首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phenomenon whereby some plant species display a river corridor distribution pattern has long been recognized but is still poorly understood. The goals of this study were to supplement the list of river corridor plants for Central Europe, analyse their habitats and compare their ecological features with those of their widely distributed counterparts. The ATPOL (Atlas of Poland) database was used to compile a list of river corridor plants of Poland and calculate their river corridor-specificity indices (RCSIs). The Ellenberg indicator values, dispersal modes and life forms of river corridor and widely distributed species were compared using generalized linear mixed models (GLMMs). Eighty-five species were classified as river corridor species. The most numerous habitat groups were meadow species (19%), wet-habitat therophytes (15%), riverside tall herbs (13%) and species of dry, sandy soils (12%). These species had mostly requirements for a higher temperature and alkalinity than widespread species. Among river corridor plants, there were a few eurytopic species. Corridor species had usually only one life form and less dispersal modes than widespread species. Hence, specific demands of corridor plants and lower phenotypic plasticity may explain their restricted geographical distribution. The definition of the river corridor plant species needs modification.  相似文献   

2.
Regularly managed electric power line corridors may provide habitats for both early-successional grassland plant species and disturbance-dependent alien plant species. These habitats are especially important in urban areas, where they can help conserve native grassland species and communities in urban greenspace. However, they can also provide further footholds for potentially invasive alien species that already characterize urban areas. In order to implement power line corridors into urban conservation, it is important to understand which environmental conditions in the corridors favor grassland species and which alien species. Likewise it is important to know whether similar environmental factors in the corridors control the species composition of the two groups. We conducted a vegetation study in a 43 kilometer long urban power line corridor network in south-western Finland, and used generalized linear models and distance-based redundancy analysis to determine which environmental factors best predict the occurrence and composition of grassland and alien plant species in the corridors. The results imply that old corridors on dry soils and steep slopes characterized by a history as open areas and pastures are especially suitable for grassland species. Corridors suitable for alien species, in turn, are characterized by productive soils and abundant light and are surrounded by a dense urban fabric. Factors controlling species composition in the two groups are somewhat correlated, with the most important factors including light abundance, soil moisture, soil calcium concentration and soil productivity. The results have implications for grassland conservation and invasive alien species control in urban areas.  相似文献   

3.
Jaan Liira  Taavi Paal 《Plant Ecology》2013,214(3):455-470
Woody corridors in fragmented landscapes have been proposed as alternative habitats for forest plants, but the great variation in species-specific responses blurs the overall assessment. The aim of this study was to estimate the dispersal success of forest-dwelling plants from a stand into and along an attached woody corridor, and to explain the observed patterns from the point of view of species’ dispersal traits and corridor properties. We sampled 47 forest–corridor transects in the agricultural landscapes of southeastern Estonia. Regionally common forest-dwelling species (observed in at least 10 % of seed-source forests) were classified on the basis of their ecological response profile—forest-restricted species (F-type) and forest-dwelling generalists (G-type). Species richness and the proportion of F-type species decreased sharply from the seed-source forest core to the forest edge and to the first 10–15 m of the corridor, while G-type species richness remained constant throughout the transect. Corridor structure had a species-specific effect—F species were promoted by old (≥50 years) and wide (≥10 m) corridors, while G species were supported by young and narrow corridors with ditch-related soil disturbances. Moderate shade (canopy cover <75 %) was optimal for all forest-dwelling species. Large dispersule weight, and not seed weight, dispersal vector or Ellenberg’s indicator values, was the trait that differentiated F species from G species. We conclude that most woody corridors are only dispersal stepping-stone habitats for habitat generalist species, and not for specialists. Only century old corridors can relieve the dispersal limitation of forest-restricted species.  相似文献   

4.
River valleys have been subjected to human-induced changes for centuries, but they are still considered regional hotspots of biodiversity. In central Europe, some vascular plant species demonstrate confinement to the corridors of large rivers. They are termed river corridor plants (RCPs). RCPs are an important component of regional biodiversity and include a high proportion of threatened species, thus they deserve attention. Here we examine: (1) the detailed distribution pattern of RCPs within a river valley, (2) the habitat preferences of RCP species, and (3) the correlation between the richness of RCP species and selected variables. The studied variables include: river bed proximity, distance from the river mouth, floodplain coverage, richness of native, red listed and invasive species, and number of habitats considered to be of Europaean Community importance. Surveys were conducted in 10 transects running perpendicularly to the San River bed (Poland, central Europe). Each transect was divided into 14 plots (1 km × 1 km). In each plot, the site locations of RCPs as well as their habitats were recorded. The occurrence of all vascular plant species in a particular plot was also noted. The richness and abundance of RCP species depended on the distance from the river and the floodplain coverage in a plot. The plots located in the vicinity of the river were the richest in RCP species and usually harbored the largest number of native, red-listed and invasive species. They were also characterized by the largest number of habitats considered to be of importance to the European Community. RCP species differed in the degree of confinement to habitats regarded as typical for them. Some of the RCP species were recorded only within typical habitats while others were found in several different types of habitats, including anthropogenic ones. Knowledge concerning the RCP distribution pattern and its correlates can make restoration initiatives in river valleys more effective. While implementing conservation measures in river valleys, one should keep in mind that: (1) hotspots of RCP and invasive species spatially overlap and (2) anthropogenic linear elements occurring within river valleys constitute important habitats for some RCP species.  相似文献   

5.
An important characteristic of many wetland plants in semi-arid regions is their capacity to withstand fluctuations between extended dry phases and floods. However, anthropogenic river regulation can reduce natural flow variability in riverine wetlands, causing a decline in the frequency and duration of deep flooding as well as extended droughts, and an increase in shallow flooding and soil saturation. Our aim in this paper was to use an experimental approach to examine whether reductions in flooding and drought disadvantage species adapted to both these extremes, and favours those with water requirements that match the new regime of frequent low-level flooding. We compared the growth characteristics and biomass allocation of three native Australian aquatic macrophytes (Pseudoraphis spinescens, Juncus ingens and Typha domingensis), which co-occur at Barmah Forest, south-eastern Australia, under three water treatments: drought, soil saturation and deep flooding. The responses of species to the treatments largely reflected changes in their relative abundance at Barmah Forest since river regulation. Typha domingensis, which has remained uncommon, performed relatively poorly in all treatments, while J. ingens, which has increased its range, exhibited more vigorous growth under soil saturation. Pseudoraphis spinescens, which was once widespread but has declined markedly in its distribution, grew strongly under all water treatments. These findings suggest that a return to more natural, variable river flow regimes can potentially be an important conservation and restoration strategy in ecosystems characterised by species that have adaptations to extreme hydrological growing conditions.  相似文献   

6.
Summary Grazing and flooding may potentially interact in particular habitats of many grassland regions around the world. We tested the hypothesis that grazing and flooding induce different and largely opposed allocation responses in individual plants. As a result, their combined effect on plant growth would be negative. We studied the response of three grass species from the Serengeti ecosystem (Tanzania) to the effects of flooding and clipping. Plants under the combined effect of flooding and clipping had lower growth rates than plants growing under the effect of either of the two factors individually. Plants under flooding grew taller and allocated more resources to stem growth than controls; for two of the three species, flooded plants also generated a new root system above soil level. All these morphological and physiological responses conflict with the ability of a plant to respond to defoliation with minimum reduction in growth rates. The three species showed a response to flooding reflecting their distribution ranges in the field: the species from the most flood-prone habitat showed a positive effect of flooding on growth, whereas the species from dry uplands showed a strong negative effect of flooding. Flood-tolerant species were taller and less tolerant of clipping than flooding sensitive species. Our results suggest that, in ecological time, individuals subjected to both flooding and grazing have their growth reduced to a greater extent than by either of the two factors acting individually, whereas in evolutionary time, species adapted to flooding are poor grazing tolerators and species adapted to grazing are poor flooding tolerators.  相似文献   

7.
Despite widespread acknowledgment that disturbance favors invasion, a hypothesis that has received little attention is whether non-native invaders have greater competitive effects on native plants in undisturbed habitats than in disturbed habitats. This hypothesis derives from the assumption that competitive interactions are more persistent in habitats that have not been recently disturbed. Another hypothesis that has received little attention is whether the effects of non-native plants on native plants vary among habitats that differ in soil fertility. We documented habitat occurrences of 27 non-native plant species and 377 native plant species encountered in numerous study plots in a broad sample of ecosystems in MS (USA). We then reviewed experimental and regression-based field studies in the scientific literature that specifically examined potential competitive (or facilitative) effects of these non-native species on native species and characterized the habitats in which effects were the greatest. As expected, the non-native species examined here in general were more likely to be associated with severely disturbed habitats than were the native species as a group. In contrast, we found that non-native species with competitive effects on natives were more likely to be associated with undisturbed habitats than with disturbed habitats. When longer term studies involving more resident species were given more weight in the analysis, competitive effects appeared to be the greatest in undisturbed habitats with low soil fertility. These results reinforce the notion that invasion is not synonymous with impact. The environmental conditions that promote invasion may limit competitive effects of invaders on native plant communities following invasion.  相似文献   

8.
Resource pulses in the world''s hot deserts are driven largely by rainfall and are highly variable in both time and space. However, run-on areas and drainage lines in arid regions receive more water more often than adjacent habitats, and frequently sustain relatively high levels of primary productivity. These landscape features therefore may support higher biotic diversity than other habitats, and potentially act as refuges for desert vertebrates and other biota during droughts. We used the ephemeral Field River in the Simpson Desert, central Australia, as a case study to quantify how resources and habitat characteristics vary spatially and temporally along the riparian corridor. Levels of moisture and nutrients were greater in the clay-dominated soils of the riverine corridor than in the surrounding sand dunes, as were cover values of trees, annual grasses, other annual plants and litter; these resources and habitat features were also greater near the main catchment area than in the distal reaches where the river channel runs out into extensive dune fields. These observations confirm that the riverine corridor is more productive than the surrounding desert, and support the idea that it may act as a refuge or as a channel for the ingress of peri-desert species. However, the work also demonstrates that species diversity of invertebrates and plants is not higher within the river corridor; rather, it is driven by rainfall and the accompanying increase in annual plants following a rain event. Further research is required to identify the biota that depend upon these resource pulses.  相似文献   

9.
In riparian areas, the distribution patterns of plant species are generally considered to depend on their flooding tolerance. Areas around river confluences are known to experience frequent and/or strong flooding events and provide diverse habitats for plants in riparian areas. However, the degree to which hydrophilic vegetation types increase their distribution around confluences may depend on their flooding tolerance. To test this hypothesis, we compared patch numbers and total areas of ten vegetation groups between confluences and single-flow areas. The vegetation groups were classified on the basis of life form and morphology of dominant species. Additionally, we compared total area of natural bare ground (an index of flooding disturbance) between confluences and single-flow areas. We found that patch numbers of annual grass, forb, and vine, perennial grass and forb, and riparian forest vegetation, as well as total areas of annual forb and vine, perennial grass and forb, bamboo and riparian forest vegetation, and natural bare ground, were greater around river confluences than in single-flow areas. On the other hand, patch numbers of shrub vegetation and total areas of annual grass, perennial vine, willow, and shrub vegetation decreased around confluences. These results suggest that confluences enhance diverse, but not all, types of habitat for hydrophilic vegetation. Thus, river confluences are a key element in maintaining diverse riparian vegetation.  相似文献   

10.
生态廊道具有维持或恢复生态连通性的功能,对于连接生物栖息地、保护物种多样性具有重要意义。现有的生态廊道研究主要集中于陆地,而海洋生态系统具有水体广泛连通、缺乏直观的景观斑块等特点,导致海洋生态廊道的研究成为长期以来的科学难题。以栖息地位于厦门湾的国家一级保护动物中华白海豚(Sousa chinensis)为对象,尝试基于物种分布模型和最小成本路径分析法建立海洋生态廊道的识别方法。研究采用物种分布模型识别厦门湾内中华白海豚的适宜生境分布区和节点,并利用模型产出的生境适宜性结果生成海洋中的阻力表面,模拟计算节点与节点间在阻力表面上的最小成本路径,从而生成物种扩散网络。研究结果显示,厦门湾中华白海豚的分布主要受到航道距离、到岸线距离和叶绿素浓度三项因素的影响,主要适宜生境位于西海域至九龙江口和大嶝海域。潜在的核心生态廊道面积93.19km2,次级生态廊道面积170.41km2,九龙江口-鼓浪屿南侧-黄厝-大小嶝岛沿线可能是厦门湾中华白海豚的主要迁移路线。在此基础上,从用海空间重叠和桥梁影响两方面开展了人类活动对廊道的干扰评估。评估结果显示旅游活动和...  相似文献   

11.
The long-term persistence of populations and species depends on the successful recruitment of individuals. The generative recruitment of plants may be limited by a lack of suitable germination and establishment conditions. Establishment limitation may especially be caused by the competitive effect of surrounding dense vegetation, which is believed to restrict the recruitment success of many plant species to small open patches (‘safe sites’). We conducted experiments to clarify the roles of germination and seedling establishment as limiting processes in the recruitment of Juncus atratus Krock., a rare and threatened herbaceous perennial river corridor plant in Central Europe. Light intensity had a positive effect on germination. However, some seedlings emerged even in total darkness and the germination rate at 1% light intensity was more than half of that at 60% light intensity. Seedling establishment in the field after 10 weeks was 30% on bare ground, but it was close to zero in grassland. Establishment in the growth chamber after 8 weeks was close to 75% for seedlings that germinated underwater, but only about 35% for seedlings that germinated afloat. Furthermore, establishment decreased with flooding duration on bare ground, but increased with flooding duration in grassland. These data indicate that establishment, rather than germination, is a critical life stage in Central European populations of J. atratus. They furthermore indicate that the competition of surrounding vegetation for water limits seedling establishment under field conditions without flooding, largely restricting establishment success to bare ground habitats. In contrast, grassland is more suitable for the recruitment of J. atratus than bare ground under prolonged flooding. Grassland may facilitate the establishment of J. atratus seedlings during long-lasting floods by supplying oxygen to the soil through aerenchyma. The shift from competition to facilitation in grassland occurred after 30 days of flooding, i.e. within the ontogeny of individual plants. The specific recruitment requirements of J. atratus may be a main cause of its rarity in modern Central Europe. In order to prevent regional extinction of J. atratus, we suggest maintaining or re-establishing natural hydrodynamics in the species’ habitats.  相似文献   

12.

Background and Aims

Plants need different survival strategies in habitats differing in hydrological regimes. This probably has consequences for vegetation development when former floodplain areas that are currently confronted with soil flooding only, will be reconnected to the highly dynamical river bed. Such changes in river management are increasingly important, especially at locations where increased water retention can prevent flooding events in developed areas. It is therefore crucial to determine the responses of plant species from relatively low-dynamic wetlands to complete submergence, and to compare these with those of species from river forelands, in order to find out what the effects of such landscape-scale changes on vegetation would be.

Methods

To compare the species'' tolerance to complete submergence and their acclimation patterns, a greenhouse experiment was designed with a selection of 19 species from two contrasting sites: permanently wet meadows in a former river foreland, and frequently submerged grasslands in a current river foreland. The plants were treated with short (3 weeks) and long (6 weeks) periods of complete submergence, to evaluate if survival, morphological responses, and changes in biomass differed between species of the two habitats.

Key Results

All tested species inhabiting river forelands were classified as tolerant to complete submergence, whereas species from wet meadows showed either relatively intolerant, intermediate or tolerant responses. Species from floodplains showed in all treatments stronger shoot elongation, as well as higher production of biomass of leaves, stems, fine roots and taproots, compared with meadow species.

Conclusions

There is a strong need for the creation of temporary water retention basins during high levels of river discharge. However, based on the data presented, it is concluded that such reconnection of former wetlands (currently serving as meadows) to the main river bed will strongly influence plant species composition and abundance.Key words: Acclimation, biomass allocation, climate, complete submergence, flooding tolerance, retention areas, shoot elongation, soil flooding, waterlogging, wetland species  相似文献   

13.
Width is an essential element of the spatial configuration of riparian forests and may be fundamental in determining their corridor function. In the present study we tested the effect of forest width on floristic structure (tree species composition and diversity) in 15 fragments of riparian forest in an agricultural fragmented landscape of SE Brazil. All these fragments were chosen in a geomorphological homogeneous river reach under similar soil, topographic and human disturbance conditions in order to minimize the influence of these factors. The forest widths considered ranged from 30 to 650 m. The results showed that total species richness and climax species richness were significantly greater when we consider larger fragments, as has been observed in other studies. Nevertheless, species diversity and evenness were not significantly correlated with forest width. The analysis of species composition showed that the narrowest fragments were characterized by species well adapted to temporary flood conditions, while medium and wide fragments showed a composition typical of drier upland areas. Therefore, the effect of forest width on floristic structure appears to be more strongly linked to the effect of river floods in the case of the fragments studied. The existence in riparian corridors of a drier forest, in general richer and more diversified than the annually flooded forest, seems to favor the maintenance of regional species diversity in fragmented landscapes.  相似文献   

14.
Although more than 40% of Tanzania mainland is managed for nature conservation, protected areas are increasingly becoming isolated because of rapid habitat degradation in the matrix in between. Knowledge on corridors connecting the protected areas is urgently needed. We assessed the area between Saadani National Park and Wami‐Mbiki Wildlife Management Area, combining interviews about wildlife occurrences from 20 villages in the area with least‐cost landscape modelling with African elephants (Loxodonta africana) as the focal species. The interviews suggested that, in contrast to earlier assumptions, migration of elephants or the presence of one or more independent elephant populations still exists in the unprotected area between Saadani and Wami‐Mbiki. A combination of the interview results and multiple least‐cost models showed three corridors in the area. The corridor along the Wami river is the most important one, the area between Miono and Mandera was identified as an impeding zone. Management decisions on the wildlife corridors to be protected will require further in‐depth research in the three specified corridor zones. Apart from providing insights into elephant movement ecology, the approach may be useful for localizing corridors elsewhere in eastern Africa.  相似文献   

15.
Resistance to complete submergence was tested in three Rumex species that occur in the Dutch river forelands. The species differ in both habitat and life history characteristics. The annual or biennial R. maritimus and the biennial or short lived perennial R. palustris grow on frequently flooded mud flats of low elevation, while the perennial R. thyrsiflorus can be found on dykes and river dunes that are seldom flooded. The flooding characteristics of the habitats of the three species were determined. These data were used to design experiments to determine the survival and biomass development of the three species during submergence and the influence of plant size and light level on these parameters. It was shown in all three species that plants submerged during daytime were much more resistant to flooding than those submerged at night. This is most probably due to the generation of oxygen or carbohydrates by underwater photosynthesis. Mature plants of the three species showed higher survival after submergence than juvenile plants, which might be caused by higher carbohydrate levels in the taproots of mature plants. In addition, the three species clearly differed in survival and biomass development during submergence. Rumex thyrsiflorus , the species least subjected to flooding, is least tolerant to complete submergence. Rumex maritimus , which can avoid the floods by having a short life cycle, is less tolerant to submergence than R. palustris , which has to survive the floods as a vegetative plant. It was noted that some plants that survived the flooding period itself, still died in the following period of drained conditions, possibly due to post-anoxic injury.  相似文献   

16.
Landscape ecological networks (ENs) consist of landscape-scale conservation corridors that connect areas of high natural value within a production mosaic with protected areas (PAs). In South Africa, ENs have been implemented on a large spatial scale to offset the negative impacts of plantation forestry on indigenous grasslands. We focus on corridor width as a factor for conserving dung beetle and ant diversity within an EN. We also investigate the importance of natural environmental heterogeneity (elevation, vegetation type) and habitat quality (soil hardness, invasive alien plant density). We sampled dung beetles and ants in 30 corridors of different sizes, and at ten sites in a nearby PA. In addition, we also analysed dung beetles according to their feeding guild. Tunnelling dung beetle species richness increased with corridor width. Rolling dung beetle species richness was higher in the PA than in the corridors of the EN. The dung beetle assemblage within the EN differed from that within the PA. Corridors of various widths differed in ant composition but not in species richness. Furthermore, the PA and the EN differed in environmental variables, which contributed to differences in dung beetle species richness and assemblage composition. Within the EN, environmental heterogeneity across the landscape was more important than corridor width for driving species diversity of both dung beetles and ants. When planning future ENs, wide corridors (>280 m) that encompass as much natural heterogeneity across the landscape as possible will best conserve the range of local insect species.  相似文献   

17.
沿道路设置供野生动物迁徙、扩散和连接栖息地的廊道是应对道路干扰最有效的措施,科学选址则是野生动物廊道建设的前提,也是廊道研究的薄弱领域。以大熊猫廊道为例对野生动物廊道选址指标体系、方法和程序进行了探索,将栖息地特征、地形因素、植被可转化性、工程成本作为大熊猫廊道选址指标,基于Arcgis和栖息地格局、海拔、坡度、植被数据,为四川306省道椅子垭口段确定了两处大熊猫廊道位置,并用监测数据证明了所选位置具有较大的可行性和准确性。研究表明栖息地格局是廊道选址的重要基础,应侧重对地形因素的研究。研究为廊道选址方法和流程进行了示范,还对选址指标体系优化、提高选址的科学性进行了探讨,有助于推动野生动物廊道研究从理论探索走向实际应用。  相似文献   

18.
Anthropogenic habitat fragmentation typically precedes conservation planning; maintaining remaining linkages among core habitat areas can thus become a key conservation objective. Identifying linkages for dispersal and ensuring those linkages have long-term protection and management are challenging tasks for wildlife managers. These tasks can be especially daunting for smaller species with low mobility, termed corridor dwellers, which must maintain sustainable populations within corridors. Between May 2007 and June 2009, we collected occurrence locations for a corridor dweller, the Palm Springs pocket mouse (Perognathus longimembris bangsii), from museums, previous research, and our own field sampling. We used those data to model their suitable niche space and then identify suitable linkages between proposed conservation areas. We used a partitioned Mahalanobis D2 statistic to create a spatially explicit niche model describing the distribution of a suitable niche space, and we validated the model statistically, with live trapping and with burrowing owl (Athene cunnicularia) diets. Our model identified soil characteristics, topographic ruggedness, and vegetation as variables delimiting Palm Springs pocket mouse habitat; sand content of the soils was an especially important characteristic. Our historic distribution model identified 120,000–90,000 ha as historically potential Palm Springs pocket mouse habitat; roughly 39% of that has been lost to more recent development. Most of the remaining suitable habitat occurred in the northwestern portion of the valley. We modeled habitat within core reserves as well as within proposed linkages between those reserves as having high similarity to known occupied habitats. Live trapping in areas with high (≥0.95) Habitat Suitability Index (HSI) values resulted in captures at 66% of those locations and, along with burrowing owl diets, refined a qualitative model as to what constituted a suitable Palm Springs pocket mouse corridor. While most corridor analyses have focused on mobile species which may traverse corridors in hours, days, or weeks, linkages for corridor dwellers must include habitat for sustaining multi-generational populations. This requires evaluating whether continuous suitable habitat exists within proposed corridors. Our research demonstrates how niche modeling can provide a landscape-scale view of the distribution of suitable habitat to evaluate conservation objectives for connectivity. © 2011 The Wildlife Society.  相似文献   

19.
Data on the response of bird communities to surface mining and habitat modification are limited, with virtually no data examining the effects of mining on bird communities in and along riparian forest corridors. Bird community composition was examined using line transects from 1994 to 2000 at eight sites within and along a riparian forest corridor in southwestern Indiana that was impacted by an adjacent surface mining operation. Three habitats were sampled: closed canopy, riparian forest with no open water; fragmented canopy, riparian forest with flood plain oxbows; and reclaimed mined land with constructed ponds. Despite shifts in species composition, overall bird species richness, measured as the mean number of bird species recorded/transect route, did not differ among habitats and remained unchanged across years. More species were recorded solely on mined land than in either closed forest or forested oxbow habitats. Mined land provided stopover habitat for shorebirds and waterfowl not recorded in other habitats, and supported an assemblage of grassland-associated bird species weakly represented in the area prior to mining. A variety of wood warblers and other migrants were recorded in the forest corridor throughout the survey period, suggesting that, although surface mining reduced the width of the forest corridor, the corridor was still important habitat for movement of forest-dependent birds and non-resident bird species in migration. We suggest that surface mining and reclamation practices can be implemented near riparian forest and still provide for a diverse assemblage of bird species. These data indicate that even narrow (0.4 km wide) riparian corridors are potentially valuable in a landscape context as stopover habitats and routes of dispersal and movement of forest-dependent and migratory bird species.  相似文献   

20.
东北虎(Panthera tigris altaica)是现存5个虎亚种中体型最大者,其作为全球生物多样性保护的旗舰物种,在维持健康生态系统功能中占据不可替代的重要地位。近几十年来,由于东北虎栖息地受到人类活动强烈干扰,致使栖息地破碎化,主要栖息地孤立分布,呈现岛状,天然生态廊道消失殆尽,东北虎的保护面临巨大挑战。因此,确定东北虎关键栖息地,构建与恢复东北虎栖息地之间的生态廊道十分必要。本研究运用专家模型结合东北虎栖息地选择规律和栖息地特征,综合分析植被类型、国家级与省级自然保护区分布、地形因子以及人为干扰因子共7个主要影响因子;通过层次分析法(AHP)获得各影响因子的相对权重值,运用加权线性方程获得了东北虎潜在适宜栖息地,并确定了东北虎核心分布区以及分布区间的综合代价值。通过廊道设计模型(Linkage mapper)得到东北虎核心栖息地间的潜在生态廊道。结果得到了21条东北虎潜在生态廊道,对打通国内零星分布区,特别是张广才岭-完达山-老爷岭之间的迁移通道、扩大东北虎生存空间具有现实指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号