首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
NphB is a soluble prenyltransferase from Streptomyces sp. strain CL190 that attaches a geranyl group to a 1,3,6,8-tetrahydroxynaphthalene-derived polyketide during the biosynthesis of anti-oxidant naphterpin. Here we report multiple chemoenzymatic syntheses of various prenylated compounds from aromatic substrates including flavonoids using two prenyltransferases NphB and SCO7190, a NphB homolog from Streptomyces coelicolor A3(2), as biocatalysts. NphB catalyzes carbon-carbon-based and carbon-oxygen-based geranylation of a diverse collection of hydroxyl-containing aromatic acceptors. Thus, this simple method using the prenyltransferases can be used to explore novel prenylated aromatic compounds with biological activities. Kinetic studies with NphB reveal that the prenylation reaction follows a sequential ordered mechanism.  相似文献   

2.
Prenylated aromatics (PAs) are an important class of natural products with valuable pharmaceutical applications. To address current limitations of their sourcing from plants, here, we present a microbial platform for the in vivo synthesis of PAs based on the aromatic prenyltransferase NphB from Streptomyces sp. strain CL190. As proof of concept, we targeted the prenylation of phenolic/phenolcarboxylic acids, including orsellinic (OSA), divarinolic (DVA), and olivetolic (OLA) acids, whose prenylated products have important biopharmaceutical applications. Although the ability of wild-type NphB to catalyze the prenylation reaction with each acid was validated by in vitro characterization, improvement of product titers in vivo required protein modeling and rational design to engineer NphB variants with increased activity and product selectivity. When a designed NphB variant with eightfold improved catalytic efficiency toward OSA was expressed in an Escherichia coli host engineered to generate geranyl pyrophosphate at high flux through the mevalonate pathway, we observed up to 300 mg/L prenylated products by exogenously supplying OSA. The improved properties of engineered NphB were also utilized to demonstrate the diversification of this in vivo platform by using both different aromatic acceptors and different prenyl donors to generate various PA compounds, including medicinally important compounds such as cannabigerovarinic, cannabigerolic, and grifolic acids.  相似文献   

3.
Cui G  Li X  Merz KM 《Biochemistry》2007,46(5):1303-1311
Orf2, a recently identified prenyltransferase of aromatic natural products, displays relaxed substrate selectivity and interesting product regioselectivity. This gives rise to the opportunity to engineer the active site to tune the functionality of terpenoids for therapeutic applications. The structural basis of substrate binding has been determined, but the source of the observed substrate selectivity and product regioselectivity cannot be completely understood on the basis of the static picture that the crystal structures of Orf2 and its complexes afford. The electron density and B-factors of the substrates, particularly those of 1,6-dihydroxynaphthalene, suggest significant conformational fluctuation in the Orf2 binding site. We thoroughly explored the binding of 1,6-dihydroxynaphthalene and quantitatively evaluated the relative free energies of three binding states that we identified in terms of a two-dimensional potential of mean force. The available experimental orientation, which gives the major prenylated product of 1,6-dihydroxynaphthalene, corresponds to the global free energy minimum. Two alternative binding states were identified on the calculated free energy surface, and both are readily accessible at 300 K. The alternative binding conformations were extracted from the potential of mean force calculation and were subjected to further validation against the experimental X-ray diffraction data using a refinement protocol supplemented with a hybrid quantum mechanical and molecular mechanical energy function. The agreement was excellent as indicated by the R and Rfree factors that were comparable to that obtained for the published orientation using a similar protocol. These binding states are the origin of the selectivity and regioselectivity in Orf2-catalyzed aromatic prenylations. Our analyses also suggest that Ser214 and Tyr288, forming hydrogen bonds with the alternative binding states of 1,6-dihydroxynaphthalene and flaviolin, are good candidates for site-directed mutagenesis, and changing them to, for example, their hydrophobic counterparts would affect the substrate selectivity and product regioselectivity.  相似文献   

4.
Hopmann KH  Himo F 《Biochemistry》2008,47(17):4973-4982
Haloalcohol dehalogenase HheC catalyzes the reversible dehalogenation of vicinal haloalcohols to form epoxides and free halides. In addition, HheC is able to catalyze the irreversible and highly regioselective ring-opening of epoxides with nonhalide nucleophiles, such as CN (-) and N 3 (-). For azidolysis of aromatic epoxides, the regioselectivity observed with HheC is opposite to the regioselectivity of the nonenzymatic epoxide-opening. This, together with a relatively broad substrate specificity, makes HheC a promising tool for biocatalytic applications. We have designed large quantum chemical models of the HheC active site and used density functional theory to study the reaction mechanism of the HheC-catalyzed ring-opening of ( R)-styrene oxide with the nucleophiles CN (-) and N 3 (-). Both the cyanolysis and the azidolysis reactions are shown to take place in a single concerted step. The results support the suggested role of the putative Ser132-Tyr145-Arg149 catalytic triad, where Tyr145 acts as a general acid, donating a proton to the substrate, and Arg149 interacts with Tyr145 and facilitates proton abstraction, while Ser132 positions the substrate and reduces the barrier for epoxide opening through interaction with the emerging oxyanion of the substrate. We have also studied the regioselectivity of ( R)-styrene oxide opening for both the cyanolysis and the azidolysis reactions. The employed active site model was shown to be able to reproduce the experimentally observed beta-regioselectivity of HheC. In silico mutations of various groups in the HheC active site model were performed to elucidate the important factors governing the regioselectivity.  相似文献   

5.
To provide insight into the catalytic mechanism for the final deprotonation reaction of squalene-hopene cyclase (SHC) from Alicyclobacillus acidocaldarius, mutagenesis experiments were conducted for the following ten residues: Thr41, Glu45, Glu93, Arg127, Trp133, Gln262, Pro263, Tyr267, Phe434 and Phe437. An X-ray analysis of SHC has revealed that two types of water molecules ("front water" and "back waters") were involved around the deprotonation site. The results of these mutagenesis experiments allow us to propose the functions of these residues. The two residues of Gln262 and Pro263 probably work to keep away the isopropyl group of the hopanyl cation intermediate from the "front water molecule," that is, to place the "front water" in a favorable position, leading to the minimal production of by-products, i.e., hopanol and hop-21(22)-ene. The five residues of Thr41, Glu45, Glu93, Arg127 and Trp133, by which the hydrogen-bonded network incorporating the "back waters" is constructed, increase the polarization of the "front water" to facilitate proton elimination from the isopropyl moiety of the hopanyl cation, leading to the normal product, hop-22(29)-ene. The three aromatic residues of Tyr267, Phe434 and Phe437 are likely to play an important role in guiding squalene from the enzyme surface to the reaction cavity (substrate channeling) by the strong affinity of their aromatic residues to the squalene substrate.  相似文献   

6.
Bonitz T  Alva V  Saleh O  Lupas AN  Heide L 《PloS one》2011,6(11):e27336
The linkage of isoprenoid and aromatic moieties, catalyzed by aromatic prenyltransferases (PTases), leads to an impressive diversity of primary and secondary metabolites, including important pharmaceuticals and toxins. A few years ago, a hydroxynaphthalene PTase, NphB, featuring a novel ten-stranded β-barrel fold was identified in Streptomyces sp. strain CL190. This fold, termed the PT-barrel, is formed of five tandem ααββ structural repeats and remained exclusive to the NphB family until its recent discovery in the DMATS family of indole PTases. Members of these two families exist only in fungi and bacteria, and all of them appear to catalyze the prenylation of aromatic substrates involved in secondary metabolism. Sequence comparisons using PSI-BLAST do not yield matches between these two families, suggesting that they may have converged upon the same fold independently. However, we now provide evidence for a common ancestry for the NphB and DMATS families of PTases. We also identify sequence repeats that coincide with the structural repeats in proteins belonging to these two families. Therefore we propose that the PT-barrel arose by amplification of an ancestral ααββ module. In view of their homology and their similarities in structure and function, we propose to group the NphB and DMATS families together into a single superfamily, the PT-barrel superfamily.  相似文献   

7.
Lorentzen E  Siebers B  Hensel R  Pohl E 《Biochemistry》2005,44(11):4222-4229
The glycolytic enzyme fructose-1,6-bisphosphate aldolase (FBPA) catalyzes the reversible cleavage of fructose 1,6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. Catalysis of Schiff base forming class I FBPA relies on a number of intermediates covalently bound to the catalytic lysine. Using active site mutants of FBPA I from Thermoproteus tenax, we have solved the crystal structures of the enzyme covalently bound to the carbinolamine of the substrate fructose 1,6-bisphosphate and noncovalently bound to the cyclic form of the substrate. The structures, determined at a resolution of 1.9 A and refined to crystallographic R factors of 0.148 and 0.149, respectively, represent the first view of any FBPA I in these two stages of the reaction pathway and allow detailed analysis of the roles of active site residues in catalysis. The active site geometry of the Tyr146Phe FBPA variant with the carbinolamine intermediate supports the notion that in the archaeal FBPA I Tyr146 is the proton donor catalyzing the conversion between the carbinolamine and Schiff base. Our structural analysis furthermore indicates that Glu187 is the proton donor in the eukaryotic FBPA I, whereas an aspartic acid, conserved in all FBPA I enzymes, is in a perfect position to be the general base facilitating carbon-carbon cleavage. The crystal structure of the Trp144Glu, Tyr146Phe double-mutant substrate complex represents the first example where the cyclic form of beta-fructose 1,6-bisphosphate is noncovalently bound to FBPA I. The structure thus allows for the first time the catalytic mechanism of ring opening to be unraveled.  相似文献   

8.
Antibody 4C6 efficiently catalyzes a cationic cyclization reaction. Crystal structures of the antibody 4C6 Fab in complex with benzoic acid and in complex with its eliciting hapten were determined to 1.30A and 2.45A resolution, respectively. These crystal structures, together with computational analysis, have elucidated a possible mechanism for the monocyclization reaction. The hapten complex revealed a combining site pocket with high shape complementarity to the hapten. This active site cleft is dominated by aromatic residues that shield the highly reactive carbocation intermediates from solvent and stabilize the carbocation intermediates through cation-pi interactions. Modeling of an acyclic olefinic sulfonate ester substrate and the transition state (TS) structures shows that the chair-like transition state is favored, and trapping by water directly produces trans-2-(dimethylphenylsilyl)-cyclohexanol, whereas the less favored boat-like transition state leads to cyclohexene. The only significant change observed upon hapten binding is a side-chain rotation of Trp(L89), which reorients to form the base of the combining site. Intriguingly, a benzoic acid molecule was sequestered in the combining site of the unliganded antibody. The 4C6 active site was compared to that observed in a previously reported tandem cyclization antibody 19A4 hapten complex. These cationic cyclization antibodies exhibit convergent structural features with terpenoid cyclases that appear to be important for catalysis.  相似文献   

9.
Fungal prenyltransferases of the dimethylallyltryptophan synthase (DMATS) superfamily share no sequence, but structure similarity with the prenyltransferases of the CloQ/NphB group. The members of the DMATS superfamily have been reported to catalyze different prenylations of diverse indole or tyrosine derivatives, while some members of the CloQ/NphB group used hydroxynaphthalenes as prenylation substrates. In this study, we report for the first time the prenylation of hydroxynaphthalenes by the members of the DMATS superfamily. Three tryptophan-containing cyclic dipeptide prenyltransferases (AnaPT, CdpNPT and CdpC3PT), one tryptophan C7-prenyltransferase and one tyrosine O-prenyltransferase (SirD) were incubated with naphthalene and 11 derivatives. The enzyme activity and preference of the tested prenyltransferases towards hydroxynaphthalenes differed clearly from each other. For an accepted substrate, however, different enzymes produced usually the same major prenylation product, i.e. with a regular C-prenyl moiety at para- or ortho-position to a hydroxyl group. Regularly, O-prenylated and diprenylated derivatives were also identified as enzyme products of substrates with low conversion rates and regioselectivity. This was unequivocally proven by mass spectrometry and nuclear magnetic resonance analyses. The K M values and turnover numbers (k cat) of the enzymes towards selected hydroxynaphthalenes were determined to be in the range of 0.064–2.8 mM and 0.038–1.30 s−1, respectively. These data are comparable to those obtained using indole derivatives. The results presented in this study expanded the potential usage of the members of the DMATS superfamily for production of prenylated derivatives including hydroxynaphthalenes.  相似文献   

10.
An active site His107 residue distinguishes human glutathione S-transferase hGSTM1-1 from other mammalian Mu-class GSTs. The crystal structure of hGSTM1a-1a with bound glutathione (GSH) was solved to 1.9 A resolution, and site-directed mutagenesis supports the conclusion that a proton transfer occurs in which bound water at the catalytic site acts as a primary proton acceptor from the GSH thiol group to transfer the proton to His107. The structure of the second substrate-binding site (H-site) was determined from hGSTM1a-1a complexed with 1-glutathionyl-2,4-dinitrobenzene (GS-DNB) formed by a reaction in the crystal between GSH and 1-chloro-2,4-dinitrobenzene (CDNB). In that structure, the GSH-binding site (G-site) is occupied by the GSH moiety of the product in the same configuration as that of the enzyme-GSH complex, and the dinitrobenzene ring is anchored between the side chains of Tyr6, Leu12, His107, Met108, and Tyr115. This orientation suggested a distinct transition state that was substantiated from the structure of hGSTM1a-1a complexed with transition state analogue 1-S-(glutathionyl)-2,4,6-trinitrocyclohexadienate (Meisenheimer complex). Kinetic data for GSTM1a-1a indicate that kcat(CDNB) for the reaction is more than 3 times greater than kcat(FDNB), even though the nonenzymatic second-order rate constant is more than 50-fold greater for 1-fluoro-2,4-dinitrobenzene (FDNB), and the product is the same for both substrates. In addition, Km(FDNB) is about 20 times less than Km(CDNB). The results are consistent with a mechanism in which the formation of the transition state is rate-limiting in the nucleophilic aromatic substitution reactions. Data obtained with active-site mutants support transition states in which Tyr115, Tyr6, and His107 side chains are involved in the stabilization of the Meisenheimer complex via interactions with the ortho nitro group of CDNB or FDNB and provide insight into the means by which GSTs adapt to accommodate different substrates.  相似文献   

11.
Class I fructose-1,6-bisphosphate aldolases catalyze the interconversion between the enamine and iminium covalent enzymatic intermediates by stereospecific exchange of the pro(S) proton of the dihydroxyacetone-phosphate C3 carbon, an obligatory reaction step during substrate cleavage. To investigate the mechanism of stereospecific proton exchange, high resolution crystal structures of native and a mutant Lys(146) --> Met aldolase were solved in complex with dihydroxyacetone phosphate. The structural analysis revealed trapping of the enamine intermediate at Lys(229) in native aldolase. Mutation of conserved active site residue Lys(146) to Met drastically decreased activity and enabled trapping of the putative iminium intermediate in the crystal structure showing active site attachment by C-terminal residues 360-363. Attachment positions the conserved C-terminal Tyr(363) hydroxyl within 2.9A of the C3 carbon in the iminium in an orientation consistent with incipient re face proton transfer. We propose a catalytic mechanism by which the mobile C-terminal Tyr(363) is activated by the iminium phosphate via a structurally conserved water molecule to yield a transient phenate, whose developing negative charge is stabilized by a Lys(146) positive charge, and which abstracts the C3 pro(S) proton forming the enamine. An identical C-terminal binding mode observed in the presence of phosphate in the native structure corroborates Tyr(363) interaction with Lys(146) and is consistent with transient C terminus binding in the enamine. The absence of charge stabilization and of a mobile C-terminal catalyst explains the extraordinary stability of enamine intermediates in transaldolases.  相似文献   

12.
One of the most interesting features of terpene synthases is their ability to form multiple products with different carbon skeletons from a single prenyl diphosphate substrate. The maize sesquiterpene synthase TPS4, for example, produces a mixture of 14 different olefinic sesquiterpenes. To understand the complex TPS4 reaction mechanism, we modeled the active site cavity and conducted docking simulations with the substrate farnesyl diphosphate, several predicted carbocation intermediates, and the final reaction products. The model suggests that discrete steps of the reaction sequence are controlled by two different active site pockets, with the conformational change of the bisabolyl cation intermediate causing a shift from one pocket to the other. Site-directed mutagenesis and measurements of mutant activity in the presence of (E,E)- and (Z,E)-farnesyl diphosphate as substrates were employed to test this model. Amino acid alterations in pocket I indicated that early steps of the catalytic process up to the formation of the monocyclic bisabolyl cation are probably localized in this compartment. Mutations in pocket II primarily inhibited the formation of bicylic compounds, suggesting that secondary cyclizations of the bisabolyl cation are catalyzed in pocket II.  相似文献   

13.
Várnai P  Richards WG  Lyne PD 《Proteins》1999,37(2):218-227
Aldose reductase (ALR2) has received considerable attention due to its possible link to long-term diabetic complications. Although crystal structures and kinetic data reveal important aspects of the reaction mechanism, details of the catalytic step are still unclear. In this paper a computer simulation study is presented that utilizes the hybrid quantum mechanical and molecular mechanical (QM-MM) potential to elucidate the nature of the hydride and proton transfer steps in the reduction of D-glyceraldehyde by ALR2. Several reaction pathways were investigated in two models with either Tyr48 or protonated His110+ acting as the potential proton donor in the active site. Calculations show that the substrate binds to ALR2 through hydrogen bonds in an orientation that facilitates the stereospecific catalytic step in both models. It is established that in the case that His110 is present in the protonated form in the native complex, it is the energetically favored proton donor compared with Tyr48 in the active pocket with neutral His110. The reaction mechanisms in the different models are discussed based on structural and energetic considerations.  相似文献   

14.
Prenylated quinones, especially menaquinones, have significant physiological activities, but are arduous to synthesize efficiently. Due to the relaxed aromatic substrate specificity and prenylation regiospecificity at the ortho- site of the phenolic hydroxyl group, the aromatic prenyltransferase NovQ from Streptomyces may be useful in menaquinone synthesis from menadione. In this study, NovQ was overexpressed in Pichia pastoris. After fermentation optimization, NovQ production increased by 1617%. Then the different effects of metal ions, detergents and pH on the activity of purified NovQ were investigated to optimize the prenylation reaction. Finally, purified NovQ and cells containing NovQ were used for menadione prenylation in vitro and in vivo, respectively. Menaquinone-1 (MK-1) was detected as the only product in vitro with γ,γ-dimethylallyl pyrophosphate and menadione hydroquinol substrates. MK-3 at a concentration of 90.53 mg/L was detected as the major product of whole cell catalysis with 3-methyl-2-buten-1-ol and menadione hydroquinol substrates. This study realized whole cell catalysis converting menadione to menaquinones.  相似文献   

15.
P Canioni  P J Cozzone 《Biochimie》1979,61(3):343-354
The low-field portion of the 360 MHz proton N.M.R. spectrum of native porcine pancreatic colipase has been studied as a function of pH over the pH range 2-12. Resonances associated with the 26 protons of the aromatic rings of the two histidines, two phenylalanines and three tyrosines have been identified and tentatively assigned to specific residues. Titrations of pH yielded apparent pKa's of 7.9, 6.9, 10.4, 10.3 and 11.3 for His I (His 30), His II (His 86), Tyr I (Tyr 56 or 57), Tyr II (Tyr 56 or 57) and Tyr III (Tyr 53) respectively (tentative assignments). The high pKa value of His 30 is attributed to the vicinity of Asp 31. The mobility of the aromatic ring of Tyr 53 is hindered and an upper bound of 500 s-1 on the rate of rotation can be estimated. The aromatic rings of the 2 other tyrosine residues and of the 2 phenylalanine residues can rotate freely on the N.M.R. time scale. The study of perturbations in titration profiles and chemical shift values reveals a specific interaction of His 86 with Tyr I and, to a lesser extent, Tyr II. The existence of this interaction indicates that the protein folding brings in close spatial vicinity two distant regions of the covalent structure to form a "hydrophobic-aromatic" site which might be involved in the binding of bile salt micelles to pancreatic colipase.  相似文献   

16.
General thermodynamic calculations using the semiempiric PM3 method have led to the conclusion that prenyldiphosphate converting enzymes require at least one divalent metal cation for the activation and cleavage of the diphosphate–prenyl ester bond, or they must provide structural elements for the efficient stabilization of the intermediate prenyl cation. The most important common structural features, which guide the product specificity in both terpene synthases and aromatic prenyl transferases are aromatic amino acid side chains, which stabilize prenyl cations by cation–π interactions. In the case of aromatic prenyl transferases, a proton abstraction from the phenolic hydroxyl group of the second substrate will enhance the electron density in the phenolic ortho-position at which initial prenylation of the aromatic compound usually occurs.A model of the structure of the integral transmembrane-bound aromatic prenyl transferase UbiA was developed, which currently represents the first structural insight into this group of prenylating enzymes with a fold different from most other aromatic prenyl transferases. Based on this model, the structure–activity relationships and mechanistic aspects of related proteins, for example those of Lithospermum erythrorhizon or the enzyme AuaA from Stigmatella aurantiaca involved in the aurachin biosynthesis, were elucidated. The high similarity of this group of aromatic prenyltransferases to 5-epi-aristolochene synthase is an indication of an evolutionary relationship with terpene synthases (cyclases). This is further supported by the conserved DxxxD motif found in both protein families. In contrast, there is no such relationship to the aromatic prenyl transferases with an ABBA-fold, such as NphB, or to any other known family of prenyl converting enzymes. Therefore, it is possible that these two groups might have different evolutionary ancestors.  相似文献   

17.
Five fungal genomes from the Ascomycota (sac fungi) were found to contain a gene with sequence similarity to a recently discovered small group of bacterial prenyltransferases that catalyze the C-prenylation of aromatic substrates in secondary metabolism. The genes from Aspergillus terreus NIH2624, Botryotinia fuckeliana B05.10 and Sclerotinia sclerotiorum 1980 were expressed in Escherichia coli, and the resulting His8-tagged proteins were purified and investigated biochemically. Their substrate specificity was found to be different from that of any other prenyltransferase investigated previously. Using 2,7-dihydroxynaphthalene (2,7-DHN) and dimethylallyl diphosphate as substrates, they catalyzed a regiospecific Friedel-Crafts alkylation of 2,7-DHN at position 3. Using the enzyme of A. terreus, the Km values for 2,7-DHN and dimethylallyl diphosphate were determined as 324 ± 25 μm and 325 ± 35 μm, respectively, and kcat as 0.026 ± 0.001 s−1. A significantly lower level of prenylation activity was found using dihydrophenazine-1-carboxylic acid as aromatic substrate, and only traces of products were detected with aspulvinone E, flaviolin, or 4-hydroxybenzoic acid. No product was formed with l-tryptophan, l-tyrosine, or 4-hydroxyphenylpyruvate. The genes for these fungal prenyltransferases are not located within recognizable secondary metabolic gene clusters. Their physiological function is yet unknown.  相似文献   

18.
The in vitro and in vivo metabolism of monofluoroanilines was investigated. Special attention was focused on the regioselectivity of the aromatic hydroxylation by cytochromes P-450 and the mechanism by which this reaction might proceed. The results clearly demonstrate that the in vitro and in vivo regioselectivity of the aromatic hydroxylation by cytochromes P-450 is dependent on the fluoro-substituent pattern of the aromatic aniline-ring. Results from experiments with liver microsomes from differently pretreated rats demonstrate that the observed regioselectivity for the aromatic hydroxylation is not predominantly determined by the active site of the cytochromes P-450. To investigate the underlying reason for the observed regioselectivity, semi-empirical molecular orbital calculations were performed. Outcomes of these calculations show that neither the frontier orbital densities of the LUMO/LUMO + 1 (lowest unoccupied molecular orbital) of the monofluoroanilines nor the spin-densities in their NH. radicals can explain the observed regioselectivities. The frontier orbital densities of the HOMO/HOMO - 1 (highest occupied molecular orbital) of the monofluoroanilines however, qualitatively correlate with the regioselectivity of the aromatic hydroxylation. Based on these results it is concluded that the cytochrome P-450 dependent aromatic hydroxylation of monofluoroanilines does not proceed by hydrogen or electron abstraction from the aniline substrate to give an aniline-NH. radical. The results rather suggest that cytochrome P-450 catalyzed aromatic hydroxylation of monofluoroanilines proceeds by an electrophilic attack of the (FeO)3+ species of cytochrome P-450 on a specific carbon atom of the aromatic aniline-ring.  相似文献   

19.
The crystal structure of Bacillus subtilis thiamin phosphate synthase complexed with the reaction products thiamin phosphate and pyrophosphate has been determined by multiwavelength anomalous diffraction phasing techniques and refined to 1.25 A resolution. Thiamin phosphate synthase is an alpha/beta protein with a triosephosphate isomerase fold. The active site is in a pocket formed primarily by the loop regions, residues 59-67 (A loop, joining alpha3 and beta2), residues 109-114 (B loop, joining alpha5 and beta4), and residues 151-168 (C loop, joining alpha7 and beta6). The high-resolution structure of thiamin phosphate synthase complexed with its reaction products described here provides a detailed picture of the catalytically important interactions between the enzyme and the substrates. The structure and other mechanistic studies are consistent with a reaction mechanism involving the ionization of 4-amino-2-methyl-5-hydroxymethylpyrimidine pyrophosphate at the active site to give the pyrimidine carbocation. Trapping of the carbocation by the thiazole followed by product dissociation completes the reaction. The ionization step is catalyzed by orienting the C-O bond perpendicular to the plane of the pyrimidine, by hydrogen bonding between the C4' amino group and one of the terminal oxygen atoms of the pyrophosphate, and by extensive hydrogen bonding and electrostatic interactions between the pyrophosphate and the enzyme.  相似文献   

20.
In this article, we consider, in detail, the second half-cycle of the six-electron nitrite reduction mechanism catalyzed by cytochrome c nitrite reductase. In total, three electrons and four protons must be provided to reach the final product, ammonia, starting from the HNO intermediate. According to our results, the first event in this half-cycle is the reduction of the HNO intermediate, which is accomplished by two PCET reactions. Two isomeric radical intermediates, HNOH? and H2NO?, are formed. Both intermediates are readily transformed into hydroxylamine, most likely through intramolecular proton transfer from either Arg114 or His277. An extra proton must enter the active site of the enzyme to initiate heterolytic cleavage of the N–O bond. As a result of N–O bond cleavage, the H2N+ intermediate is formed. The latter readily picks up an electron, forming H2N+?, which in turn reacts with Tyr218. Interestingly, evidence for Tyr218 activity was provided by the mutational studies of Lukat (Biochemistry 47:2080, 2008), but this has never been observed in the initial stages of the overall reduction process. According to our results, an intramolecular reaction with Tyr218 in the final step of the nitrite reduction process leads directly to the final product, ammonia. Dissociation of the final product proceeds concomitantly with a change in spin state, which was also observed in the resonance Raman investigations of Martins et al. (J Phys Chem B 114:5563, 2010).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号