首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At two field sites that differed in fertility, we investigated how species richness, functional group diversity, and species composition of constructed plant communities influenced invasion. Grassland communities were constructed to be either functionally diverse or functionally simple based on belowground resource use patterns of constituent species. Communities were also constructed with different numbers of species (two or five) to examine interactions between species richness, functional diversity and invasion resistance. We hypothesized that communities with more complementary belowground resource use (i.e., more species rich and more functionally diverse communities) would be less easily invaded than communities with greater degrees of belowground resource use overlap. Two contrasting invasive species were introduced: an early-season, shallow rooting annual grass, Bromus hordeaceus (soft chess), and a late-season, deep rooting annual forb, Centaurea solstitialis (yellow starthistle). Invader responses to species richness and functional diversity treatments differed between sites. In general, the more similar the patterns of belowground resource use between residents of the plant community and the invader, the poorer the invader’s performance. Complementarity or overlap of resource use among species in the constructed communities appeared to affect invader success less than complementarity or overlap of resource use between the invader and the species present in the community.  相似文献   

2.
Biodiversity is a major determinant of ecosystem functioning. Species-rich communities often use resources more efficiently thereby improving community performance. However, high competition within diverse communities may also reduce community functioning. We manipulated the genotypic diversity of Pseudomonas fluorescens communities, a plant mutualistic species inhibiting pathogens. We measured antagonistic interactions in vitro, and related these interactions to bacterial community productivity (root colonisation) and ecosystem service (host plant protection). Antagonistic interactions increased disproportionally with species richness. Mutual poisoning between competitors lead to a 'negative complementarity effect', causing a decrease in bacterial density by up to 98% in diverse communities and a complete loss of plant protection. The results emphasize that antagonistic interactions may determine community functioning and cause negative biodiversity-ecosystem functioning relationships. Interference competition may thus be an additional key for predicting the dynamics and performance of natural assemblages and needs to be implemented in future biodiversity models.  相似文献   

3.
Aims Invasion resistance in experimental plant communities is known to increase with increasing diversity and further to depend on the presence of particular functional groups. To test whether these effects also hold true for the invader establishment phase beyond the seedling stage, we studied survival and performance of Centaurea jacea L. (brown knapweed) planted into experimental grassland communities of varying plant biodiversity over three consecutive years. Moreover, we analysed the role of insect herbivory and biomass of the recipient community for mediating diversity effects.Methods In 2005, seedlings of Centaurea were transplanted into experimental grassland communities (the Jena Experiment) covering a species richness (1–60) and functional group richness (1–4) gradient. Half of these transplants and the community surrounding them in each plot were sprayed with insecticide while the other half served as control. In 2006 and 2007 (during the second and third year after transplantation), we recorded survival, growth-related (e.g. transplant biomass, height) and reproduction-related traits (e.g. number of flower heads). Annual data on community aboveground biomass served as covariate to investigate mediating effects of aboveground competition with the recipient community.Important findings Species richness was the most important factor responsible for Centaurea limitation. Higher levels of diversity decreased survival and all performance traits in both years. These diversity effects were partly driven by community biomass, but not fully explained by that covariate, suggesting the importance also of further processes. The influence of functional group richness was strong in the second year after transplantation and weaker in the third year. Among the particular functional groups, only the presence of legumes showed strong negative effects on Centaurea survival and weak negative effects on growth and reproduction, the latter two being mediated by biomass. Insect herbivore reduction considerably benefited Centaurea in sprayed monocultures, where it grew significantly larger than in all other diversity levels and than in the control subplots. We conclude that effects of plant community properties on invading individuals change in the course of establishment, that plant species richness effects are also important during later stages of establishment, and that biomass (especially at high diversity) and herbivory (especially at low diversity) of the recipient community are important in mediating community effects on invaders.  相似文献   

4.
Most research examining how herbivores and pathogens affect performance of invasive plants focuses on aboveground interactions. Although important, the role of belowground communities remains poorly understood, and the relative impact of aboveground and belowground interactions is still debated. As well, most studies of belowground interactions have been carried out in controlled environments, so little is known about the role of these interactions under natural conditions or how these relationships may change across a plant's range. Using the invasive plant Cirsium arvense, we performed a reciprocal transplant experiment to test the relative impacts of above‐ and belowground interactions at three sites across a 509‐km latitudinal gradient in its invaded range in Ontario, Canada. At each site, C. arvense seedlings were protected with above‐ and/or belowground exclosures in a factorial design. Plant performance (biomass, height, stem thickness, number of leaves, length of longest leaf, maximum rhizome length) was greatest when both above‐ and belowground exclosures were applied and lowest when no exclosures were applied. When only one type of exclosure was applied, biomass generally improved more with belowground exclosures than with aboveground exclosures. Despite site‐to‐site differences in foliar damage, root damage, and mesofaunal populations, belowground interactions generally had a greater negative impact on performance than aboveground herbivory alone. These results stress the importance of including both aboveground enemy interactions and plant–soil interactions in studies of plant community dynamics and invader performance.  相似文献   

5.
While several studies have established a positive correlation between community diversity and invasion resistance, it is less clear how species interactions within resident communities shape this process. Here, we experimentally tested how antagonistic and facilitative pairwise interactions within resident model microbial communities predict invasion by the plant–pathogenic bacterium Ralstonia solanacearum. We found that facilitative resident community interactions promoted and antagonistic interactions suppressed invasions both in the lab and in the tomato plant rhizosphere. Crucially, pairwise interactions reliably explained observed invasion outcomes also in multispecies communities, and mechanistically, this was linked to direct inhibition of the invader by antagonistic communities (antibiosis), and to a lesser degree by resource competition between members of the resident community and the invader. Together, our findings suggest that the type and strength of pairwise interactions can reliably predict the outcome of invasions in more complex multispecies communities.  相似文献   

6.
A meta-analysis of biotic resistance to exotic plant invasions   总被引:12,自引:0,他引:12  
Biotic resistance describes the ability of resident species in a community to reduce the success of exotic invasions. Although resistance is a well‐accepted phenomenon, less clear are the processes that contribute most to it, and whether those processes are strong enough to completely repel invaders. Current perceptions of strong, competition‐driven biotic resistance stem from classic ecological theory, Elton's formulation of ecological resistance, and the general acceptance of the enemies‐release hypothesis. We conducted a meta‐analysis of the plant invasions literature to quantify the contribution of resident competitors, diversity, herbivores and soil fungal communities to biotic resistance. Results indicated large negative effects of all factors except fungal communities on invader establishment and performance. Contrary to predictions derived from the natural enemies hypothesis, resident herbivores reduced invasion success as effectively as resident competitors. Although biotic resistance significantly reduced the establishment of individual invaders, we found little evidence that species interactions completely repelled invasions. We conclude that ecological interactions rarely enable communities to resist invasion, but instead constrain the abundance of invasive species once they have successfully established.  相似文献   

7.
Belowground communities can affect interactions between plants and aboveground insect communities. Such belowground–aboveground interactions are known to depend on the composition of belowground communities, as well as on the plant species that mediates these interactions. However, it is largely unknown whether the effect of belowground communities on aboveground plant–insect interactions also depends on genotypic variation within the plant species that mediates the interaction. To assess whether the outcome of belowground–aboveground interactions can be affected by plant genotype, we selected two white cabbage cultivars [Brassica oleracea L. var. capitata (Brassicaceae)]. From previous studies, it is known that these cultivars differ in their chemistry and belowground and aboveground multitrophic interactions. Belowground, we inoculated soils of the cultivars with either nematodes or microorganisms and included a sterilized soil as a control treatment. Aboveground, we quantified aphid [Brevicoryne brassicae (L.) (Hemiptera: Aphididae)] population development and parasitoid [Diaeretiella rapae (McIntosh) (Hymenoptera: Braconidae)] fitness parameters. The cultivar that sustained highest aphid numbers also had the best parasitoid performance. Soil treatment affected aphid population sizes: microorganisms increased aphid population growth. Soil treatments did not affect parasitoid performance. Cultivars differed in their amino acid concentration, leaf relative growth rate, and root, shoot, and phloem glucosinolate composition but showed similar responses of these traits to soil treatments. Consistent with this observation, no interactions were found between cultivar and soil treatment for aphid population growth or parasitoid performance. Overall, the aboveground community was more affected by cultivar, which was associated with glucosinolate profiles, than by soil community.  相似文献   

8.
Biotic resistance may influence invasion success; however, the relative roles of species richness, functional or phylogenetic distance in predicting invasion success are not fully understood. We used biomass fraction of Chromolaena odorata, an invasive species in tropical and subtropical areas, as a measure of ‘invasion success’ in a series of artificial communities varying in species richness. Communities were constructed using species from Mexico (native range) or China (non‐native range). We found strong evidence of biotic resistance: species richness and community biomass were negatively related with invasion success; invader biomass was greater in plant communities from China than from Mexico. Harvesting time had a greater effect on invasion success in plant communities from China than on those from Mexico. Functional and phylogenetic distances both correlated with invasion success and more functionally distant communities were more easily invaded. The effects of plant‐soil fungi and plant allelochemical interactions on invasion success were species‐specific.  相似文献   

9.
植物物种多样性与基因型多样性对群落的结构和功能具有重要的生态作用,近年来植物基因型多样性对植物间相互作用的影响已成为研究者关心的重要科学问题。实验选择退化草原优势种冷蒿(Artemisia frigida)为目标植物,稳定群落建群种羊草(Leymus chinensis)和群落伴生种洽草(Koeleria cristata)为邻居植物,来研究基因型多样性不同的邻居植物对冷蒿生长表现(株高、地上生物量、地下生物量和总生物量)的影响,并通过测量植物相对竞争强度及邻居植物性状变异来进一步探究邻居植物基因型多样性对目标植物影响的内在机制。结果表明:(1)邻居物种为羊草时,基因型多样性对冷蒿的生长表现影响显著,当邻居为6基因型时,冷蒿的株高、地上生物量以及总生物量显著低于单基因型和3基因型时的表现(P0.05),且相对竞争强度高于其他两种处理;而邻居物种为洽草时,基因型多样性对冷蒿所有观测指标以及相对竞争强度的影响均不显著(P0.05)。(2)利用主成分分析法来分析基因型多样性对自身性状变异的影响发现,邻居物种为羊草时,基因型多样性对性状变异响应显著,主要表现为3基因型时,羊草种群的株高、总生物量、地上生物量显著高于单基因型时的表现(P0.05);而邻居物种为洽草时,基因型多样性对性状变异影响不显著(P0.05)。(3)邻居物种为羊草时,羊草总生物量和比叶面积与冷蒿的地上生物量和总生物量呈显著负相关(P0.05);邻居物种为洽草时,洽草各性状与冷蒿性状间无显著相关性(P0.05)。实验结果揭示,基因型多样性对目标植物生长的效应受邻居植物种类的影响,稳定群落建群种羊草高基因型组合能显著抑制冷蒿的生长,这可能与羊草高基因型多样性种群性状变异大且对冷蒿有较高的相对竞争强度有关。所得结果为建群种基因型多样性影响种间相互作用提供了实验证据,为草原的合理利用和保护提供了理论指导。  相似文献   

10.
Tolerance and suppression are distinct components of competition among plants, and recognizing how they affect competitive outcomes is important for understanding the mechanisms and consequences of competition. We used simulations informed by experimental trials to ask whether tolerance or suppression of competitors was more important for the survival of native plants experiencing competition with an exotic invasive species. When competition was pairwise, tolerance and suppression contributed equally to competitive rank in simulations. However, when multiple native genotypes competed together against an invader, the ability to tolerate competition was up to 50 times more important than the ability to suppress the invader. In two-competitor communities the chief advantage of suppressing competitors was a global decrease in their abundance, but this advantage did not exist in communities of multiple competitors – which is more representative of natural conditions – because decreased competitor abundance benefited all plants regardless of their competitive ability. We suggest that this concept is analogous to a ‘demolition derby,' an automotive contest where participants attempt to have the last functional vehicle on the playing field. Because strong suppressors share the benefits of eliminating competitors with other remaining competitors, we propose that tolerance of competitors is more beneficial than suppression when competition occurs in a multiplayer scenario – in a demolition derby and in nature. This finding has implications for our understanding of how competition influences plant species coexistence, plant community structure and invasion outcomes.  相似文献   

11.
In human microbiota, the prevention or promotion of invasions can be crucial to human health. Invasion outcomes, in turn, are impacted by the composition of resident communities and interactions of resident members with the invader. Here we study how interactions influence invasion outcomes in microbial communities, when interactions are primarily mediated by chemicals that are released into or consumed from the environment. We use a previously developed dynamic model which explicitly includes species abundances and the concentrations of chemicals that mediate species interaction. Using this model, we assessed how species interactions impact invasion by simulating a new species being introduced into an existing resident community. We classified invasion outcomes as resistance, augmentation, displacement, or disruption depending on whether the richness of the resident community was maintained or decreased and whether the invader was maintained in the community or went extinct. We found that as the number of invaders introduced into the resident community increased, disruption rather than augmentation became more prevalent. With more facilitation of the invader by the resident community, resistance outcomes were replaced by displacement and augmentation. By contrast, with more facilitation among residents, displacement outcomes shifted to resistance. When facilitation of the resident community by the invader was eliminated, the majority of augmentation outcomes turned into displacement, while when inhibition of residents by invaders was eliminated, invasion outcomes were largely unaffected. Our results suggest that a better understanding of interactions within resident communities and between residents and invaders is crucial to predicting the success of invasions into microbial communities.  相似文献   

12.
13.
Aims A decrease in species diversity after fertilization is a common phenomenon in grasslands; however, the mechanism causing it remains highly controversial. The light competition hypothesis to explain loss of diversity has received much attention. The aim of the present paper was to test this hypothesis.Methods Fertilization was used to control above- and belowground resources simultaneously, while shade was used to control aboveground resource in an alpine meadow on the Tibetan Plateau. Univariate general linear models was used to estimate the effects of fertilization and shade on above- and belowground vegetation characteristics, including photosynthetically active radiation (PAR) in the understory, aboveground biomass, belowground biomass, R:S ratio, species richness and Simpson's diversity index.Important findings PAR was similar in the understory of shaded and fertilized plots, but only fertilization reduced species richness and diversity, suggesting that light competition alone could not explain diversity loss after fertilization. The root biomass and R:S ratio had a significant increase in shaded plots, but the richness and diversity did not change, suggesting that root competition alone also could not explain diversity loss after fertilization in this community. Our results illustrated that the root–shoot competition interactions, investigated from a functional groups perspective, should be the most reasonable explanation leading to the diversity loss due to fertilization.  相似文献   

14.
The success of invasive plant species is driven, in part, by feedback with soil ecosystems. Yet, how variation in belowground communities across latitudinal gradients affects invader distributions remains poorly understood. To determine the effect of soil communities on the performance of the noxious weed Cirsium arvense across its invaded range, we grew seedlings for 40 days in soils collected across a 699 km linear distance from both inside and outside established populations. We also described the mesofaunal and bacterial communities across all soil samples. We found that C. arvense typically performed better when grown in soils sourced from northern populations than from southern locations where it has a longer invasion history. We also found evidence that C. arvense performed best in soils sourced from outside invaded patches, although this was not consistent across all sites. The bacterial community showed a significant increase in the magnitude of compositional change in invaded sites at higher latitudes, while the mesofaunal community showed the opposite pattern. Bacterial community composition was significantly correlated with C. arvense performance, although mesofaunal community composition was not. Our results demonstrate that the interactions between an invasive plant and associated soil communities change across the invaded range, and the bacterial community in particular may affect variation in plant performance. Observed patterns may be caused by C.arvense presence and time since invasion allowing for an accumulation of species‐specific pathogens in southern soils, while the naïveté of northern soils to invasion results in a more responsive bacterial community. Although these interactions are difficult to predict, such effects could possibly facilitate the establishment of this exotic species to novel locations.  相似文献   

15.
Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can mediate plant interactions, thereby affecting plant community structure. Little is known, however, about whether the presence of different AMF species leads to differences in plant community structure or invasion success by introduced species. To investigate the effects of AMF species on community structure and invasion, we created replicate microcosms containing soil inoculated with one of three different AMF species (Glomus spurcum Pfeiffer, Walker & Bloss, Scutellospora erythropa (Koske & Walker) Walker & Sanders, or Scutellospora verrucosa (Koske & Walker) Walker & Sanders) or a mixture of all three AMF species. Seeds of seven naturally co‐occurring plant species (Ageratum conyzoides L., Cyperus compressus L., Chamaecrista nictitans (L.), Crotalaria incana L., Hyptis pectinata (L.) Poit., Sida rhombifolia L., Melinis repens (Willd.) Zizka) in Hawai‘i were sown equally into these microcosms, which were placed on outdoor benches. Plant community development was monitored over a season. Mid‐way through the experiment, an invader (Bidens pilosa L.) was added to the established communities to determine whether mycorrhizal species identity affected invasion success. Final aboveground and belowground phytomass were used to assess plant community differences among treatments. Although the identity of the dominant plant species (Melinis repens) remained the same in all treatments, community dominance, community productivity, plant species richness, Shannon index of diversity, and invasion success all varied with AMF species identity. Invasion success was not inversely related to species richness or diversity. Instead, increased richness, diversity, and invasion success all appeared to be related to decreased dominance by M. repens in the presence of certain AMF species. These results indicate that the composition of the AMF community belowground can influence the structure of the plant community aboveground, and may play a role in facilitating or repelling invasion.  相似文献   

16.
Global warming is enabling many plant species to expand their range to higher latitudes and altitudes, where they may suffer less from natural aboveground and belowground enemies. Reduced control by natural enemies can enable climate warming‐induced range expanders to gain an advantage in competition with natives and become disproportionally abundant in their new range. However, so far studies have only examined individual growth of range expanders, which have common congeneric plant species in their new range. Thus it is not known how general is this reduced effect of above‐ and belowground enemies and how it operates in communities, where multiple plant species also interact with each other. Here we show that range‐expanding plant species with and without congenerics in the invaded habitats differ in their ecological interactions in the new range. In a community‐level experiment, range‐expanding plant species, both with and without congenerics, suppressed the growth of a herbivore. However, only range expanders without congenerics reduced biomass production of the native plant species. In the present study, range expanders without congenerics allocated more biomass aboveground compared to native plant species, which can explain their competitive advantage. Competitive interaction and also biomass allocation of native plants and their congeneric range expanders were similar. Our results highlight that information about species phylogenetic relatedness with native flora can be crucial for improving predictions about the consequences of climate warming‐induced range expansions.  相似文献   

17.
Alien plant species invasiveness and impact on diversity (i.e. species richness and composition) can be driven by the altered competitive interactions experienced by the invader in its invaded range compared to its native range. Trait-based competition effects on invasiveness can be mediated through size-asymmetric competition, i.e. a trait suit of the invader that drives competitive dominance, and through ‘niche differences', i.e. trait differentiation and thus minimized competition between invader and the invaded community. In terms of invasion impact, size-asymmetric competition is expected to result in competitive exclusion of co-occurring subordinate species, whereas ‘niche differences' might result in competitive exclusion of the most functionally similar co-occurring species. Although observational work does not allow the full disentanglement of both trait-based effects, it does allow to verify the occurrence of expected theoretical trait patters. In this study, we explored the trait-based competition effects on invasiveness and diversity impact for Rosa rugosa in both its invaded range in Belgium and its native range in Japan, based on seven functional traits across 100 vegetation plots. Following the predictions for enhanced invasiveness, we found much lower functional overlap between R. rugosa and the co-occurring species in the invaded range compared to the native range. This likely also explains the absence of diversity impact in its native range. Despite the absence of changes in species richness in the invaded range, the invader did strongly impact species composition of invaded communities. This impact occurred through strong shade tolerance responses, suggesting size-asymmetric competition effects and cover loss of co-occurring dominant species, next to exclusion of co-occurring species most functionally similar to the invader; suggesting niche difference effects. In conclusion, this case-study illustrates how exploring functional trait patterns across a species native and invaded range can help in understanding how trait-based competition processes can affect invasiveness and community impact.  相似文献   

18.
Concern for biodiversity loss coupled with the accelerated rate of biological invasions has provoked much interest in assessing how native plant species diversity affects invasibility. Although experimental studies extensively document the effects of species richness on invader performance, the role of species evenness in such studies is rarely examined. Species evenness warrants more attention because the relative abundances of species can account for substantially more of the variance in plant community diversity and tend to change more rapidly and more frequently in response to disturbances than the absolute numbers of species. In this study, we experimentally manipulated species evenness within native prairie grassland mesocosms. We assessed how evenness affected primary productivity, light availability and the resistance of native communities to invasion. The primary productivity of native communities increased significantly with species evenness, and this increase in productivity was accompanied by significant decreases in light availability. However, evenness had no effect on native community resistance to invasion by three common exotic invasive species. In this study, niche complementarity provides a potential mechanism for the effects of evenness on productivity and light availability, but these effects apparently were not strong enough to alter the invasibility of the experimental communities. Our results suggest that species evenness enhances community productivity but provides no benefit to invasion resistance in otherwise functionally diverse communities.  相似文献   

19.
Plants form mutualistic relationship with a variety of belowground fungal species. Such a mutualistic relationship can enhance plant growth and resistance to pathogens. Yet, we know little about how interactions between functionally diverse groups of fungal mutualists affect plant performance and competition. We experimentally determined the effects of interaction between two functional groups of belowground fungi that form mutualistic relationship with plants, arbuscular mycorrhizal (AM) fungi and Trichoderma, on interspecific competition between pairs of closely related plant species from four different genera. We hypothesized that the combination of two functionally diverse belowground fungal species would allow plants and fungi to partition their symbiotic relationships and relax plant–plant competition. Our results show that: 1) the AM fungal species consistently outcompeted the Trichoderma species independent of plant combinations; 2) the fungal species generally had limited effects on competitive interactions between plants; 3) however, the combination of fungal species relaxed interspecific competition in one of the four instances of plant–plant competition, despite the general competitive superiority of AM fungi over Trichoderma. We highlight that the competitive outcome between functionally diverse fungal species may show high consistency across a broad range of host plants and their combinations. However, despite this consistent competitive hierarchy, the consequences of their interaction for plant performance and competition can strongly vary among plant communities.  相似文献   

20.
Above‐ and belowground herbivores promote plant diversity when selectively feeding on dominant plant species, but little is known about their combined effects. Using a model system, we show that neutral effects of an aboveground herbivore and positive effects of a belowground herbivore on plant diversity became profoundly negative when adding these herbivores in combination. The non‐additive effects were explained by differences in plant preference between the aboveground‐ and the belowground herbivores and their consequences for indirect interactions among plant species. Simultaneous exposure to aboveground‐ and belowground herbivores led to plant communities being dominated by a few highly abundant species. As above‐ and belowground invertebrate herbivores generally differ in their mobility and local distribution patterns, our results strongly suggest that aboveground–belowground interactions contribute to local spatial heterogeneity of diversity patterns within plant communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号