首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase catalyzes the oxidation of many prostaglandins at C-15, resulting in a subsequent reduction in their biological activity. We report the isolation of the cDNA for this enzyme. A human placental lambda gt11 cDNA library was screened using polyclonal antibodies prepared against the human placental enzyme. A 2.5-kilobase cDNA containing the entire coding region for the enzyme was isolated. The cDNA encodes for a protein of 266 amino acids with a calculated Mr of 28,975. Identification of the cDNA as that coding for 15-hydroxyprostaglandin dehydrogenase was based on the comparison of the deduced amino acid sequence with the amino acid sequence of two peptides, one from the rabbit lung enzyme and the other from the human placental enzyme. This cDNA hybridizes with two species of poly(A+) RNA isolated from human placenta: one of 3.4 kilobases and the other of 2.0 kilobases. Isolation of the cDNA for 15-hydroxyprostaglandin dehydrogenase should facilitate studies on the structure, function, and regulation of this enzyme.  相似文献   

2.
Glucose-6-phosphate dehydrogenase (G6PD) is an ubiquitous enzyme which by determining the NADPH level has a crucial role in NADPH-mediated reductive processes in all cells (1). The structural gene for G6PD, Gd, is X-linked in mammals and on the basis of its expression in many tissues, it can be regarded as a typical "housekeeping" gene (2). Over 300 variants of the protein are known, many of which have deficient enzyme activity. Nearly 100 of these variants are polymorphic in various populations (3). The mammalian enzyme is a homodimer or a homotetramer with a subunit molecular weight of approximately 56000 daltons (4). Here we report the isolation of cDNA clones from HeLa cells, SV40-transformed human fibroblasts, human placenta and human teratocarcinoma cell lines. These clones have enabled us to sequence the entire coding region of Gd. Thus, the entire amino acid sequence of human G6PD is provided for the first time. This work is the first step for structural analysis of G6PD variants and for an understanding of the biological features of this enzyme at the molecular level.  相似文献   

3.
N-Acetylneuraminic acid is a main constituent of glycoproteins and gangliosides. In many membrane-bound receptors it is the target for external stimuli. The key enzyme for its biosynthesis is the bifunctional enzyme UDP-N-acetyl-glucosamine-2-epimerase/N-acetylmannosamine kinase, catalysing the first two steps of the biosynthesis in the cytosol. The rat enzyme was previously isolated and characterised. In this report we present the corresponding human cDNA sequence, compare it with the primary structure of the rodent enzyme, and report the analysis of its expression in different human tissues and cell lines.  相似文献   

4.
Preparations of human leukocyte interferon obtained by multi-stage purification procedure exhibited ribonuclease activity with the optimum at pH 7.0--7.5. The enzyme possessed the endonuclease action mechanism. Most substances studied for their effect on the RNA-ase activity in human interferon preparations showed many of them to act on the enzyme in the same way as on other ribonucleases. However, dithioerythritie, a reducing agent for disulfide bounds, activated the ribonuclease in the interferon preparation, as distinct from the pancreatic ribonuclease, which was inhibited by this preparation. Patterns of protein and RNA-ase distribution were obtained by electrophoresis in polyacrylamide gel.  相似文献   

5.
P A Mallory  J Travis 《Biochemistry》1975,14(4):722-730
?An enzyme with proteolytic activity has been isolated from activated extracts of human pancreatic tissue. The purification procedure included salt fractionation followed by ion-exchange chromatography on SE-TSephadex C-25 and on DEAE-Sephadex A-50. The homogeneity of this enzyme, designated protease te, was demonstrated by disc electrophoresis and by sedimentation equilibrium centrifugation stidues. The homogeneous enzyme shows the ability to hydrolyze many of the conventional synthetic substrates used for the identification of elastase activity; however, it demonstrates no significant elastolytic activity. A comparison of human protease E with porcine elastase reveals a high degree of similarity between the two proteases with respect to inhibition by active-site directed peptide chloromethyl ketones, stability, decreased susceptibility to naturally occurring proteinase inhibitors, and specificity for synthetic substrates as well as several other physical properties. The major difference between human protease E and porcine elastase, other than the lack of elastolytic activity by human protease E, seems to be in the ionic character and the amino acid composition of these two proteins. Porcine elastase is a cationic enzyme, while human protease E appears to be anionic in nature. These dissimilarities concerning elastolytic activity and ionic character appear to be directly related.  相似文献   

6.
On the gastrointestinal bacteria related to nutrition, there have been many important publications. Recently, the present author has attempted further researches on Aerobacter mannanolyticus suzu-II, a strain in the type cultures collected by N. Inoue in this laboratory from human gastrointestinal tract, and the enzyme specificity was studied. The isolation of the “Konjac”mannan decomposing enzyme preparation was completely successful, and effects of carbon and nitrogen sources in Koser’s citrate medium on the enzyme formation were also confirmed. In the present paper, the results are described.  相似文献   

7.
Enzyme replacement therapy: conception,chaos and culmination   总被引:5,自引:0,他引:5  
Soon after the enzymatic defects in Gaucher disease and in Niemann-Pick disease were discovered, enzyme replacement or enzyme supplementation was proposed as specific treatment for patients with these and related metabolic storage disorders. While relatively straightforward in concept, successful implementation of this approach required many years of intensive effort to bring it to fruition. Procedures were eventually developed to produce sufficient quantities of the requisite enzymes for clinical trials and to target therapeutic enzymes to lipid-storing cells. These achievements led to the development of effective enzyme replacement therapy for patients with Gaucher disease and for Fabry disease. These demonstrations provide strong incentive for the application of this strategy for the treatment of many human disorders of metabolism.  相似文献   

8.
Constructing immortalized human cell lines.   总被引:15,自引:0,他引:15  
Obtaining an abundant supply of human cells with specific differentiated properties is a key issue in many research studies and biotechnology applications. Recent advances in this area include the finding that forced expression of the enzyme telomerase can greatly increase the proliferative potential of at least some types of human cells, and also the development of methods for culturing human stem cells.  相似文献   

9.
Somatic cell heterokaryons derived from normal human fibroblasts which had different glucose-6-phosphate dehydrogenase (G6PD) electrophoretic variants, types A and B, were examined for their G6PD pattern. A hybrid band of activity with intermediate migration, in addition to the A and B bands, was observed in such heterokaryons. These results directly demonstrate that enzyme subunit complementation can take place in somatic cell heterokaryons, and suggest that this technique may be important for elucidating the molecular basis of the genetic heterogeneity seen with many human single enzyme defects.  相似文献   

10.
An essentially full-length cDNA clone for the human enzyme monoamine oxidase type A (MAO-A) has been used to determine the chromosomal location of a gene encoding it. This enzyme is important in the degradative metabolism of biogenic amines throughout the body and is located in the outer mitochondrial membrane of many cell types. Southern blot analysis of PstI-digested human DNA revealed multiple fragments that hybridized to this probe. Using rodent-human somatic cell hybrids containing all or part of the human X chromosome, we have mapped these fragments to the region Xp21-p11. A restriction fragment length polymorphism (RFLP) for this MAOA gene was identified and used to evaluate linkage distances between this locus and several other loci on Xp. The MAOA locus lies between DXS14 and OTC, about 29 cM from the former.  相似文献   

11.
Sialic acids participate in many important biological recognition events, yet eukaryotic sialic acid biosynthetic genes are not well characterized. In this study, we have identified a novel human gene based on homology to the Escherichia coli sialic acid synthase gene (neuB). The human gene is ubiquitously expressed and encodes a 40-kDa enzyme. The gene partially restores sialic acid synthase activity in a neuB-negative mutant of E. coli and results in N-acetylneuraminic acid (Neu5Ac) and 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN) production in insect cells upon recombinant baculovirus infection. In vitro the human enzyme uses N-acetylmannosamine 6-phosphate and mannose 6-phosphate as substrates to generate phosphorylated forms of Neu5Ac and KDN, respectively, but exhibits much higher activity toward the Neu5Ac phosphate product.  相似文献   

12.
Previous small scale sequencing studies have indicated that DNA polymerase β (pol β) variants are present on average in 30% of human tumors of varying tissue origin. Many of these variants have been shown to have aberrant enzyme function in vitro and to induce cellular transformation and/or genomic instability in vivo, suggesting that their presence is associated with tumorigenesis or its progression. In this study, the human POLB gene was sequenced in a collection of 134 human colorectal tumors and was found to contain coding region mutations in 40% of the samples. The variants map to many different sites of the pol β protein and are not clustered. Many variants are nonsynonymous amino acid substitutions predicted to affect enzyme function. A subset of these variants was found to have reduced enzyme activity in vitro and failed to fully rescue pol β-deficient cells from methylmethane sulfonate-induced cytotoxicity. Tumors harboring variants with reduced enzyme activity may have compromised base excision repair function, as evidenced by our methylmethane sulfonate sensitivity studies. Such compromised base excision repair may drive tumorigenesis by leading to an increase in mutagenesis or genomic instability.  相似文献   

13.
The side-chain asymmetry of physiological porphyrins is produced by the cooperative action of hydroxymethylbilane synthase and uroporphyrinogen (uro'gen) III synthase. Although the role of uro'gen III synthase is essential for the chemistry of porphyrin biosynthesis, many aspects, structural as well as mechanical, of uro'gen III synthase have yet to be studied. We report here an expression system in Escherichia coli and a purification procedure for human uro'gen III synthase. The enzyme in the lysate was unstable, but we found that glycerol prevents the activity loss in the lysate. The purified enzyme showed remarkable thermostability, particularly when kept in phosphate buffer containing DTT or EDTA, indicating that the enzyme activity may depend on its oxidation state. Examination of the relationship between the number of Cys residues that are accessible to 5,5'-dithiobis(2-nitrobenzoic acid) and the remaining activity during heat inactivation showed that a particular Cys residue is involved in activity loss. From the crystal structure of human uro'gen III synthase [Mathews et al. (2001) EMBO J. 20, 5832-5839], this Cys residue was considered to be Cys73, which is buried deep inside the enzyme, suggesting that Cys73 of human uro'gen III synthase plays an important role in enzyme activity.  相似文献   

14.
Mammalian hormone-sensitive lipase (HSL) has given its name to a family of primarily prokaryotic proteins which are structurally related to type B carboxylesterases. In many of these alpha/beta hydrolases, a conserved HG-dipeptide flanks the catalytic pocket. In HSL this dipeptide is followed by two additional glycine residues. Through site-directed mutagenesis, we have investigated the importance of this motif for enzyme activity. Since the presence of multiple glycine residues in a critical region could contribute to cold adaptation by providing local flexibility, we studied the effect of mutating these residues on the psychrotolerant property of HSL. Any double mutation rendered the enzyme completely inactive, without any major effect on the enzyme stability. The partially active single mutants retained the same proportion of activity at reduced temperatures as the wild-type enzyme. These results do not support a role for the HGGG motif in catalysis at low temperatures, but provide further validation of the current three-dimensional model of HSL. Rat HSL was found to be relatively more active than human HSL at low temperatures. This difference was, however, not due to the 12 amino acids which are present in the regulatory module of the rat enzyme but absent in human HSL.  相似文献   

15.
11β‐Hydroxysteroid dehydrogenase type 1 (11β‐HSD1) is a key enzyme in the conversion of cortisone to the functional glucocorticoid hormone cortisol. This activation has been implicated in several human disorders, notably the metabolic syndrome where 11β‐HSD1 has been identified as a novel target for potential therapeutic drugs. Recent crystal structures have revealed the presence of a pronounced hydrophobic surface patch lying on two helices at the C‐terminus. The physiological significance of this region has been attributed to facilitating substrate access by allowing interactions with the endoplasmic reticulum membrane. Here, we report that single mutations that alter the hydrophobicity of this patch (I275E, L266E, F278E, and L279E in the human enzyme and I275E, Y266E, F278E, and L279E in the guinea pig enzyme) result in greatly increased yields of soluble protein on expression in E. coli. Kinetic analyses of both reductase and dehydrogenase reactions indicate that the F278E mutant has unaltered Km values for steroids and an unaltered or increased kcat. Analytical ultracentrifugation shows that this mutation also decreases aggregation of both the human and guinea pig enzymes, resulting in greater monodispersity. One of the mutants (guinea pig F278E) has proven easy to crystallize and has been shown to have a virtually identical structure to that previously reported for the wild‐type enzyme. The human F278E enzyme is shown to be a suitable background for analyzing the effects of naturally occurring mutations (R137C, K187N) on enzyme activity and stability. Hence, the F278E mutants should be useful for many future biochemical and biophysical studies of the enzyme.  相似文献   

16.
Phosphoglucosamine mutase (PNGM) is an evolutionarily conserved bacterial enzyme that participates in the cytoplasmic steps of peptidoglycan biosynthesis. As peptidoglycan is essential for bacterial survival and is absent in humans, enzymes in this pathway have been the focus of intensive inhibitor design efforts. Many aspects of the structural biology of the peptidoglycan pathway have been elucidated, with the exception of the PNGM structure. We present here the crystal structure of PNGM from the human pathogen and bioterrorism agent Bacillus anthracis. The structure reveals key residues in the large active site cleft of the enzyme which likely have roles in catalysis and specificity. A large conformational change of the C-terminal domain of PNGM is observed when comparing two independent molecules in the crystal, shedding light on both the apo- and ligand-bound conformers of the enzyme. Crystal packing analyses and dynamic light scattering studies suggest that the enzyme is a dimer in solution. Multiple sequence alignments show that residues in the dimer interface are conserved, suggesting that many PNGM enzymes adopt this oligomeric state. This work lays the foundation for the development of inhibitors for PNGM enzymes from human pathogens.  相似文献   

17.
Antibodies raised against bovine 5'-nucleotidase inhibit this enzyme as well as 5'-nucleotidase from other bovine tissues, showing common structure(s) between these proteins. However, an IgG fraction directed against the glucidic moiety of the liver enzyme did not cross-react with the enzyme from lymphocyte or caudate nuclei, a clear indication that within the same species the 5'-nucleotidase differs from one cell type to another. In addition, immunoblots after electrophoresis show that the previous antibodies recognize 5'-nucleotidase from human, mouse or chicken origin. However, only human 5'-nucleotidase activity can be inhibited by the antibodies. Thus at least three groups of antigenic determinants must exist on the 5'-nucleotidase: one related to the glucidic moiety of the glycoprotein whose binding inhibits the enzyme activity, another related to the catalytic site, as its binding also led to enzyme inhibition, and a last one of structural nature. It seems that the third group of determinant is common to many species, whereas the second one is more restricted.  相似文献   

18.
Sekar Y  Befus AD 《Nitric oxide》2012,26(1):74-80
Mast cells (MC) play a pivotal role in allergic inflammation and nitric oxide (NO) is known to regulate MC function. One mechanism of NO mediated actions is the post-translational modification protein tyrosine nitration mediated by reactive nitrogen species. In this study we identified targets for nitration in the human mast cell line LAD2 after treatment with a nitric oxide donor and with peroxynitrite. Using two dimensional gel electrophoresis and western blot analyses with monoclonal and polyclonal antibodies we identified 15-hydroxy prostaglandin dehydrogenase (PGDH), a major prostaglandin catabolizing enzyme, as a target for nitration in LAD2. This is the first report on expression of this enzyme in MC and also the first report that PGDH is a target of protein tyrosine nitration. Since MC synthesize and metabolize many prostaglandins including prostaglandin E(2), the major substrate for PGDH, nitration of this prostaglandin catabolizing enzyme is likely functionally significant.  相似文献   

19.
线粒体呼吸链复合体Ⅰ   总被引:2,自引:0,他引:2  
线粒体呼吸链复合体Ⅰ(简称复合体Ⅰ)是呼吸链电子传递的起始复合体,作为电子传递过程的限速酶,复合体Ⅰ的分子量远大于其余的四个呼吸链复合体。复合体Ⅰ相关的疾病发生除了与40余个复合体Ⅰ组成亚基的突变相关外,还同参与其组装的多个组装因子存在密切联系。该文对复合体I的结构以及参与调控复合体Ⅰ组装的各类组装因子进行了综述,旨在为全面了解复合体Ⅰ相关疾病的发生提供具体参考。  相似文献   

20.
Abundance of the Ca2+-pumping ATPase in pig erythrocyte membranes.   总被引:1,自引:0,他引:1       下载免费PDF全文
The Ca2+-pumping ATPase (Ca2+-ATPase) was purified from human and pig erythrocyte membranes by calmodulin affinity chromatography in the presence of phosphatidylcholine. The amount of enzyme present in pig erythrocytes is at least 7 times greater than that isolated from human erythrocyte ghosts. However, the properties of the enzyme from the two species are similar in many respects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号