首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The 441-bp DNA segment in a PCR-amplified fragment from Oryza sativa cv. IR36 was found to have a sequence with features characteristic of LTRs of retroelements, which was named RIRE2 (Rice retroelement #2) and further analyzed. Cloning and sequencing analyses of the DNA segments connected to LTR-like sequence showed that RIRE2 has a long internal region almost 10 kb long that is flanked by LTR-like sequences. This internal region carries a primer binding site (PBS) and polypurine tract (PPT) which are necessary for cDNA synthesis of retroelements. The PBS sequence is complementary to the 3' end region of tRNA(Arg). The internal region has an rt gene homologous to that of gypsy-type retrotransposons, evidence that RIRE2 is indeed a retrotransposon related to gypsy from Drosophila. RIRE2 has an extra sequence more than 4 kb long in the region downstream of gag-pol. Phylogenetic analysis of the putative amino-acid sequences of the rt gene as well as the int gene showed that RIRE2 is related to a group of gypsy-type retrotransposons of a large size that include Grande1-4 of teosinte, Tat4-1 and Athila1-1 of Arabidopsis thaliana, and Cyclops-2 of pea, but distantly related to any other group of gypsy-type retrotransposons, including RIRE3 and RIRE8 of rice. RIRE2 and Grande1-4 had the highest homology in the gag-pol region, but the nucleotide sequences of the LTR regions differed. Both elements had significant homology in the middle area of the extra regions downstream of gag-pol, in which they had an open reading frame encoding a protein with no known function on the opposite strand from that coding for gag-pol.  相似文献   

2.
A portion of an insertion sequence present in a member of the RIRE3 family of retrotransposons in Oryza sativa L. cv. IR36 was found to have an LTR sequence followed by a PBS sequence complementary to the 3'-end region of tRNAMet, indicative of another rice retrotransposon (named RIRE7). Cloning and sequencing of PCR-amplified fragments that made up all parts of the RIRE7 sequence showed that RIRE7 is a gypsy-type retrotransposon with partial homology in the pol region to the rice gypsy-type retrotransposons RIRE2 and RIRE3 identified in rice previously. Interestingly, various portions of the RIRE7 sequence were homologous to several DNA segments present in the centromere regions of cereal chromosomes. Further cloning and nucleotide sequencing of fragments flanking RIRE7 copies showed that RIRE7 was inserted into a site within a tandem repeat sequence that has a unit length of 155 bp. The tandem repeat sequence, named TrsD, was homologous to tandem repeat sequences RCS2 and CentC, previously identified in the centromeric regions of rice and maize chromosomes. Fluorescence in situ hybridization (FISH) analysis of the metaphase chromosomes of O. sativa cv. Nipponbare showed that both RIRE7 and TrsD sequences were present in the centromere regions of the chromosomes. The presence of RIRE7 and the TrsD sequences in the centromere regions of several chromosomes was confirmed by the identification of several YAC clones whose chromosomal locations are known. Further FISH analysis of rice pachytene chromosomes showed that the TrsD sequences were located in a pericentromeric heterochromatin region. These findings strongly suggest that RIRE7 and TrsD are components of the pericentromeric heterochromatin of rice chromosomes.  相似文献   

3.
Composition and structure of the centromeric region of rice chromosome 8   总被引:23,自引:0,他引:23  
Understanding the organization of eukaryotic centromeres has both fundamental and applied importance because of their roles in chromosome segregation, karyotypic stability, and artificial chromosome-based cloning and expression vectors. Using clone-by-clone sequencing methodology, we obtained the complete genomic sequence of the centromeric region of rice (Oryza sativa) chromosome 8. Analysis of 1.97 Mb of contiguous nucleotide sequence revealed three large clusters of CentO satellite repeats (68.5 kb of 155-bp repeats) and >220 transposable element (TE)-related sequences; together, these account for approximately 60% of this centromeric region. The 155-bp repeats were tandemly arrayed head to tail within the clusters, which had different orientations and were interrupted by TE-related sequences. The individual 155-bp CentO satellite repeats showed frequent transitions and transversions at eight nucleotide positions. The 40 TE elements with highly conserved sequences were mostly gypsy-type retrotransposons. Furthermore, 48 genes, showing high BLAST homology to known proteins or to rice full-length cDNAs, were predicted within the region; some were close to the CentO clusters. We then performed a genome-wide survey of the sequences and organization of CentO and RIRE7 families. Our study provides the complete sequence of a centromeric region from either plants or animals and likely will provide insight into the evolutionary and functional analysis of plant centromeres.  相似文献   

4.
Horizontal gene transfer, defined as the transmission of genetic material between reproductively isolated species, has been considered for a long time to be a rare phenomenon. Most well-documented cases of horizontal gene transfer have been described in prokaryotes or in animals and they often involve transposable elements. The most abundant class of transposable elements in plant genomes are the long terminal repeat (LTR) retrotransposons. Because of their propensity to increase their copy number while active, LTR retrotransposons can have a significant impact on genomics changes during evolution. In a previous study, we showed that in the wild rice species Oryza australiensis , 60% of the genome is composed of only three families of LTR retrotransposons named RIRE1 , Wallabi and Kangourou . In the present study, using both in silico and experimental approaches, we show that one of these three families, RIRE1 , has been transferred horizontally between O. australiensis and seven other reproductively isolated Oryza species. This constitutes a new case of horizontal transfer in plants.  相似文献   

5.
Nonomura K  Kurata N 《Chromosoma》2001,110(4):284-291
The large-scale primary structure of the centromeric region of rice chromosome 5 was analyzed, the first example in a cereal species. The yeast artificial chromosome (YAC) and bacterial artificial chromosome (BAC) contigs aligned on the centromere of rice chromosome 5 (CEN5) covered a distance of more than 670 kb. Strong suppression of genetic recombination, one of the features of a functional centromere, occurred along the contig region. The most remarkable feature of CEN5 is the composition of the multiple repetitive elements. Oryza-specific RCS2 short tandem repeats were clustered along less than 100 kb at one end of the contig. At least 15 copies of the conserved domain of the 1.9 kb RCE1 centromeric repeats, which are similar to the long terminal repeats (LTRs) of gypsy-type retrotransposon RIRE7, were dispersed mainly in 320 kb stretches next to RCS2 tandem clusters. Many copies of the LTR-like sequences of RIRE3 and RIRE8, another gypsy-type retrotransposon, were also found throughout the contig. On the other hand, the gagpol region was less conserved in the contig. These results indicate that the rice centromere is composed of multiple repetitive sequences with the RCS2 tandem cluster probably being situated as the core of a functional centromere of some hundreds of kilobases to megabases in length.  相似文献   

6.
7.
8.
9.
Long terminal retrotransposons are major components of eukaryotic transposable elements. We have surveyed the long terminal repeats (LTR) retrotransposons of domesticated silkworm (Bombyx mori) by mining the data produced by Bombyx mori Genome Sequencing Project. At least 29 separate families of LTR retrotransposons are identified in this survey, comprising of 11.8% of the complete sequence. Families of domesticated silkworm LTR retrotransposons can be mainly classified into three groups: gypsy-like, copia-like, Pao-Bel. Fourteen families identified consist of gypsy-like elements, four families consist of copia-like elements and seven families consist of Pao-Bel elements. In addition to the three groups of LTR retrotransposons, two families of unusual non-coding elements are identified in the genome of this species. Further phylogenetic analysis of RT domain indicates that the elements of B.mori show high diversity and can form different clades in each group. An analysis of sequence variation from different families reveals distinct patterns of variation for the elements belonging to three groups. The analysis of the domesticated silkworm LTR retrotransposons should assist in our understanding of the roles of retroelement in lepidopteron insect genome evolution.  相似文献   

10.
11.
12.
Exploring the plant transcriptome through phylogenetic profiling   总被引:5,自引:0,他引:5       下载免费PDF全文
Publicly available protein sequences represent only a small fraction of the full catalog of genes encoded by the genomes of different plants, such as green algae, mosses, gymnosperms, and angiosperms. By contrast, an enormous amount of expressed sequence tags (ESTs) exists for a wide variety of plant species, representing a substantial part of all transcribed plant genes. Integrating protein and EST sequences in comparative and evolutionary analyses is not straightforward because of the heterogeneous nature of both types of sequence data. By combining information from publicly available EST and protein sequences for 32 different plant species, we identified more than 250,000 plant proteins organized in more than 12,000 gene families. Approximately 60% of the proteins are absent from current sequence databases but provide important new information about plant gene families. Analysis of the distribution of gene families over different plant species through phylogenetic profiling reveals interesting insights into plant gene evolution, and identifies species- and lineage-specific gene families, orphan genes, and conserved core genes across the green plant lineage. We counted a similar number of approximately 9,500 gene families in monocotyledonous and eudicotyledonous plants and found strong evidence for the existence of at least 33,700 genes in rice (Oryza sativa). Interestingly, the larger number of genes in rice compared to Arabidopsis (Arabidopsis thaliana) can partially be explained by a larger amount of species-specific single-copy genes and species-specific gene families. In addition, a majority of large gene families, typically containing more than 50 genes, are bigger in rice than Arabidopsis, whereas the opposite seems true for small gene families.  相似文献   

13.
14.
15.
16.
17.
Large numbers of expressed sequence tags (ESTs) have now been generated from a variety of model organisms. In plants, substantial collections of ESTs are available for Arabidopsis and rice, in each case representing significant proportions of the estimated total numbers of genes. Large-scale comparisons of Arabidopsis and rice sequences are especially interesting due to the fact that these two species are representatives of the two subclasses of the flowering plants (Dicotyledonae and Monocotyledonae, respectively). Here we present the results of systematic analysis of the Arabidopsis and rice EST sets. Non-redundant sets of sequences from Arabidopsis and rice were first separately derived and then combined so that gene families in common between the two species could be identified. Our results show that 58% of non-singleton ESTs are derived from genes in gene families common to the two species. These gene families constitute the basis of a core set of higher plant genes.  相似文献   

18.
在水稻第四号染色体的长臂上鉴定了一个结构完整的Ty3型逆转录转座子RIRE10。RIRE10两LTR间的中间区域在gag pol的上游还包含另一个开放阅读框。通过RT PCR与Northern印迹杂交检测到来自LTR区的转录产物 ;根据点杂交结果 ,鉴定出包含中间区域的RIRE10成员的个数以及LTR区的拷贝数。除了 6 5个完整的逆转录转座子所具备的两个LTR外 ,水稻基因组还含有近 90 0个RIRE10的solo LTR。LTR区的转录以及导致solo LTR产生的同源重组可能影响了RIRE10成员在水稻基因组中的转座活性  相似文献   

19.
Retrotransposon families in rice   总被引:24,自引:0,他引:24  
  相似文献   

20.
Developmental gene families have diversified during land plant evolution. The primary role of YABBY gene family is promoting abaxial fate in model eudicot, Arabidopsis thaliana. However recent results suggest that roles of YABBY genes are not conserved in the angiosperms. In this paper, a rice YABBY gene was isolated, and its expression patterns were analyzed in detail. Sequence characterization and phylogenetic analyses showed the gene is OsYABBY4, which is group-classified into FIL/YAB3 subfamily. Beta-glucuronidase reporter assay and in situ analysis consistently revealed that OsYABBY4 was expressed in the meristems and developing vascular tissue of rice, predominantly in the phloem tissue, suggesting that the function of the rice gene is different from those of its counterparts in eudicots. OsYABBY4 may have been recruited to regulate the development of vasculature in rice. However, transgenic Arabidopsis plants ectopically expressing OsYABBY4 behaved very like those over-expressing FIL or YAB3 with abaxialized lateral organs, suggesting the OsYABBY4 protein domain is conserved with its Arabidopsis counterparts in sequences. Our results also indicate that the functional diversification of OsYABBY4 may be associated with the divergent spatial-temporal expression patterns, and YABBY family members may have preserved different expression regulatory systems and functions during the evolution of different kinds of species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号