首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendritic cells (DC) are professional antigen-presenting cells that possess specific and efficient mechanisms to initiate immune responses. Upon encounter with pathogens, immature DC will go through a maturation process that converts them to highly immunogenic mature DC. Despite the fact that nitric oxide (NO) was produced in large amounts in maturing DC, it is still unclear whether NO is the key molecule that initiates and enhances DC maturation and T cell proliferation, respectively. Here, we report that NO donor and overexpression of either nitric-oxide synthase 2 (NOS2) or nitric-oxide synthase 3 (NOS3) alone can induce surface expression of major histocompatibility complex class II (MHC II) and both the essential co-stimulatory molecules CD80 and CD86 in immature DC. Consistently, NO donor-treated immature DC were capable of enhancing T cell proliferation in vitro in the absence of lipolysaccharide. Interestingly, NOS2 interacts with CD74 (the MHC II-associated invariant chain), and the degradation of CD74 by caspases in immature DC was inhibited upon treatment with NO donor. Because the trafficking of MHC II is CD74-dependent, the increase in cell surface localization of MHC II in maturing DC is in part due to the increase in CD74 protein expression in the presence of NOS2 and NO.  相似文献   

2.
3.
The CIITA is a master regulator for MHC class II expression, but the signaling events that control CIITA expression remain poorly understood. In this study, we report that both constitutive and IFN-gamma-inducible expression of CIITA in mouse bone marrow-derived dendritic cells (DC) and macrophages, respectively, are regulated by MAPK signals. In DC, the inhibitory effect of LPS on CIITA expression was prevented by MyD88 deficiency or pharmacological MAPK inhibitors specific for MEK (U0126) and p38 (SB203580), but not JNK (SP600125). In macrophages, LPS inhibited IFN-gamma-inducible CIITA and MHC class II expression without affecting expression of IFN regulatory factor-1 and MHC class I. Blocking ERK and p38 by MAPK inhibitors not only rescued LPS-mediated inhibition, but also augmented IFN-gamma induction of CIITA. Moreover, the induction of CIITA by IFN-gamma was enhanced by overexpressing MAPK phosphatase-1 that inactivates MAPK. Conversely, CIITA expression was attenuated in the absence of MAPK phosphatase-1. The down-regulation of CIITA gene expression by ERK and p38 was at least partly due to decreased histone acetylation of the CIITA promoter. Our study indicates that both MAPK and phosphatase play an important role for CIITA regulation in DC and macrophages.  相似文献   

4.
5.
6.
7.
Ⅱ类反式激活因子(class Ⅱ trans-activator,CIITA)为非DNA结合蛋白,在MHC Ⅱ类基因的转录激活过程中以协同激活分子的形式发挥主导开关的作用。CIITA还可以调节其他与抗原递呈相关的基因,如H-2M基因、Ia相关恒定链(Ii chain)基因等。结构上,CIITA分子又是NOD样受体(NOD-likereceptor,NLR)家族成员之一,其功能与固有免疫密切相关。除此之外,CIITA在T细胞分化、FasL介导的细胞死亡、胶原的合成等方面也发挥着重要的调节作用。  相似文献   

8.
Melanoma cells commonly express MHC class II molecules constitutively. This is a rare, or possibly unique, phenotype for a nonprofessional antigen-presenting cell, where MHC class II expression ordinarily occurs only after IFN-gamma treatment. Despite the fact that constitutive expression of MHC class II on melanoma cells has been observed for decades and that the regulation of the MHC class II genes is well understood for many different cell types, there is no data regarding the basis for constitutive MHC class II expression in melanoma cells. Here we report that MHC class II expression in melanoma cells can be traced to constitutive expression of the class II transactivator protein (CIITA), which mediates both IFN-gamma-inducible and -constitutive MHC class II expression in all other cell types. In addition, we determined that constitutive CIITA expression is the result of the activation of both the B cell-specific CIITA promoter III and the IFN-gamma-inducible CIITA promoter IV, the latter of which previously has never been known to function as a constitutive promoter in any cell type. The recently described B cell-related ARE-1 activity is important for promoter III activation in the melanoma cells. Constitutive promoter IV activation involves the IFN regulatory factor element (IRF-E), which binds members of the IRF family of proteins, although the major, IFN-gamma inducible member of this family, IRF-1, is not constitutively expressed in these cells. In cells with constitutively active promoter IV, the promoter IV IRF-E is most likely activated by IRF-2. The relevance of these results to the pathway of melanoma development is discussed.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
Early reports suggest that the costimulatory molecule CD86 (B7-2) has sporadic efficacy in tumor immunity, whereas changes in cancer immunity mediated by the MHC class II transactivator (CIITA) have not been extensively investigated. CIITA activates MHC class II expression in most cells; however, in the Line 1 lung carcinoma model system, CIITA activates MHC class I and well as class II. Here we show that CD86 is very effective in inducing a primary immune response against Line 1. Tumor cells expressing CD86 grew in only 50% of the mice injected with live cells, and those mice that developed tumors did so with significantly delayed kinetics. Furthermore, irradiated CD86-expressing Line 1 cells served as an effective tumor vaccine, demonstrating that CD86 is effective in inducing tumor immunity in the Line 1 system. These data suggest that if CIITA and CD86 cooperate, enhanced tumor immunity could be achieved. CIITA alone was mildly beneficial in slowing primary tumor growth but only when expressed at low levels. Clones expressing high levels of class II MHC grew as fast as or faster than parental tumor, and CIITA expression in a tumor vaccine assay lacked efficacy. When CIITA and CD86 were coexpressed, there was no cooperative immune protection from tumor growth. Cells that coexpress both genes also failed as a cancer vaccine, suggesting a negative role for CIITA in this lung carcinoma. These data suggest that human cancer vaccine trials utilizing CIITA gene therapy alone or in combination with CD86 should be approached with caution.  相似文献   

18.
19.
20.
Congenital MHC class II deficiency or bare lymphocyte syndrome (BLS; McKusick 209920) is caused by defects in trans-acting regulatory factors that control MHC class II expression and is therefore a disease of gene regulation. There are at least four complementation groups and the genetic and molecular dissection of this rare disease has contributed considerably to our current understanding of the molecular mechanisms governing MHC class II expression. Identification of the gene that is defective in BLS complementation group A, CIITA (MHC class II transactivator), has led to the discovery that CIITA acts as a master control factor of MHC class II expression. We have identified the CIITA mutations in a second patient from BLS group A. Two novel mutations abolish CIITA function, as shown by transfection experiments. Molecular analysis of these two novel mutations, together with the one described earlier in the first patient, is informative in terms of CIITA structure-function relationships. Received: 19 October 1996 / Revised: 25 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号