首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Binding of proteins to particular DNA sites across the genome is a primary determinant of specificity in genome maintenance and gene regulation. DNA-binding specificity is encoded at multiple levels, from the detailed biophysical interactions between proteins and DNA, to the assembly of multi-protein complexes. At each level, variation in the mechanisms used to achieve specificity has led to difficulties in constructing and applying simple models of DNA binding. We review the complexities in protein–DNA binding found at multiple levels and discuss how they confound the idea of simple recognition codes. We discuss the impact of new high-throughput technologies for the characterization of protein–DNA binding, and how these technologies are uncovering new complexities in protein–DNA recognition. Finally, we review the concept of multi-protein recognition codes in which new DNA-binding specificities are achieved by the assembly of multi-protein complexes.  相似文献   

3.
Protein binding to DNA is a fundamental process in gene regulation. Methodologies such as ChIP-Seq and mapping of DNase I hypersensitive sites provide global information on this regulation in vivo. In vitro methodologies provide valuable complementary information on protein–DNA specificities. However, current methods still do not measure absolute binding affinities. There is a real need for large-scale quantitative protein–DNA affinity measurements. We developed QPID, a microfluidic application for measuring protein–DNA affinities. A single run is equivalent to 4096 gel-shift experiments. Using QPID, we characterized the different affinities of ATF1, c-Jun, c-Fos and AP-1 to the CRE consensus motif and CRE half-site in two different genomic sequences on a single device. We discovered that binding of ATF1, but not of AP-1, to the CRE half-site is highly affected by its genomic context. This effect was highly correlated with ATF1 ChIP-seq and PBM experiments. Next, we characterized the affinities of ATF1 and ATF3 to 128 genomic CRE and CRE half-site sequences. Our affinity measurements explained that in vivo binding differences between ATF1 and ATF3 to CRE and CRE half-sites are partially mediated by differences in the minor groove width. We believe that QPID would become a central tool for quantitative characterization of biophysical aspects affecting protein–DNA binding.  相似文献   

4.
5.
A detailed computational analysis of 32 protein–RNA complexes is presented. A number of physical and chemical properties of the intermolecular interfaces are calculated and compared with those observed in protein–double-stranded DNA and protein–single-stranded DNA complexes. The interface properties of the protein–RNA complexes reveal the diverse nature of the binding sites. van der Waals contacts played a more prevalent role than hydrogen bond contacts, and preferential binding to guanine and uracil was observed. The positively charged residue, arginine, and the single aromatic residues, phenylalanine and tyrosine, all played key roles in the RNA binding sites. A comparison between protein–RNA and protein–DNA complexes showed that whilst base and backbone contacts (both hydrogen bonding and van der Waals) were observed with equal frequency in the protein–RNA complexes, backbone contacts were more dominant in the protein–DNA complexes. Although similar modes of secondary structure interactions have been observed in RNA and DNA binding proteins, the current analysis emphasises the differences that exist between the two types of nucleic acid binding protein at the atomic contact level.  相似文献   

6.
7.
8.
We have examined binding of the CREB B-ZIP protein domain to double-stranded DNA containing a consensus CRE sequence (5′-TGACGTCA-3′), the related PAR, C/EBP and AP-1 sequences and the unrelated SP1 sequence. DNA binding was assayed in the presence or absence of MgCl2 and/or KCl using two methods: circular dichroism (CD) spectroscopy and electrophoretic mobility shift assay (EMSA). The CD assay allows us to measure equilibrium binding in solution. Thermal denaturation in 150 mM KCl indicates that the CREB B-ZIP domain binds all the DNA sequences, with highest affinity for the CRE site, followed by the PAR (5′-TAACGTTA-3′), C/EBP (5′-TTGCGCAA-3′) and AP-1 (5′-TGAGTCA-3′) sites. The addition of 10 mM MgCl2 diminished DNA binding to the CRE and PAR DNA sequences and abolished binding to the C/EBP and AP-1 DNA sequences, resulting in more sequence-specific DNA binding. Using ‘standard’ EMSA conditions (0.25× TBE), CREB bound all the DNA sequences examined. The CREB–CRE complex had an apparent Kd of ~300 pM, PAR of ~1 nM, C/EBP and AP-1 of ~3 nM and SP1 of ~30 nM. The addition of 10 mM MgCl2 to the polyacrylamide gel dramatically altered sequence-specific DNA binding. CREB binding affinity for CRE DNA decreased 3-fold, but binding to the other DNA sequences decreased >1000-fold. In the EMSA, addition of 150 mM KCl to the gels had an effect similar to MgCl2. The magnesium concentration needed to prevent non-specific electrostatic interactions between CREB and DNA in solution is in the physiological range and thus changes in magnesium concentration may be a cellular signal that regulates gene expression.  相似文献   

9.
10.
Yang Y  Sass LE  Du C  Hsieh P  Erie DA 《Nucleic acids research》2005,33(13):4322-4334
Atomic force microscopy (AFM) is a powerful technique for examining the conformations of protein–DNA complexes and determining the stoichiometries and affinities of protein–protein complexes. We extend the capabilities of AFM to the determination of protein–DNA binding constants and specificities. The distribution of positions of the protein on the DNA fragments provides a direct measure of specificity and requires no knowledge of the absolute binding constants. The fractional occupancies of the protein at a given position in conjunction with the protein and DNA concentrations permit the determination of the absolute binding constants. We present the theoretical basis for this analysis and demonstrate its utility by characterizing the interaction of MutS with DNA fragments containing either no mismatch or a single mismatch. We show that MutS has significantly higher specificities for mismatches than was previously suggested from bulk studies and that the apparent low specificities are the result of high affinity binding to DNA ends. These results resolve the puzzle of the apparent low binding specificity of MutS with the expected high repair specificities. In conclusion, from a single set of AFM experiments, it is possible to determine the binding affinity, specificity and stoichiometry, as well as the conformational properties of the protein–DNA complexes.  相似文献   

11.
12.
RNA-binding proteins play many essential roles in the regulation of gene expression in the cell. Despite the significant increase in the number of structures for RNA–protein complexes in the last few years, the molecular basis of specificity remains unclear even for the best-studied protein families. We have developed a distance and orientation-dependent hydrogen-bonding potential based on the statistical analysis of hydrogen-bonding geometries that are observed in high-resolution crystal structures of protein–DNA and protein–RNA complexes. We observe very strong geometrical preferences that reflect significant energetic constraints on the relative placement of hydrogen-bonding atom pairs at protein–nucleic acid interfaces. A scoring function based on the hydrogen-bonding potential discriminates native protein–RNA structures from incorrectly docked decoys with remarkable predictive power. By incorporating the new hydrogen-bonding potential into a physical model of protein–RNA interfaces with full atom representation, we were able to recover native amino acids at protein–RNA interfaces.  相似文献   

13.
Characterization of a delayed early serum response region.   总被引:1,自引:0,他引:1       下载免费PDF全文
The proliferin (PLF) gene promoter provides a relatively simple model system for the study of growth-regulated gene expression in mouse cells. The promoter elements required for this serum-induced regulation have been identified and include an AP-1 site as well as an adjacent element comprised of three imperfect repeats that are similar in sequence to the simian virus 40 (SV40) Sph motif. Distinct protein complexes bound independently to the AP-1 and Sph elements, and both of these juxtaposed sites could be occupied simultaneously. Furthermore, serum stimulation of mouse fibroblasts resulted in similar increases in protein binding to the AP-1 and Sph elements. Consistent with this increase in AP-1 and Sph binding activity, the PLF AP-1 and Sph elements were independently able to confer serum responsiveness to a minimal promoter, and together these two elements acted synergistically in response to serum. Although several members of the AP-1 family were able to activate the PLF gene promoter in transient cotransfection experiments, the predominant AP-1 components interacting with the PLF gene promoter in serum-stimulated cells were Fra-1, JunB, and JunD. Analysis of the Sph element revealed that mutation of Sph repeats I or III abolished serum responsiveness of the PLF gene promoter, and mutation of Sph repeat III decreased protein binding to this element. Although the Sph element is similar in sequence to the SV40 element, the PLF Sph-binding factor is distinct from TEF-1, the factor that binds to the SV40 Sph motif.  相似文献   

14.
Experimental studies of complete mammalian genes and other genetic domains are impeded by the difficulty of introducing large DNA molecules into cells in culture. Previously we have shown that GST–Z2, a protein that contains three zinc fingers and a proline-rich multimerization domain from the polydactyl zinc finger protein RIP60 fused to glutathione S-transferase (GST), mediates DNA binding and looping in vitro. Atomic force microscopy showed that GSTZ2 is able to condense 130–150 kb bacterial artificial chromosomes (BACs) into protein–DNA complexes containing multiple DNA loops. Condensation of the DNA loops onto the Z2 protein–BAC DNA core complexes with cationic lipid resulted in particles that were readily transferred into multiple cell types in culture. Transfer of total genomic linear DNA containing amplified DHFR genes into DHFR cells by GST–Z2 resulted in a 10-fold higher transformation rate than calcium phosphate co-precipitation. Chinese hamster ovarian cells transfected with a BAC containing the human TP53 gene locus expressed p53, showing native promoter elements are active after GST–Z2-mediated gene transfer. Because DNA condensation by GST–Z2 does not require the introduction of specific recognition sequences into the DNA substrate, condensation by the Z2 domain of RIP60 may be used in conjunction with a variety of other agents to provide a flexible and efficient non-viral platform for the delivery of large genes into mammalian cells.  相似文献   

15.
SerpinB2 or plasminogen activator inhibitor type 2 (PAI-2) is highly induced in macrophages in response to inflammatory stimuli and is linked to the modulation of innate immunity, macrophage survival, and inhibition of plasminogen activators. Lipopolysaccharide (LPS), a potent bacterial endotoxin, can induce SerpinB2 expression via the toll-like receptor 4 (TLR4) by ∼1000-fold over a period of 24 hrs in murine macrophages. To map the LPS-regulated SerpinB2 promoter regions, we transfected reporter constructs driven by the ∼5 kb 5''-flanking region of the murine SerpinB2 gene and several deletion mutants into murine macrophages. In addition, we compared the DNA sequence of the murine 5′ flanking sequence with the sequence of the human gene for homologous functional regulatory elements and identified several regulatory cis-acting elements in the human SERPINB2 promoter conserved in the mouse. Mutation analyses revealed that a CCAAT enhancer binding (C/EBP) element, a cyclic AMP response element (CRE) and two activator protein 1 (AP-1) response elements in the murine SerpinB2 proximal promoter are essential for optimal LPS-inducibility. Electrophoretic mobility shift (EMSA) and chromatin immunoprecipitation (ChIP) assays demonstrated that LPS induces the formation of C/EBP-β containing complexes with the SerpinB2 promoter. Importantly, both constitutive and LPS-induced SerpinB2 expression was severely abrogated in C/EBP-β-null mouse embryonic fibroblasts (MEFs) and primary C/EBP-β-deficient peritoneal macrophages. Together, these data provide new insight into C/EBP-β-dependent regulation of inflammation-associated SerpinB2 expression.  相似文献   

16.
E. coli Integration host factor (IHF) condenses the bacterial nucleoid by wrapping DNA. Previously, we showed that DNA flexibility compensates for structural characteristics of the four consensus recognition elements associated with specific binding (Aeling et al., J. Biol. Chem. 281, 39236–39248, 2006). If elements are missing, high-affinity binding occurs only if DNA deformation energy is low. In contrast, if all elements are present, net binding energy is unaffected by deformation energy. We tested two hypotheses for this observation: in complexes containing all elements, (1) stiff DNA sequences are less bent upon binding IHF than flexible ones; or (2) DNA sequences with differing flexibility have interactions with IHF that compensate for unfavorable deformation energy. Time-resolved Förster resonance energy transfer (FRET) shows that global topologies are indistinguishable for three complexes with oligonucleotides of different flexibility. However, pressure perturbation shows that the volume change upon binding is smaller with increasing flexibility. We interpret these results in the context of Record and coworker's model for IHF binding (J. Mol. Biol. 310, 379–401, 2001). We propose that the volume changes reflect differences in hydration that arise from structural variation at IHF–DNA interfaces while the resulting energetic compensation maintains the same net binding energy.  相似文献   

17.
18.
19.
The RAG proteins initiate V(D)J recombination by mediating synapsis and cleavage of two different antigen receptor gene segments through interactions with their flanking recombination signal sequences (RSS). The protein–DNA complexes that support this process have mainly been studied using RAG–RSS complexes assembled using oligonucleotide substrates containing a single RSS that are paired in trans to promote synapsis. How closely these complexes model those formed on longer, more physiologically relevant substrates containing RSSs on the same DNA molecule (in cis) remains unclear. To address this issue, we characterized discrete core and full-length RAG protein complexes bound to RSSs paired in cis. We find these complexes support cleavage activity regulated by V(D)J recombination's ‘12/23 rule’ and exhibit plasticity in RSS usage dependent on partner RSS composition. DNA footprinting studies suggest that the RAG proteins in these complexes mediate more extensive contact with sequences flanking the RSS than previously observed, some of which are enhanced by full-length RAG1, and associated with synapsis and efficient RSS cleavage. Finally, we demonstrate that the RAG1 C-terminus facilitates hairpin formation on long DNA substrates, and full-length RAG1 promotes hairpin retention in the postcleavage RAG complex. These results provide new insights into the mechanism of physiological V(D)J recombination.  相似文献   

20.
p53 coordinates the expression of an intricate network of genes in response to stress signals. Sequence-specific DNA binding is essential for p53-mediated tumor suppression. We evaluated the impact of single-nucleotide polymorphisms (SNPs) in p53 response elements (p53RE) on DNA binding and gene expression in response to DNA damage. Using a bioinformatics approach based on incorporating p53 binding strength into a position weight matrix, we selected 32 SNPs in putative and validated p53REs. The microsphere assay for protein–DNA binding (MAPD) and allele-specific expression analysis was employed to assess the impact of SNPs on p53-DNA binding and gene expression, respectively. Comparing activated p53 binding in nuclear extracts from doxorubicin- or ionizing radiation (IR)-treated human cells, we observed little difference in binding profiles. Significant p53 binding was observed for most polymorphic REs and several displayed binding comparable to the p21 RE. SNP alleles predicted to lower p53 binding indeed reduced binding in 25 of the 32 sequences. Chromatin immunoprecipitation-sequencing in lymphoblastoid cells confirmed p53 binding to seven polymorphic p53 REs in response to doxorubicin. In addition, five polymorphisms were associated with altered gene expression following doxorubicin treatment. Our findings demonstrate an effective strategy to identify and evaluate SNPs that may alter p53-mediated stress responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号