lysozyme (HEL), human hemoglobin (Hb), and its apoform (apoHb). Acceleration of the burstlike (all or none) proteolytic degradation of HEL in a high temperature range results from the intensification of global fluctuations with overal structure unfolding, indicated by HE. The rates of Hb and apoHb burstlike degradation and HE weakly depend on the temperature in the range where only local fluctuations of the native structure are detectable by HE. These two proteins are cleaved according to a self-accelerated burstlike mechanism with the initial rate-limiting single cleavage due to local fluctuations in the native structure. Such fluctuations play an important role in intracellular burstlike proteolytic degradation of native proteins.  相似文献   

10.
The porphyrin and tryptophan fluorescence of sperm whale apomyoglobin complexed with protoporphyrin IX has been studied in the pH range 2-13. It has been shown that the fluorescence and absorption spectra of protoporphyrin incorporated into the heme crevice remain constant in the pH range 5.5-10.8 but change significantly at pH less than 5.5 and pH greater than 10.8, due to the acid and alkaline denaturation, respectively, of the complex accompanied by dissociation of protoporphyrin IX. At the same pH ranges, the quantum yield of tryptophanyl fluorescence increases sharply as a result of removal of protoporphyrin, acting as a quencher, from the complex. Other parameters of tryptophanyl fluorescence (maximum position, halfwidth and spectrum shape) change in the alkaline region as well. In the acidic pH range, these parameters change only at pH less than 4.3, indicating that the Trp surroundings are more stable to denaturation than the heme crevice region. Between pH 5.5 and 10.9, where the complex of apomyoglobin with protoporphyrin IX is in its native state, the main parameters of tryptophan fluorescence remain unchanged except for the ratio I325/I350 which diminishes at pH greater than 9.5. Its alteration precedes the alkaline denaturation of the complex and can be explained by a local conformational change induced by the break of the 'salt bridges' essential for the maintenance of the native Mb structure in the N-terminal region. The fluorescence data obtained for apomyoglobin, myoglobin and the complex between protoporphyrin IX and apomyoglobin enable one to compare their structures and to evaluate the role of the porphyrin macrocycle and the iron atom in the formation of the native myoglobin structure and its functioning.  相似文献   

11.
Recent H-D exchange 1H NMR studies of the refolding of Staphylococcal nuclease (P117G) variant suggest that, a region of the protein corresponding to a beta hairpin in the native structure folded early in the refolding process. In order to investigate whether the formation of beta hairpin is an early folding event, we investigated the conformational features of the beta hairpin peptide model Ac-DTVKLMYKGQPMTFR-NH2 from Staphylococcal nuclease with 1H NMR techniques. It appears that the peptide aggregates even at a low concentration. However, based on the observation of weak dnn(i, i + 1) NOEs between K8-G9, G9-Q10, an upfield shift of Gly9 NH and a low temperature coefficient (-d delta/dT) for Gly9 NH, we suggest that the sequence YKGQP as part of the beta hairpin peptide model samples conformational forms with reduced conformational entropy and turn potential. The presence of aggregation could be restricting the population of folded conformational forms and formation of beta hairpin at detectable concentrations. We suggest that, formation of beta hairpin could be an early event in the folding of Staphylococcal nuclease and this observation correlates with H-D exchange 1H NMR results and also with the prediction of a protein folding model proposed in literature.  相似文献   

12.
A major goal of this paper was to estimate a dynamic range of equilibrium constant for the opening of a single peptide bond in a model protein, bovine pancreatic trypsin inhibitor (BPTI). Ten mutants of BPTI containing a single Xaa-->Met substitution introduced in different parts of the molecule were expressed in Escherichia coli. The mutants were folded, purified to homogeneity, and cleaved with cyanogen bromide to respective cleaved forms. Conformation of the intact mutants was similar to the wildtype, as judged from their circular dichroism spectra. Substantial conformational changes were observed on the chemical cleavage of three single peptide bonds--Met46-Ser, Met49-Cys, and Met53-Thr--located within the C-terminal helix. Cleavage of those peptide bonds caused a significant destabilization of the molecule, with a drop of the denaturation temperature by 56.4 degrees C to 68 degrees C at pH 4.3. Opening of the remaining seven peptide bonds was related to a 10.8 degrees C to 39.4 degrees C decrease in T(den). Free energies of the opening of 10 single peptide bonds in native mutants (Delta G(op,N)) were estimated from the thermodynamic cycle that links denaturation and cleavage free energies. To calculate those values, we assumed that the free energy of opening of a single peptide bond in the denatured state (Delta G(op,D)) was equal to -2.7 kcal/mole, as reported previously. Calculated Delta G(op,N) values in BPTI were in the range from 0.2 to 10 kcal/mole, which was equivalent to a >1 million-fold difference in equilibrium constants. The values of Delta G(op,N) were the largest for peptide bonds located in the C-terminal helix and significantly lower for peptide bonds in the beta-structure or loop regions. It appears that opening constants for single peptide bonds in various proteins span across 33 orders of magnitude. Typical equilibrium values for a single peptide bond opening in a protein containing secondary structure elements fall into negligibly low values, from 10(-3) to 10(-8), and are efficient to ensure stability against proteolysis.  相似文献   

13.
A previous comprehensive analysis of the pH dependence of native-state amide hydrogen (NH) exchange in turkey ovomucoid third domain (OMTKY3) yielded apparent opening and closing rate constants (k(op) and k(cl)) at 14 NH groups involved in global conformational changes. This analysis has been extended to 18 additional slowly exchanging NH groups. Quench-flow experiments were performed to monitor NH exchange in native OMTKY3 from neutral to very alkaline pH ( approximately 12) conditions. Above pH 10 the mechanism of exchange switched from one governed by a rapid equilibrium preceding the chemistry of exchange (i.e. EX2 exchange), to one where exchange was limited by the rate of opening (i.e. EX1 exchange). Kinetics of solvent exposure are now known for nearly all backbone NH groups in native OMTKY3, yielding rate constants that span five orders of magnitude, 0.004 to 200 s(-1).  相似文献   

14.
The hydrogen-deuterium exchange kinetics of 37 backbone amide residues in RNase T1 have been monitored at 25, 40, 45, and 50 degrees C at pD 5.6 and at 40 and 45 degrees C at pD 6.6. The hydrogen exchange rate constants of the hydrogen-bonded residues varied over eight orders of magnitude at 25 degrees C with 13 residues showing exchange rates consistent with exchange occurring as a result of global unfolding. These residues are located in strands 2-4 of the central beta-pleated sheet. The residues located in the alpha-helix and the remaining strands of the beta-sheet exhibited exchange behaviors consistent with exchange occurring due to local structural fluctuations. For several residues at 25 degrees C, the global free energy change calculated from the hydrogen exchange data was over 2 kcal/mol greater than the free energy of unfolding determined from urea denaturation experiments. The number of residues showing this unexpected behavior was found to increase with temperature. This apparent inconsistency can be explained quantitatively if the cis-trans isomerization of the two cis prolines, Pro-39 and Pro-55, is taken into account. The cis-trans isomerization equilibrium calculated from kinetic data indicates the free energy of the unfolded state will be 2.6 kcal/mol higher at 25 degrees C when the two prolines are cis rather than trans (Mayr LM, Odefey CO, Schutkowski M, Schmid FX. 1996. Kinetic analysis of the unfolding and refolding of ribonuclease T1 by a stopped-flow double-mixing technique. Biochemistry 35: 5550-5561). The hydrogen exchange results are consistent with the most slowly exchanging hydrogens exchanging from a globally higher free energy unfolded state in which Pro-55 and Pro-39 are still predominantly in the cis conformation. When the conformational stabilities determined by hydrogen exchange are corrected for the proline isomerization equilibrium, the results are in excellent agreement with those from an analysis of urea denaturation curves.  相似文献   

15.
The constant fragment of the immunoglobulin light chain (type lambda) has two tryptophyl residues at positions 150 and 187. Trp-150 is buried in the interior, and Trp-187 lies on the surface of the molecule. The hydrogen-deuterium exchange kinetics of the indole NH proton of Trp-150 were studied at various pH values at 25 degrees C by 1H nuclear magnetic resonance. Exchange rates were approximately first order in hydroxyl ion dependence above pH 8, were relatively independent of pH between pH 7 and 8, and decreased below pH 7. On the assumption that the exchange above pH 8 proceeds through local fluctuations of the protein molecule, the exchange rates between pH 7 and 8 through global unfolding were estimated. The exchange rate constant within this pH range at 25 degrees C thus estimated was consistent with that of the global unfolding of the constant fragment under the same conditions as those reported previously [Kikuchi, H., Goto, Y., & Hamaguchi, K. (1986) Biochemistry 25, 2009-2013]. The activation energy for the exchange process at pH 7.8 was the same as that for the unfolding process by 2 M guanidine hydrochloride. The exchange rates of backbone NH protons were almost the same as that of the indole NH proton of Trp-150 at pH 7.1. These observations also indicated that the exchange between pH 7 and 8 occurs through global unfolding of the protein molecule and is rate-limited by the unfolding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
T Endo  T Ueda  H Yamada  T Imoto 《Biochemistry》1987,26(7):1838-1845
Nuclear magnetic resonance analyses have been made of the individual hydrogen-deuterium exchange rates of tryptophan indole N-1 hydrogens in native lysozyme and its chemically modified derivatives including lysozyme with an ester cross-linkage between Glu-35 and Trp-108, lysozyme with an internal amide cross-linking between the epsilon-amino group of Lys-13 and the alpha-carboxyl group of Leu-129, and lysozyme with the beta-aspartyl sequence at Asp-101. The pH dependence curves of the exchange rates for Trp-63 and Trp-108 are different from those expected for tryptophan. The pH dependence curve for Trp-108 exchange exhibits the effects from molecular aggregation at pH above 5 and from a transition between the two conformational fluctuations at around pH 4. The exchange rates for tryptophan residues in native lysozyme and modified derivatives are not correlated with the thermodynamic or kinetic parameters in protein denaturation, suggesting that the fluctuations responsible for the exchange are not global ones. The exchange rates for tryptophan residues remote from the modification site are perturbed. Such tryptophan residues are found to be involved in a small but distinct conformational change due to the modification. Therefore, the perturbations of the N-1 hydrogen exchange rates are related to the minor change in local conformation or in conformational strain induced by the chemical modification.  相似文献   

17.
Felitsky DJ  Record MT 《Biochemistry》2003,42(7):2202-2217
Thermodynamic and structural evidence indicates that the DNA binding domains of lac repressor (lacI) exhibit significant conformational adaptability in operator binding, and that the marginally stable helix-turn-helix (HTH) recognition element is greatly stabilized by operator binding. Here we use circular dichroism at 222 nm to quantify the thermodynamics of the urea- and thermally induced unfolding of the marginally stable lacI HTH. Van't Hoff analysis of the two-state unfolding data, highly accurate because of the large transition breadth and experimental access to the temperature of maximum stability (T(S); 6-10 degrees C), yields standard-state thermodynamic functions (deltaG(o)(obs), deltaH(o)(obs), deltaS(o)(obs), deltaC(o)(P,obs)) over the temperature range 4-40 degrees C and urea concentration range 0 相似文献   

18.
An ultrasonic technique has been employed to study the adiabatic compressibility of three metmyoglobin derivatives (aquomet-, fluoromet- and azidometmyoglobin) at neutral pH, and aquometmyoglobin as a function of pH in the frequency range of 1-10 MHz at 20 degrees C. No difference was observed in the adiabatic compressibility of the various derivatives. This indicates that the binding of different axial ligands to myoglobin does not affect significantly the conformational fluctuations of the protein. The finding is consistent with the results of the hydrogen exchange rate experiment, indicating that both types of measurements are useful for the study of protein dynamics. Upon acid-induced denaturation, the adiabatic compressibility of myoglobin drops from 5.3 X 10(-12) cm2/dyn to 0.5 X 10(-12) cm2/dyn. Plausible reasons for such a decrease are discussed.  相似文献   

19.
The hydrogen-deuterium exchange data of human immunoglobulin G1 (IgG1) are interpreted by assuming fast fluctuations of the protein conformation, through which the peptide groups become exposed to the solvent. The probability of solvent exposure of peptide hydrogens reflects a rather loose conformation for native IgG in comparison with other globular proteins. The probability of solvent exposure is greater than 10(-3) for half of the peptide groups, which shows that the conformational transitions by which these groups are exposed to the solvent are accompanied by changes in standard free energy less than 17 kJ/mol (4 kcal/mol). In the range of pH 6.2-8.45, at 25 degrees C no gross conformational changes are reflected in the hydrogen-deuterium exchange behaviour of the native, the reduced-nonalkylated-reassociated and the reduced-S-alkylated-reassociated IgG1. No difference could be detected in the conformational stability of the native and reoxidised reassociated IgG1 proteins. The lack of inter-subunit disulphide bridges in S-alkylated-reassociated molecules results in an increased conformational motility. This destabilization of protein conformation affects about 90% of the peptide groups covered by the measurements, and corresponds to changes in standard free energy of 8 kJ/mol on the average.  相似文献   

20.
The contributions of backbone NH group dynamics to the conformational heat capacity of the B1 domain of Streptococcal protein G have been estimated from the temperature dependence of 15N NMR-derived order parameters. Longitudinal (R1) and transverse (R2) relaxation rates, transverse cross-relaxation rates (eta(xy)), and steady state [1H]-15N nuclear Overhauser effects were measured at temperatures of 0, 10, 20, 30, 40, and 50 degrees C for 89-100% of the backbone secondary amide nitrogen nuclei in the B1 domain. The ratio R2/eta(xy) was used to identify nuclei for which conformational exchange makes a significant contribution to R2. Relaxation data were fit to the extended model-free dynamics formalism, incorporating an axially symmetric molecular rotational diffusion tensor. The temperature dependence of the order parameter (S2) was used to calculate the contribution of each NH group to conformational heat capacity (Cp) and a characteristic temperature (T*), representing the density of conformational energy states accessible to each NH group. The heat capacities of the secondary structure regions of the B1 domain are significantly higher than those of comparable regions of other proteins, whereas the heat capacities of less structured regions are similar to those in other proteins. The higher local heat capacities are estimated to contribute up to approximately 0.8 kJ/mol K to the total heat capacity of the B1 domain, without which the denaturation temperature would be approximately 9 degrees C lower (78 degrees C rather than 87 degrees C). Thus, variation of backbone conformational heat capacity of native proteins may be a novel mechanism that contributes to high temperature stabilization of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号