首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Hyperoxaluria causes crystal deposition in the kidney, which leads to oxidative stress and to injury and damage of the renal epithelium. Sodium thiosulfate (STS, Na2S2O3) is an anti-oxidant, which has been used in human medicine for decades. The effect of STS on hyperoxaluria-induced renal damage is not known.

Methods

Hyperoxaluria and renal injury were induced in healthy male Wistar rats by chronic exposure to ethylene glycol (EG, 0.75%) in the drinking water for 4 weeks. The treatment effects of STS, NaCl or Na2SO4 were compared. Furthermore, the effects of STS on oxalate-induced oxidative stress were investigated in vitro in renal LLC-PK1 cells.

Results

Chronic EG exposure led to hyperoxaluria, oxidative stress, calcium oxalate crystalluria and crystal deposition in the kidneys. Whereas all tested compounds significantly reduced crystal load, only STS-treatment maintained tissue superoxide dismutase activity and urine 8-isoprostaglandin levels in vivo and preserved renal function. In in vitro studies, STS showed the ability to scavenge oxalate-induced ROS accumulation dose dependently, reduced cell-released hydrogen peroxide and preserved superoxide dismutase activity. As a mechanism explaining this finding, STS was able to directly inactivate hydrogen peroxide in cell-free experiments.

Conclusions

STS is an antioxidant, which preserves renal function in a chronic EG rat model. Its therapeutic use in oxidative-stress induced renal-failure should be considered.  相似文献   

2.
Epilepsy prevails to be a neurological disorder in anticipation of safer drugs with enhanced anticonvulsant efficacy as presently available drugs fails to offer adequate control of epileptic seizures in about one-third of patients. The objective of this study was to evaluate the effect of Trichosanthes tricuspidata methanolic extract (TTME) against epilepsy mediated oxidative stress in pilocarpine induced mice. Intraperitonial administration of pilocarpine (85 mg/kg) induced seizure in mice was assessed by behavior observations, which is significantly (p < 0.05) reduced by TTME (100 and 200 mg/kg; i.p) in a dose dependant manner, similar to diazepam. Seizure was accompanied by significant increase in lipid peroxidation and the hippocampal nitrite content in pilocarpine group when compared with control. Moreover, the antioxidant enzymes superoxide dismutase, catalase and glutathione levels were decreased in pilocarpine administered groups. TTME administration attenuated oxidative damage as evident by decreased lipid oxidative damage and nitrite–nitrate content and restored the level of enzymatic antioxidant defenses in hippocampus. Involvement of free radicals during epilepsy is further confirmed by histopathological analysis which showed the loss of neuronal cells in hippocampus CA1 and CA3 pyramidal region. Our findings strongly support the hypothesis that TTME has anticonvulsant activity accompanied with the strong antioxidant potential plays a crucial role in reducing the oxidative stress produced by seizure.  相似文献   

3.
Neurodegeneration is an early event in the diabetic retina which may lead to diabetic retinopathy. One of the potential pathways in damaging retinal neurons is the activation of renin angiotensin system including angiotensin II type 1 receptor (AT1R) in the diabetic retina. The purpose of this study was to determine the effect of telmisartan, an AT1R blocker on retinal level of brain derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and tyrosine hydroxylase (TH), glutathione (GSH) and caspase activity in the diabetic rats. The dysregulated levels of these factors are known to cause neurodegeneration in diabetic retina. Three weeks streptozotocin induced diabetic rats were orally treated or untreated with telmisartan (10 mg/kg/day). After 4 weeks of treatments, the levels of BDNF and GSH were found to be increased systemically in the sera as well as in the retina of diabetic rats compared to untreated rats as measured by enzyme-linked immunosorbent assay and biochemical techniques (p < 0.05). The caspase-3 activity in the telmisartan treated diabetic retina was decreased compared to untreated diabetic rats (p < 0.05). Western blotting experiments showed the expression levels of BDNF, CNTF and TH were increased compared to untreated diabetic rats (p < 0.05). Thus, our findings show a beneficial effect of AT1R blocker telmisartan in efficiently increasing neurotrophic support, endogenous antioxidant GSH content, and decreasing signs of apoptosis in diabetic retina.  相似文献   

4.
Biological Trace Element Research - An experimental study was conducted in Wistar rats to characterize the arsenic (“As”)-induced alterations in neurobiochemistry in brain and its...  相似文献   

5.
Neurochemical Research - Parkinson’s disease (PD) is one of the most common forms of neurodegenerative diseases and research on potential therapeutic agents for PD continues. Rotenone is a...  相似文献   

6.
Diabetes is a common metabolic disorder characterized by elevated blood glucose level. Trace element homeostasis causes disturbances in diabetes due to hyperglycemia. Superoxide dismutase (SOD), an antioxidant enzyme, contains zinc and copper ions as its cofactors. Defects in SOD level and activity have been observed in diabetes. Resveratrol (RSV) has displayed hypoglycemic effects and is proven to improve oxidative stress. The aim of the present study was to examine the possible effects of RSV on blood glucose level, serum copper and zinc levels, SOD, and a number of other oxidative markers in type 2 diabetic rats. Diabetes was induced in male Wistar rats with administration of streptozotocin and nicotine amide. The studied groups containing six animals per group were as follows: group 1 normal control group; group 2 diabetic control group; groups 3, 4, and 5 diabetic rats that received 1, 5, and 10 mg/kg body weight of RSV, respectively for 30 days. Serum glucose, copper, zinc, SOD activity, total oxidant status (TOS) as well as thiol groups were all measured. Blood glucose in RSV treated groups significantly decreased. Similarly, copper significantly decreased in diabetic groups treated with RSV. Treatment with 10 mg/kg RSV resulted in significantly increased serum zinc. Furthermore, Cu/Zn ratio was observed to decrease in treated groups compared with untreated diabetic control group. RSV treated groups revealed an increased level of SOD activity as well as improved oxidative status. In summary, the results showed that RSV has potential hypoglycemic effect, attenuates trace element homeostasis, and consequently increases SOD activity level.  相似文献   

7.
Xiang  Biao  Li  Daowen  Chen  Yiqiang  Li  Meng  Zhang  Yuan  Sun  Tun  Tang  Shusheng 《Neurochemical research》2021,46(2):367-378
Neurochemical Research - Impaired homeostasis of copper has been linked to different pathophysiological mechanisms in neurodegenerative diseases and oxidative injury has been proposed as the main...  相似文献   

8.
The aim of this work was to evaluate the effect of the administration of egg white hydrolysates on obesity-related disorders, with a focus on lipid metabolism, inflammation and oxidative stress, in Zucker fatty rats. Obese Zucker rats received water, pepsin egg white hydrolysate (750 mg/kg/day) or Rhizopus aminopeptidase egg white hydrolysate (750 mg/kg/day) for 12 weeks. Lean Zucker rats received water. Body weight, solid and liquid intakes were weekly measured. At the end of the study, urine, faeces, different organs and blood samples were collected. The consumption of egg white hydrolysed with pepsin significantly decreased the epididymal adipose tissue, improved hepatic steatosis, and lowered plasmatic concentration of free fatty acids in the obese animals. It also decreased plasma levels of tumor necrosis factor-alpha and reduced oxidative stress. Pepsin egg white hydrolysate could be used as a tool to improve obesity-related complications.  相似文献   

9.
10.
目的:探讨砷暴露诱导细胞氧化应激的分子机制。方法:采用人正常肝细胞进行亚砷酸钠和砷酸钠的暴露处理,并设相应对照组,采用SOD模拟物MnTMPyP和还原型谷胱甘肽(reducedglutathione,GSH)预处理,检测细胞超氧阴离子(02。)和细胞整体ROS的水平。WestemBlot方法检测细胞氧化/抗氧化重要酶微粒体谷胱甘肽硫转移酶(microsomalglutathioneS-transferase-l,Mgst.1)、半胱氨酸双加氧酶l(cysteinedioxygenasel,Cd01)和NADPH氧化酶的催化亚基NOX4的表达。针对NADPH氧化酶,采用特异性抑制剂(diphenyleneiodoniumchloride,DPI)进行预处理,观察对砷暴露引起的细胞ROS水平及细胞凋亡的影响。结果:砷暴露能够显著诱导细胞超氧阴离子的产生,提高细胞整体ROS水平,其中三价砷(亚砷酸钠,A矿)诱导氧化应激作用显著强于五价砷(砷酸钠,As5+)。亚砷酸钠能够显著提高NOX4的表达。针对NADPH氧化酶的抑制剂DPI能够显著抑制砷暴露引起的细胞ROS水平升高以及细胞凋亡的增加。结论:NADPH氧化酶是砷暴露诱导人肝细胞的作用靶点,砷能够通过NADPH氧化酶产生大量超氧阴离子,提高ROS水平,造成氧化应激,诱导人正常肝细胞凋亡。  相似文献   

11.
Shi Q  Fu J  Ge D  He Y  Ran J  Liu Z  Wei J  Diao T  Lu Y 《Neurochemical research》2012,37(9):2042-2052
Acute exposure to high altitudes can cause neurological dysfunction due to decreased oxygen availability to the brain. In this study, the protective effects of Huperzine A on cognitive deficits along with oxidative and apoptotic damage, due to acute hypobaric hypoxia, were investigated in male Sprague–Dawley rats. Rats were exposed to simulated hypobaric hypoxia at 6,000 m in a specially fabricated animal decompression chamber while receiving daily Huperzine A orally at the dose of 0.05 or 0.1 mg/kg body weight. After exposure to hypobaric hypoxia for 5 days, rats were trained in a Morris Water Maze for 5 consecutive days. Subsequent trials revealed Huperzine A supplementation at a dose of 0.1 mg/kg body weight restored spatial memory significantly, as evident from decreased escape latency and path length to reach the hidden platform, and the increase in number of times of crossing the former platform location and time spent in the former platform quadrant. In addition, after exposure to hypobaric hypoxia, animals were sacrificed and biomarkers of oxidative damage, such as reactive oxygen species, lipid peroxidation, lactate dehydrogenase activity, reduced glutathione, oxidized glutathione and superoxide dismutase were studied in the hippocampus. Expression levels of pro-apoptotic proteins (Bax, caspase-3) and anti-apoptotic protein (Bcl-2) of hippocampal tissues were evaluated by Western blotting. There was a significant increase in oxidative stress along with increased expression of apoptotic proteins in hypoxia exposed rats, which was significantly improved by oral Huperzine A at 0.1 mg/kg body weight. These results suggest that supplementation with Huperzine A improves cognitive deficits, reduces oxidative stress and inhibits the apoptotic cascade induced by acute hypobaric hypoxia.  相似文献   

12.
This study aimed to compare the effects of repeated restraint stress alone and the combination with clomipramine treatment on parameters of oxidative stress in cerebral cortex, striatum and hippocampus of male rats. Animals were divided into control and repeated restraint stress, and subdivided into treated or not with clomipramine. After 40 days of stress and 27 days of clomipramine treatment with 30 mg/kg, the repeated restraint stress alone reduced levels of Na+, K+-ATPase in all tissues studied. The combination of repeated restraint stress and clomipramine increased the lipid peroxidation, free radicals and CAT activity as well as decreased levels of NP-SH in the tissues studied. However, Na+, K+-ATPase level decreased in striatum and cerebral cortex and the SOD activity increased in hippocampus and striatum. Results indicated that clomipramine may have deleterious effects on the central nervous system especially when associated with repeated restraint stress and chronically administered in non therapeutic levels.  相似文献   

13.
In this meta-analysis, studies reporting arsenic-induced oxidative damage in mouse models were systematically evaluated to provide a scientific understanding of oxidative stress mechanisms associated with arsenic poisoning. Fifty-eight relevant peer-reviewed publications were identified through exhaustive database searching. Oxidative stress indexes assessed included superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), glutathione-s-transferase (GST), glutathione reductase (GR), oxidized glutathione (GSSG), malondialdehyde (MDA), and reactive oxygen species (ROS). Our meta-analysis showed that arsenic exposure generally suppressed measured levels of the antioxidants, SOD, CAT, GSH, GPx, GST, and GR, but increased levels of the oxidants, GSSG, MDA, and ROS. Arsenic valence was important and GR and MDA levels increased to a significantly (P < 0.05) greater extent upon exposure to As3+ than to As5+. Other factors that contributed to a greater overall oxidative effect from arsenic exposure included intervention time, intervention method, dosage, age of animals, and the sample source from which the indexes were estimated. Our meta-analysis effectively summarized a wide range of studies and detected a positive relationship between arsenic exposure and oxidative damage. These data provide a scientific basis for the prevention and treatment of arsenic poisoning.  相似文献   

14.
15.
Increased levels of iron in specific brain regions have been reported in neurodegenerative disorders. It has been postulated that iron exerts its deleterious effects on the nervous system by inducing oxidative damage. In a previous study, we have shown that iron administered during a particular period of the neonatal life induces oxidative damage in brain regions in adult rats. The aim of the present study was to evaluate the possible protective effect of selegiline, a monoamino-oxidase B (MAO-B) inhibitor used in pharmacotherapy of Parkinson’s disease, against iron-induced oxidative stress in the brain. Results have shown that selegiline (1.0 and 10.0 mg/kg), when administered early in life was able to protect the substantia nigra as well as the hippocampus against iron-induced oxidative stress, without affecting striatum. When selegiline (10.0 mg/kg) was administered in the adult life to iron-treated rats, oxidative stress was reduced only in the substantia nigra.  相似文献   

16.
The use of metals in medicine has grown in popularity in clinical and commercial settings. In this study, the immune-protecting effects and the hypoglycemic and antioxidant activity of vanadyl sulfate (VOSO4) and/or selenium tetrachloride (Se) on oxidative injury, DNA damage, insulin resistance, and hyperglycemia were assessed. Fifty male albino rats were divided into five groups, and all treatments were administrated at 9:00 a.m. daily for 60 successive days: control, STZ (Streptozotocin; 50 mg/kg of STZ was given to 6 h fasted animals in a single dose, followed by confirmation of diabetic state occurrence after 72 h by blood glucose estimation at >280 mg/dl), STZ (Diabetic) plus administration of VOSO4 (15 mg/kg) for 60 days, STZ (Diabetic) plus administration of selenium tetrachloride (0.87 mg/Kg), and STZ plus VOSO4 and, after 1/2 h, administration of selenium tetrachloride at the above doses. The test subjects’ blood glucose, insulin hormone, HbA1C, C-peptide, antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, myeloperoxidase, and xanthine oxidase), markers of lipid peroxidation (MDA), and histological sections of pancreatic tissues were evaluated, and a comet assay was performed. Histological sections in pancreas tissues were treated as indicators of both VOSO4 and selenium tetrachloride efficacy, either alone or combined, for the alleviation of STZ toxicity. The genotoxicity of diabetes mellitus was assessed, and the possible therapeutic roles of VOSO4 or selenium tetrachloride, or both, on antioxidant enzymes were studied. The findings show that the administration of VOSO4 with selenium tetrachloride reduced oxidative stress to normal levels, lowered blood glucose levels, and elevated insulin hormone. Additionally, VOSO4 with selenium tetrachloride had a synergistic effect and significantly decreased pancreatic genotoxicity. The data clearly show that both VOSO4 and selenium tetrachloride inhibit pancreatic and DNA injury and improve the oxidative state in male rats, suggesting that the use of VOSO4 with selenium tetrachloride is a promising synergistic potential ameliorative agent in the diabetic animal model.  相似文献   

17.
International Journal of Peptide Research and Therapeutics - Fibroblast growth factor 21 (FGF21) is a metabolic regulator with a wide range of biological functions. Although previous studies have...  相似文献   

18.
19.
The present study aims to investigate the protective effect of quercetin against Aroclor‐1254–induced hepatotoxicity in rats. Male Wistar rats were grouped into Group I control received vehicle (corn oil; 1 mL/kg bwt); Group II quercetin alone (50 mg/kg bwt/day orally); Group III Aroclor‐1254 (2 mg/kg bwt/day intraperitoneally); Group IV Aroclor‐1254 + quercetin treated for 30 days. The Aroclor‐1254 treatment caused significant alteration in the biochemical parameters (hydrogen peroxide, lipid peroxidation, reduced glutathione levels, and alkaline phosphatase activity). The expressions of apoptotic and antiapoptotic proteins and the liver histology of Aroclor‐1254–exposed rats showed cytoplasmic degeneration along with infiltration of polymorphonuclear cells. Whereas simultaneous treatment with quercetin normalized all the biochemical parameters, consequently it inhibited apoptosis mediated by Aroclor‐1254 by downregulating aryl hydrocarbon receptor, p53 and apoptotic protein (Bax, caspase‐9, caspase‐3) and upregulating the antiapoptotic protein (Bcl‐2) expression patterns; thereby, quercetin reduces alteration in hepatocellular morphology. Thus quercetin exhibited hepatoprotective effect. © 2012 Wiley Periodicals, Inc. J BiochemMol Toxicol 26:522‐532, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21466  相似文献   

20.
Cholestatic liver fibrosis was achieved by bile duct ligation (BDL) in mice. Liver injury associated with BDL for 15 days included significant reactive oxygen/nitrogen species generation, liver inflammation, cell death and fibrosis. Administration of Epigallocatechin 3-Gallate (EGCG) in animals reduced liver fibrosis involving parenchymal cells in BDL model. EGCG attenuated BDL-induced gene expression of pro-fibrotic markers (Collagen, Fibronectin, alpha 2 smooth muscle actin or SMA and connective tissue growth factor or CTGF), mitochondrial oxidative stress, cell death marker (DNA fragmentation and PARP activity), NFκB activity and pro-inflammatory cytokines (TNFα, MIP1α, IL1β, and MIP2). EGCG also improved BDL induced damages of mitochondrial electron transport chain complexes and antioxidant defense enzymes such as glutathione peroxidase and manganese superoxide dismutase. EGCG also attenuated hydrogen peroxide induced cell death in hepatocytes in vitro and alleviate stellate cells mediated fibrosis through TIMP1, SMA, Collagen 1 and Fibronectin in vitro. In conclusion, the reactive oxygen/nitrogen species generated from mitochondria plays critical pathogenetic role in the progression of liver inflammation and fibrosis and this study indicate that EGCG might be beneficial for reducing liver inflammation and fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号