首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
LncRNAs play a pivotal role in the regulation of epigenetic modification, cell cycle, differentiation, proliferation, migration and other physiological activities. In particular, considerable studies have shown that the aberrant expression and dysregulation of lncRNAs are widely implicated in cancer initiation and progression by acting as tumour promoters or suppressors. Hippo signalling pathway has attracted researchers’ attention as one of the critical cancer‐related pathways in recent years. Increasing evidences have demonstrated that lncRNAs could interact with Hippo cascade and thereby contribute to acquisition of multiple malignant hallmarks, including proliferation, metastasis, relapse and resistance to anti‐cancer treatment. Specifically, Hippo signalling pathway is reported to modulate or be regulated by widespread lncRNAs. Intriguingly, certain lncRNAs could form a reciprocal feedback loop with Hippo signalling. More speculatively, lncRNAs related to Hippo pathway have been poised to become important putative biomarkers and therapeutic targets in human cancers. Herein, this review focuses on the crosstalk between lncRNAs and Hippo pathway in carcinogenesis, summarizes the comprehensive role of Hippo‐related lncRNAs in tumour progression and depicts their clinical diagnostic, prognostic or therapeutic potentials in tumours.  相似文献   

8.
The Spectrin cytoskeleton is known to be polarised in epithelial cells, yet its role remains poorly understood. Here, we show that the Spectrin cytoskeleton controls Hippo signalling. In the developing Drosophila wing and eye, loss of apical Spectrins (alpha/beta‐heavy dimers) produces tissue overgrowth and mis‐regulation of Hippo target genes, similar to loss of Crumbs (Crb) or the FERM‐domain protein Expanded (Ex). Apical beta‐heavy Spectrin binds to Ex and co‐localises with it at the apical membrane to antagonise Yki activity. Interestingly, in both the ovarian follicular epithelium and intestinal epithelium of Drosophila, apical Spectrins and Crb are dispensable for repression of Yki, while basolateral Spectrins (alpha/beta dimers) are essential. Finally, the Spectrin cytoskeleton is required to regulate the localisation of the Hippo pathway effector YAP in response to cell density human epithelial cells. Our findings identify both apical and basolateral Spectrins as regulators of Hippo signalling and suggest Spectrins as potential mechanosensors.  相似文献   

9.
姚传波  周鑫  陈策实  雷群英 《遗传》2017,39(7):617-629
Hippo信号通路是调控器官大小和肿瘤发生发展的关键通路,近年来受到广泛的关注。TAZ/YAP作为哺乳动物中Hippo信号通路两个核心下游效应分子,通过Hippo信号通路依赖性和非依赖性的机制受到细胞内外信号的严密调控。除了参与正常乳腺组织发育,Hippo信号通路还在人乳腺癌细胞的增殖、分化、凋亡、迁移、侵袭、上皮-间质转化和干性维持等多个过程中起着关键性作用。本文总结了Hippo信号通路的调控机制和调节信号,阐述了Hippo信号通路异常在乳腺癌发生发展中的作用,并讨论了其在乳腺癌中作为治疗靶点的临床策略。  相似文献   

10.
11.
Bladder cancer (BC) is one of the most common cancers worldwide with a high progression rate and poor prognosis. The Hippo signalling pathway is a conserved pathway that plays a crucial role in cellular proliferation, differentiation and apoptosis. Furthermore, dysregulation and/or malfunction of the Hippo pathway is common in various human tumours, including BC. In this review, an overview of the Hippo pathway in BC and other cancers is presented. We focus on recent data regarding the Hippo pathway, its network and the regulation of the downstream co‐effectors YAP1/TAZ. The core components of the Hippo pathway, which induce BC stemness acquisition, metastasis and chemoresistance, will be emphasized. Additional research on the Hippo pathway will advance our understanding of the mechanism of BC as well as the development and progression of other cancers and may be exploited therapeutically.  相似文献   

12.
顾远  张雷  余发星 《遗传》2017,39(7):588-596
肠道是人体最重要的消化器官之一,急慢性肠炎、肠道肿瘤等肠道疾病严重威胁着人类的健康,因此对肠道生理及病理机制的研究具有重要的科学意义及临床价值。Hippo信号通路在细胞增殖与分化、组织损伤再生、肿瘤发生和发展过程中起重要作用,参与肠道中众多生理及病理进程的调控。本文结合近年来肠道相关Hippo信号通路的研究进展,对该领域的前沿信息进行概括总结,重点阐述了Hippo信号在肠稳态、再生与癌变过程中的作用,并在此基础上展望了肠道中Hippo信号通路研究的前景及潜在的临床价值。  相似文献   

13.
The transition of testicular Sertoli cells (Sc) from a proliferative state during infancy to a non proliferative functionally mature state at the onset of puberty is essential for proper spermatogenic progression. The Hippo signaling pathway is a conserved growth control pathway that has been shown to play a crucial role in regulating proliferation and differentiation of different cell types. However, the expression pattern of the pathway components relative to proliferative infant Sc and functionally mature pubertal Sc is not known. In this study, we show that the Hippo pathway components are differentially expressed in infant and pubertal rat Sc. Interestingly, Hippo transducer- YAP was found to be significantly up-regulated in pubertal Sc as compared to infant Sc. Follicle stimulating hormone (FSH) was found to up-regulate Yap expression in pubertal Sc but not in infant Sc. Moreover, FSH induced the phosphorylation of YAP at Ser 127 residue (which is associated with its inactivation) in pubertal Sc. This indicated negative regulation of YAP by FSH mediated signaling in pubertal Sc. Our results demonstrated the differential expression of Hippo pathway genes in infant and pubertal Sc and also established an important role of FSH in regulating YAP expression and phosphorylation in Sc.  相似文献   

14.
15.
Large intergenic noncoding RNA regulator of reprogramming (Linc-RoR) was first identified as a regulator to increase the emergence of induced pluripotent stem cells through reprogramming differentiated cells and is abnormal expression in a variety of malignant tumors. However, the function of Linc-RoR in pancreatic cancer progression needs further clarification. The data from this study demonstrated that Linc-RoR knockdown suppressed cell proliferative capacity and colony formation, while Linc-RoR overexpression promoted these behaviors. In particular, Linc-RoR overexpression promoted the level of mesenchymal markers, inhibited the expression of epithelial markers, as well as enhanced pancreatic cancer cells migration and invasion, whereas Linc-RoR knockdown inhibited the expression of mesenchymal markers, promoted the expression of epithelial markers, as well as weakened pancreatic cancer cells migration and invasion. Further study revealed that Linc-RoR knockdown brought about a significant fall in YAP phosphorylation and a rise in total YAP, while Linc-RoR overexpression produced the opposite results. Specifically, Linc-RoR promoted YAP in the cytoplasm into the nucleus. Taken together, we conjectured that Linc-RoR promoted proliferation, migration, and invasion of pancreatic cancer cells by activating the Hippo/YAP pathway. YAP might be an underlying target of Linc-RoR and mediate epithelial-mesenchymal transition (EMT) in pancreatic cancer (PC); thus, Linc-RoR might be a very meaningful biomarker for PC.  相似文献   

16.
17.
The Hippo pathway plays a crucial role in controlling organ size by inhibiting cell proliferation and promoting cell death. Recent findings implicate that this pathway is involved in the process of intestinal regeneration and tumorigenesis. Here we summarize current studies for the function of the Hippo signaling pathway in intestinal homeostasis, regeneration and tumorigenesis, and the crosstalk between the Hippo signaling pathway and other major signaling pathways, i.e. Wnt, Notch and Jak/Stat signaling pathways in intestinal compartment.  相似文献   

18.
王永煜  余薇  周斌 《遗传》2017,39(7):576-587
心血管疾病已成为中国乃至全球首位死亡原因,探索心血管系统发育及调控异常的原因及相关机制可以为心血管疾病的预防和治疗提供重要的科学依据。Hippo信号通路是新近发现的在调节器官大小、细胞增殖及凋亡、干细胞命运等方面具有重要功能的一条信号通路。Hippo信号通路的不同成分参与心脏血管的发育和心血管细胞增殖、分化等功能调控,影响损伤后修复及再生等过程,该通路调节异常可引起心血管疾病,如心梗、心肌肥大、血管内膜增生、动脉硬化等。本文综述了Hippo信号通路对心血管系统发育和疾病调控的相关研究及最新进展,以期为Hippo通路在心血管疾病的发病机制及临床转化研究提供潜在的理论基础。  相似文献   

19.
Hippo通路与肿瘤相关性研究进展   总被引:1,自引:0,他引:1  
Hippo通路对控制组织器官大小以及细胞增殖、凋亡有着重要的调节作用。研究表明,Yes相关蛋白作为Hippo通路转录共激活因子,参与了肿瘤的发生发展过程,其过表达可促进细胞的恶性转化。研究Hippo通路在癌症发生发展中的作用及机制将为肿瘤的预防和治疗提供新的思路。  相似文献   

20.
ANKHD1 is a multiple ankyrin repeat containing protein, recently identified as a novel member of the Hippo signaling pathway. The present study aimed to investigate the role of ANKHD1 in DU145 and LNCaP prostate cancer cells. ANKHD1 and YAP1 were found to be highly expressed in prostate cancer cells, and ANKHD1 silencing decreased cell growth, delayed cell cycle progression at the S phase, and reduced tumor xenograft growth. Moreover, ANKHD1 knockdown downregulated YAP1 expression and activation, and reduced the expression of CCNA2, a YAP1 target gene. These findings indicate that ANKHD1 is a positive regulator of YAP1 and promotes cell growth and cell cycle progression through Cyclin A upregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号