首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Role of phospholipase A inhibition in amiodarone pulmonary toxicity in rats   总被引:4,自引:0,他引:4  
Amiodarone is effective in the treatment of ventricular and supraventricular arrhythmias. In man its clinical use is associated with the accumulation of phospholipid-rich multilamellar inclusions in various tissues including lung, liver and others. This report presents evidence showing that amiodarone is a potent inhibitor of lysosomal phospholipase A from rat alveolar macrophages, J-744 macrophages and rat liver. When compared with other cationic amphiphilic agents which are known to produce phospholipidosis, amiodarone is one of the most potent inhibitors yet discovered. The subcellular localization of amiodarone has been determined in lung and its distribution was consistent with a lysosomal localization. It is hypothesized that amiodarone causes cellular phospholipidosis by concentrating in lysosomes and inhibiting phospholipid catabolism.  相似文献   

2.
Amiodarone is used extensively for the chronic treatment of life-threatening arrhythmias caused by ischemic heart disease. However, chronic therapy with this agent results in phospholipidosis in various tissues and it has been suggested that the inhibition of lysosomal phospholipase A by this drug contributes to this abnormality. Exogenous amiodarone has been shown to inhibit purified rat liver lysosomal phospholipase A1, as well as acid phospholipase activities of alveolar macrophage homogenates and those of snake venom phospholipase A2 and bacterial phospholipase C. The effects of drug treatment on heart have not been explored. The results described here demonstrate that amiodarone also significantly increases (37%, p < 0.001) phospholipid content in cat hearts. This increase is proportionately distributed to all major phospholipid classes, with the exception of sphingomyelin which appears to increase more than the others. In addition, the data also show that following amiodarone treatment, the endogenous drug levels in the heart were sufficient to reduce in vitro losses of membrane phospholipid at 37°C by inhibiting a variety of endogenous phospholipases at physiological (7.4), ischemic (6.2) and acidic (5.0) pH values. This protection is more pronounced at acidic pH values than at physiological pH. Endogenous amiodarone also affects myocardial phospholipase activities towards exogenous phosphatidylcholine and again the extent of inhibition is more at acidic pH. These results suggest that amiodarone induces phospholipidosis in the heart by inhibiting phospholipid catabolism and that its antiarrhythmic properties may reside in its ability to modulate alkaline, neutral and acid phospholipase activities in ischemia. To what extent amiodarone metabolites (desethylamiodarone and bis-desethylamiodarone) are involved in these actions remains to be determined.  相似文献   

3.
Amiodarone, an antiarrhythmic drug, like chloroquine and chlorpromazine, is a tertiary amine with amphiphilic properties. Chloroquine and chlorpromazine are known inhibitors of phospholipases. All three drugs produce characteristic microcorneal deposits consistent with lysosomal accumulations of phospholipid. Similar lysosomal bodies were found in leukocytes of 15 patients on chronic amiodarone treatment as well as 3 patients each on chloroquine and chlorpromazine, suggestive of widespread systemic inhibition of lysosomal phospholipases. These lysosomal inclusions were similar in morphology, irrespective of the drug given, and were of four types: multilamellar, amorphous dense, amorphous light, or a combination of 2 or more of the preceding types. There was no simple relationship between the number of inclusion bodies per cell and the cumulative dose of amiodarone (r=0.02) or amiodarone serum levels (r=0.11). An in vitro assay was used to compare the effects of the three drugs on Ca2+-dependent phospholipase A and C activities. Phospholipase A2 activity was inhibited in a dose-dependent fashion (1–8 mg/assay) by all three drugs in the order: chlorpromazine > amiodarone > chloroquine. The inhibitory effect on phospholipase C was more pronounced with all three drugs, producing almost total inhibition at 8 mg/assay. In a Ca2+-independent lysosomal phospholipase A system, amiodarone had a greater effect, producing 85% inhibition at 1.2 mg/assay. These observations suggest that amiodarone, like other cationic amphiphiles, induces a generalized phospholipidosis by inhibiting phospholipid catabolism. Its therapeutic and toxic effects may be due to its ability to modulate both Ca2+-dependent membrane phospholipases and Ca2+-independent acid phospholipases.  相似文献   

4.
Amiodarone may induce lung damage by direct toxicity or indirectly through inflammation. To clarify the mechanism of direct toxicity, we briefly exposed rabbit alveolar macrophages to amiodarone and analyzed their morphology, synthesis, and degradation of dipalmitoylphosphatidylcholine (DPPC); distribution of lysosomal enzymes; and uptake of diphtheria toxin and surfactant protein (SP) A used as tracers of the endocytic pathway. Furthermore, in newborn rabbits, we studied the clearance of DPPC and SP-A instilled into the trachea together with increasing amounts of amiodarone. We found that in vitro amiodarone decreases the surface density of mitochondria and lysosomes while increasing the surface density of inclusion bodies, increases the incorporation of choline into DPPC, modifies the distribution of lysosomal enzymes, and does not affect the uptake and processing of diphtheria toxin but inhibits the degradation of SP-A. In vivo amiodarone inhibits the degradation of SP-A but not of DPPC. We conclude that the acute exposure to amiodarone perturbs the endocytic pathway acting after the early endosomes, alters the traffic of lysosomal enzymes, and interferes with the turnover of SP-A.  相似文献   

5.
Exposure of mammalian cells to oxidant stress causes early (iron catalysed) lysosomal rupture followed by apoptosis or necrosis. Enhanced intracellular production of reactive oxygen species (ROS), presumably of mitochondrial origin, is also observed when cells are exposed to nonoxidant pro-apoptotic agonists of cell death. We hypothesized that ROS generation in this latter case might promote the apoptotic cascade and could arise from effects of released lysosomal materials on mitochondria. Indeed, in intact cells (J774 macrophages, HeLa cells and AG1518 fibroblasts) the lysosomotropic detergent O-methyl-serine dodecylamide hydrochloride (MSDH) causes lysosomal rupture, enhanced intracellular ROS production, and apoptosis. Furthermore, in mixtures of rat liver lysosomes and mitochondria, selective rupture of lysosomes by MSDH promotes mitochondrial ROS production and cytochrome c release, whereas MSDH has no direct effect on ROS generation by purifed mitochondria. Intracellular lysosomal rupture is associated with the release of (among other constituents) cathepsins and activation of phospholipase A2 (PLA2). We find that addition of purified cathepsins B or D, or of PLA2, causes substantial increases in ROS generation by purified mitochondria. Furthermore, PLA2 - but not cathepsins B or D - causes rupture of semipurified lysosomes, suggesting an amplification mechanism. Thus, initiation of the apoptotic cascade by nonoxidant agonists may involve early release of lysosomal constituents (such as cathepsins B and D) and activation of PLA2, leading to enhanced mitochondrial oxidant production, further lysosomal rupture and, finally, mitochondrial cytochrome c release. Nonoxidant agonists of apoptosis may, thus, act through oxidant mechanisms.  相似文献   

6.
Lysosomal phospholipase A2 (LPLA2) is characterized by increased activity toward zwitterionic phospholipid liposomes containing negatively charged lipids under acidic conditions. The effect of anionic lipids on LPLA2 activity was investigated. Mouse LPLA2 activity was assayed as C2-ceramide transacylation. Sulfatide incorporated into liposomes enhanced LPLA2 activity under acidic conditions and was weakened by NaCl or increased pH. Amiodarone, a cationic amphiphilic drug, reduced LPLA2 activity. LPLA2 exhibited esterase activity when p-nitro-phenylbutyrate (pNPB) was used as a substrate. Unlike the phospholipase A2 activity, the esterase activity was detected over wide pH range and not inhibited by NaCl or amiodarone. Presteady-state kinetics using pNPB were consistent with the formation of an acyl-enzyme intermediate. C2-ceramide was an acceptor for the acyl group of the acyl-enzyme but was not available as the acyl group acceptor when dispersed in liposomes containing amiodarone. Cosedimentation of LPLA2 with liposomes was enhanced in the presence of sulfatide and was reduced by raising NaCl, amiodarone, or pH in the reaction mixture. LPLA2 adsorption to negatively charged lipid membrane surfaces through an electrostatic attraction, therefore, enhances LPLA2 enzyme activity toward insoluble substrates. Thus, anionic lipids present within lipid membranes enhance the rate of phospholipid hydrolysis by LPLA2 at lipid-water interfaces.—Abe, A., and J. A. Shayman. The role of negatively charged lipids in lysosomal phospholipase A2 function.  相似文献   

7.
Daily, oral administration of chlorphentermine (60 mg/kg) for 5 days to rats produced a significant increase in the concentration of whole lung total phospholipid as well as sphingomyelin, phosphatidylserine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, and phosphatidylcholine. Similarly, a significant elevation in total and all individual phospholipid components was found in the lysosomal fraction of chlorphentermine-treated rat lung. In contrast, the activities of pulmonary Na+,K+-ATPase and alkaline phosphatase, enzymatic markers of membrane function, were not markedly affected by chlorphentermine treatment. The observed lung phospholipidosis was accompanied by inhibition of phospholipase C activity. Regardless of the phospholipid substrate, chlorphentermine significantly decreased pulmonary phospholipase C to approximately the same extent. Our data show that accumulation of phospholipid in whole lung and lysosomes is associated with an inhibition of phospholipase C activity.  相似文献   

8.
Highly purified mitochondria from rat liver contain a phospholipase A that catalyzes removal of 2-fatty acids, with a pH optimum above pH 8.0. Lysosomal preparations appeared to have two phospholipases A associated with them, one with a pH optimum at about pH 4.0, the second between pH 6.0 and 7.0. Mitochondrial phospholipase A hydrolyzed exogenous phospholipid as fast as or faster than endogenous phospholipid. The difference in specific radioactivity of (14)C-ethanolamine-labeled endogenous mitochondrial phospholipid before and after incubation indicates that a fraction of mitochondrial phosphatidyl ethanolamine is hydrolyzed more rapidly than the mitochondrial phospholipids as a whole. Acyl bond hydrolysis of exogenous and endogenous phospholipid by mitochondria was stimulated by free fatty acid, Ca(++), or in certain cases, monoacyl phospholipids or by treatments that disrupt the mitochondrial membrane. Of various fatty acids tested, lauric, myristic, oleic, and linoleic were most effective. ADP and ATP inhibited mitochondrial phospholipase, probably because they compete for Ca(++). Mg(++) also behaved as a competitive inhibitor; the effect was overcome by relatively little Ca(++).  相似文献   

9.
The distribution of the antiarrhythmic drug amiodarone and its principal lipophilic metabolite, desethylamiodarone, was determined in postmortem tissues of six patients who received amiodarone therapy (treatment period, 6-189 days; total dose, 4.8-127.0 g). Amiodarone concentration was highest in liver, lung, adipose tissue, and pancreas, followed by kidney, heart (left ventricle), and thyroid gland, and lowest in antemortem plasma. There was no measurable amiodarone in brain (less than 1.0 microgram/g). Desethylamiodarone concentration was highest in liver and lung, followed by pancreas, adipose tissue, kidney, heart, thyroid gland, and brain, and lowest in plasma. For most patients, the desethylamiodarone concentration was higher than the amiodarone concentration in liver, lung, kidney, heart, thyroid gland, and brain, whereas the parent drug concentration was higher than the metabolite concentration in adipose tissue, pancreas, and plasma. Tissue amiodarone and desethylamiodarone concentrations appeared to be related more closely to the total dose of amiodarone than to their respective plasma concentrations. One patient died of apparent amiodarone-induced pulmonary toxicity after an 18-day period of pharmacotherapy. Clinical evidence of pulmonary dysfunction appeared at 15 days after the initiation of amiodarone therapy, and the patient died at 23 days. Histologic assessment of a lung necropsy specimen revealed acute alveolar interstitial damage. This case represents the earliest reported incident of amiodarone-induced pulmonary toxicity.  相似文献   

10.
Amiodarone is a potent and efficacious antiarrhythmic agent, yet associated with its use are life-threatening pulmonary fibrosis and hepatotoxicity. We have investigated the susceptibility of the male Sprague-Dawley rat to pulmonary and hepatic toxicity after repeated exposure to amiodarone and the effects of such exposure on hepatic and extrahepatic drug metabolizing enzymes. Animals received amiodarone (200 mg.kg-1.day-1 i.p., 5 days/week) for 1 week followed by 150 mg.kg-1.day-1 (5 days/week) for 3 additional weeks. No signs of pulmonary fibrosis or hepatotoxicity were observed, based on histological examination, lung hydroxyproline content, and plasma alanine aminotransferase activity. Analysis of tissues revealed extensive accumulation of amiodarone and desethylamiodarone in lung and liver, but concentrations were significantly lower in animals treated for 4 weeks than for 1 week. In a separate experiment, rats received amiodarone 150 mg.kg-1.day-1 i.p. (5 days/week) for 1 or 4 weeks. No differences in tissue concentrations of amiodarone and desethylamiodarone were detected between animals treated for 1 or 4 weeks. This regimen did not affect hepatic or extrahepatic monooxygenase activities. These results indicate that, in the male Sprague-Dawley rat, there is no observable pulmonary or hepatic toxicity following short-term amiodarone exposure, and there is enhanced elimination of amiodarone and desethylamiodarone when the daily dose of amiodarone is decreased after 1 week from 200 to 150 mg/kg.  相似文献   

11.
Hydrolysis of phospholipids by a lysosomal enzyme   总被引:8,自引:0,他引:8  
The phospholipid-hydrolyzing activity of rat liver lysosomes has been studied. These lysosomes contain a phospholipase that cleaves both fatty acid ester linkages of lecithin and of phosphatidyl ethanolamine and releases free fatty acids from both positional isomers of lysolecithin. The enzyme does not require calcium for maximum activity, and is inhibited by diethyl ether and sodium deoxycholate. Mercuric ions and cetyltrimethyl ammonium bromide also inhibit the hydrolysis. Compared with lipase activity, this enzyme is relatively stable to heat. The specific activity of the hydrolysis of lecithin by the lysosomal enzyme is considerably higher than those reported for mitochondrial and microsomal phospholipases. The enzyme resembles other hydrolases of the lysosome in that it has an acid pH optimum (pH 4.5). This enzymic activity is present in both the lysosomal soluble enzyme fraction and in the lysosomal membrane fraction. The enzyme may participate in the intracellular digestion of mitochondria that is carried out by the intact lysosome in vivo. Localized inflammation and changes in vascular permeability following tissue damage could be catalyzed by this phospholipase.  相似文献   

12.
Desethylamiodarone is the principal metabolite of amiodarone. Amiodarone is a class III antiarrhythmic agent, which acts by lengthening repolarization in the myocardium, an effect that is identical to that produced by hypothyroidism. Amiodarone is known to alter thyroid hormone metabolism, and it has been suggested that the mechanism underlying its antiarrhythmic action is the induction of a myocardial but not generalized hypothyroidism. Since the serum levels of desethylamiodarone reach those of the parent compound during chronic amiodarone therapy, it has been suggested that at least part of amiodarone's pharmacological effects may be attributable to the additive effects of the metabolite. Therefore, we investigated the effects of desethylamiodarone on thyroid hormone metabolism and compared them with those of amiodarone in rats. We have shown that chronic treatment with desethylamiodarone decreased serum T3, markedly increased serum reverse T3 with no significant change in serum T4. These effects are similar to those of amiodarone. The data suggest that the chronic effects of amiodarone on thyroid hormone metabolism may be due at least in part to the actions of desethylamiodarone.  相似文献   

13.
Recombination experiments using radioactive mitochondria and mitoplasts, and nonradioactive lysosomes or digitonin-soluble fraction of mitochondria, show equal rates of proteolysis and of inactivation of carbamyl phosphate synthetase; the amount of lysosomal protein was equal in both cases on the basis of N-acetyl-beta-glucosaminidase activity. Therefore, lysosomes seem to be responsible for all the proteolytic activity exhibited by the digitonin soluble fraction of mitochondrial preparations. Since this fraction contains ca. 90% of the proteolytic activity present in mitochondrial preparations, most of the proteolysis can be attributed to lysosomal contamination. These findings and stability characteristics "in vitro" and "in vivo" of some matrix enzymes are presented and discussed in relation to protein turnover.  相似文献   

14.
A procedure for the isolation of highly purified lysosomes from normal rat liver is described. The method depends on the swelling of mitochondria when the postnuclear supernatant fraction is incubated with 1 mM Ca2+. The lysosomes can then be separated from the swollen mitochondria by Percoll density gradient centrifugation. The lysosomal fraction obtained by our method was enriched more than 120-fold in terms of the marker enzymes with a yield of 25%. The electron microscopic examination and the measurement of the activities of marker enzymes for various subcellular organelles indicated that our lysosomal preparation was essentially free from contamination by other organelles.  相似文献   

15.
Certain amines known to be concentrated in lysosomes, termed "lysosomotropic amines," cause the formation of lysosomal vacuoles. A cell-free system was established to examine the effects of basic substances and acidic ionophores. In this system, the drugs not only increased the internal pH, but also caused a disruption of lysosomes. The osmotic swelling of lysosomes induced by protonated bases or cations for particular ionophores, which had accumulated within lysosomes driven by the proton pump, caused the osmotic lysis of lysosomes. The lysosomal disruption was inhibited upon the addition of the cytosol fraction. This phenomenon provides an in vitro system for studying the osmo-regulation and intercellular dynamics of the lysosomal system, including membrane fusion. The lysosomal stabilization factor was purified from the cytosol fraction and identified as ATP-stimulated glucocorticoid receptor translocation promoter (ASTP).  相似文献   

16.
Interaction of amiodarone and its analogs with calmodulin   总被引:1,自引:0,他引:1  
Benzofurans have important actions on the electrical properties of myocardium; the biochemical basis of those actions is not known. Crystallographic examination of these compounds has revealed that benzofurans share structural homologies with the traditional calmodulin antagonists N-(6-aminohexyl)-5-chloro-1-naphthalene and trifluoperazine. In the present study, the ability of amiodarone, desethylamiodarone, and benziodarone to displace the fluorescent ligand 8-anilino-1-naphthalene sulfonic acid (ANS) from calmodulin, to modulate the fluorescence emission of dansylcalmodulin, and to inhibit the activation by calmodulin of bovine brain cyclic nucleotide phosphodiesterase and human erythrocyte membrane Ca2+-ATPase were investigated at concentrations ranging from 10(-8) to 10(-6) M. These benzofurans displaced ANS from calmodulin with nearly equal efficiency upon forming a 1:1 complex with that protein. Each of these compounds also produced a decreased fluorescence emission of dansylcalmodulin, but with relative efficiencies being desethylamiodarone greater than amiodarone greater than benziodarone. Amiodarone and desethylamiodarone inhibited calmodulin-stimulable phosphodiesterase activity with similar potencies. Amiodarone and benziodarone inhibited calmodulin-stimulable Ca2+-ATPase activity equally, but desethylamiodarone had no effect. The observed differential effects of the amiodarone analogs suggest that calmodulin may possess multiple benzofuran-binding sites that are recognized by specific targets and ligands of this Ca2+-binding protein and that the cellular action of amiodarone and its analogs may reflect calmodulin antagonism.  相似文献   

17.
A method has been developed to measure the concentration of chloroquine in lysosomes isolated from the liver of rats. It employs 3H2O and [U-14C]sucrose to determine the intralysosomal water volume of purified lysosomes obtained by free flow electrophoresis. Twelve h after a single dose, the concentration of chloroquine in lysosomes was 6.3 mM and at 24 h it rose to 16.5 mM. With continued treatment, lysosomal chloroquine concentrations were 61 and 74 mM at 48 and 72 h. The lysosomal concentrations of chloroquine attained were sufficient to block intralysosomal phospholipase A1 activity. The lysosomal content of phospholipid rises 1.7-fold and 2.6-fold over that of control at 12 and 24 h, respectively. At 72 h, lysosomal phospholipid was 3.7-fold greater than that of control. Lysosomes show an increased negative surface charge with chloroquine administration which is due in part to an increased ratio of acidic to neutral phospholipids in the lysosomal membrane. The phosphatidylinositol content of lysosomes rose rapidly with chloroquine treatment and accounted for the early increase in the ratio. Bis(monoacylglycero)phosphate, an acidic phospholipid synthesized only in lysosomes, increased later in the course of chloroquine treatment and accounted for the continued increase in acidic phospholipids.  相似文献   

18.
Chromatin prepared from liver tissue contains a histone-degrading enzyme activity with a pH optimum of 7.5-8.0, whereas chromatin isolated from purified nuclei is devoid of it. The histone-degrading enzyme activity was assayed with radioactively labelled total histones from Ehrlich ascites tumor cells. Among the different subcellular fractions assayed, only lysosomes and mitochondria exhibited histone-degrading enzymes. A pH optimum around 4.0-5.0 was found for the lysosomal fraction, whereas 7.5-8.0 has been found for mitochondria. Binding studies of frozen and thawed lysosomes or mitochondria to proteinase-free chromatin demonstrate that the proteinase associated with chromatin isolated from frozen tissue originates from damaged mitochondria. The protein degradation patterns obtained after acrylamide gel electrophoresis are similar for the chromatin-associated and the mitochondrial proteinase and different from that obtained after incubation with lysosomes. The chromatin-associated proteinase as well as the mitochondrial proteinase are strongly inhibited by 1.0 mM phenylmethanesulfonyl fluoride. Weak inhibition is found for lysosomal proteinases at pH 5. Kallikrein-trypsin inhibitor, however, inhibits lysosomal proteinase activity and has no effect on either chromatin-associated or mitochondrial proteinases. The higher template activity of chromatin isolated from a total homogenate compared to chromatin prepared from nuclei may be due to the presence of this histone-degrading enzyme activity.  相似文献   

19.
Cellular manifestations of aging are most pronounced in postmitotic cells, such as neurons and cardiac myocytes. Alterations of these cells, which are responsible for essential functions of brain and heart, are particularly important contributors to the overall aging process. Mitochondria and lysosomes of postmitotic cells suffer the most remarkable age-related alterations of all cellular organelles. Many mitochondria undergo enlargement and structural disorganization, while lysosomes, which are normally responsible for mitochondrial turnover, gradually accumulate an undegradable, polymeric, autofluorescent material called lipofuscin, or age pigment. We believe that these changes occur not only due to continuous oxidative stress (causing oxidation of mitochondrial constituents and autophagocytosed material), but also because of the inherent inability of cells to completely remove oxidatively damaged structures (biological 'garbage'). A possible factor limiting the effectiveness of mitochondial turnover is the enlargement of mitochondria which may reflect their impaired fission. Non-autophagocytosed mitochondria undergo further oxidative damage, resulting in decreasing energy production and increasing generation of reactive oxygen species. Damaged, enlarged and functionally disabled mitochondria gradually displace normal ones, which cannot replicate indefinitely because of limited cell volume. Although lipofuscin-loaded lysosomes continue to receive newly synthesized lysosomal enzymes, the pigment is undegradable. Therefore, advanced lipofuscin accumulation may greatly diminish lysosomal degradative capacity by preventing lysosomal enzymes from targeting to functional autophagosomes, further limiting mitochondrial recycling. This interrelated mitochondrial and lysosomal damage irreversibly leads to functional decay and death of postmitotic cells.  相似文献   

20.
The total mitochondrial fraction of bovine corpus luteum specifically bound [3H]prostaglandin (PG) E1, [3H] PGF, and 125I-labeled human lutropin (hLH) despite very little 5′-nucleotidase activity, a marker for plasma membranes. Since the total mitochondrial fraction isolated by conventional centrifugation techniques contains both mitochondria and lysosomes, it was subfractionated into mitochondria and lysosomes to ascertain the relative contribution of these fractions to the binding. Subfractionation resulted in an enrichment of cytochrome c oxidase (a marker for mitochondria) in mitochondria and of acid phosphatase (a marker for lysosomes) in lysosomes. The lysosomes exhibited little or no contamination with Golgi vesicles, rough endoplasmic reticulum, or peroxisomes as assessed by their appropriate marker enzymes. Subfractionation also re ulted in [3H] PGE1, [3H] PGF, and 125I-labeled hLH binding enrichment with respect to homogenate in lysosomes but not in mitochondria. The lysosomal binding enrichment and recovery were, however, lower than in plasma membranes. The ratios of marker enzyme to binding, an index of organelle contamination, revealed that plasma membrane and lysosomal receptors were intrinsic to these organelles. Freezing and thawing had markedly increased lysosomal binding but had no effect on plasma membrane binding. Exposure to 0.05% Triton X-100 resulted in a greater loss of plasma membrane compared to lysosomal binding. In summary, the above results suggest that lysosomes, but not mitochondria, in addition to plasma membranes, intrinsically contain receptors for PGs and gonadotropins. Furthermore, lysosomes overall contain a greater number of PGs and gonadotropin receptors compared to plasma membranes and these receptors are associated with the membrane but not the contents of lysosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号