首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Nucleosomes are the fundamental packing units of the eukaryotic genome. A nucleosome core particle comprises an octameric histone core wrapped around by ~147bp DNA. Histones and DNA are targets for covalent modifications mediated by various chromatin modification enzymes. These modifications play crucial roles in various gene regulation activities. A group of common hypotheses for the mechanisms of gene regulation involves changes in the structure and structural dynamics of chromatin induced by chromatin modifications. We employed single molecule fluorescence methods to test these hypotheses by monitoring the structure and structural dynamics of nucleosomes before and after histone acetylation and DNA methylation, two of the best-conserved chromatin modifications throughout eukaryotes. Our studies revealed that these modifications induce changes in the structure and structural dynamics of nucleosomes that may contribute directly to the formation of open or repressive chromatin conformation.  相似文献   

4.
5.
6.
Recent genetic and biochemical studies have revealed critical information concerning the role of nucleosomes in eukaryotic gene regulation. Nucleosomes package DNA into a dynamic chromatin structure, and by assuming defined positions in chromatin, influence gene regulation. Nucleosomes can serve as repressors, presumably by blocking access to regulatory elements; consequently, the positions of nucleosomes relative to the location of cis-acting elements are critical. Some genes have a chromatin structure that is “preset,” ready for activation, while others require “remodeling” for activation. Nucleosome positioning may be determined by multiple factors, including histone–DNA interactions, boundaries defined by DNA structure or protein binding, and higher-order chromatin structure. © 1994 Wiley-Liss, Inc.  相似文献   

7.
8.
In mammals, DNA methylation is catalyzed by DNA methyltransferases (DNMTs) encoded by Dnmt1, Dnmt3a and Dnmt3b. Since, the mechanisms of regulation of Dnmts are still largely unknown, the physical interaction between Dnmt3b and chromatin was investigated in vivo and in vitro. In embryonic stem cell nuclei, Dnmt3b preferentially associated with histone H1-containing heterochromatin without any significant enrichment of silent-specific histone methylation. Recombinant Dnmt3b preferentially associated with nucleosomal DNA rather than naked DNA. Incorporation of histone H1 into nucleosomal arrays promoted the association of Dnmt3b with chromatin, whereas histone acetylation reduced Dnmt3b binding in vitro. In addition, Dnmt3b associated with histone deacetylase SirT1 in the nuclease resistant chromatin. These findings suggest that Dnmt3b is preferentially recruited into hypoacetylated and condensed chromatin. We propose that Dnmt3b is a 'reader' of higher-order chromatin structure leading to gene silencing through DNA methylation.  相似文献   

9.
10.
Histone structure and function   总被引:7,自引:0,他引:7  
The past year has seen major advances in our understanding of histone and nucleosome structure and function. Direct DNA mapping and thermodynamic experiments have finally provided conclusive evidence that the histones impose an altered helical pitch on the DNA as it is wrapped on the surface of the core histone octamer. Further, it is now clear that lysine acetylation in the amino-terminal domains of histones H3 and H4 can alter the topology of the DNA in chromatin and probably influence its higher-order folding. Genetic experiments reported in the past year have provided a wealth of new information on histone structure and function, including the identification of the peptide domain of histone H4 that is necessary for permanent gene repression, the confirmation that nucleosome structure is critical for centromere function, and evidence that histone acetylation plays a significant role in chromosome dynamics.  相似文献   

11.
12.
13.
The organization of eukaryotic chromatin has a major impact on all nuclear processes involving DNA substrates. Gene expression is affected by the positioning of individual nucleosomes relative to regulatory sequence elements, by the folding of the nucleosomal fiber into higher-order structures and by the compartmentalization of functional domains within the nucleus. Because site-specific acetylation of nucleosomal histones influences all three aspects of chromatin organization, it is central to the switch between permissive and repressive chromatin structure. The targeting of enzymes that modulate the histone acetylation status of chromatin, in synergy with the effects mediated by other chromatin remodeling factors, is central to gene regulation.  相似文献   

14.
15.
真核生物的DNA以染色质形式通过逐级折叠压缩形成高级结构存在于细胞核中。染色质高级结构直接参与了真核基因的转录调控和其它与DNA相关的生物学事件,因此研究染色质高级结构对了解表观遗传学分子机制有着至关重要的作用。近些年,研究者们针对30 nm染色质高级结构提出了两个模型:螺线管模型和Zig-Zag模型。2014年,我们利用体外染色质组装体系重建了30 nm染色质纤维,运用高精度冷冻电镜技术得到了分辨率为11?的30 nm染色质纤维的精细结构,提出了30 nm染色质高级结构的左手双螺旋Zig-Zag模型。本文综述了30 nm染色质纤维结构研究方面的相关进展,并对30 nm染色质高级结构的表观遗传调控机理以及单分子成像和操纵技术在研究30 nm染色质高级结构中潜在的应用作出讨论和展望。  相似文献   

16.
Histone H1     
Linker histones of which histone H1 is a representative are a diverse family of architectural proteins within the eukaryotic nucleus. These proteins have a variety of structures, but invariably contain a region enriched in lysine, serine, alanine and profine. All metazoan histone His also include a structured domain that binds to DNA through a helix-turn-helix motif. By binding to the linker DNA flanking the nucleosome core they contribute to the assembly of higher-order chromatin structures. Surprisingly, the use of “knockout” technology to eliminate histone H1 in isolated cells and Xenopus does not prevent the assembly of chromosomes or nuclei, however specific genes are activated or repressed indicative of targeted regulatory functions. A dual role for histone HI in chromatin structure and gene regulation might contribute to epigenetic phenomena in which heritable states of gene activity are maintained through mechanisms independent of gene sequence. This may have important implications for biotechnological and medical research.  相似文献   

17.
A carbohydrate-rich, fat-free diet dramatically alters the higher-order chromatin structure of rat liver nuclei. In addition, the mRNA level of the phenotypic protein of liver, albumin, is reduced. Within 200 base pairs of the initiation site of the albumin mRNA, a histone H1-binding site has been mapped. Histone H1 is the higher-order architectural protein of chromosomes. The presence of H1 with nucleosomes that package albumin gene sequences implies the presence of H1 in template-active chromatin. The role histone H1 has on the architecture of active genes may be a fundamental level of gene regulation.  相似文献   

18.
19.
染色质结构可由转录抑制状态转变为转录激活状态,从而调节早期胚胎由母型基因控制转变为合子型基因控制。作为一种特殊类型的连接组蛋白——哺乳动物特异性连接组蛋白H1oo,其表达方式具有一定的时序性,但又与其他7种连接组蛋白亚型有所不同,H1oo不但能够在卵母细胞.胚胎发育转换过程中发挥功能,而且还可能在基因组重编程过程中起到关键性作用。分析研究卵母细胞特异性连接组蛋白,有助于认识染色质重构建、基因组重编程过程以及核移植的分子机制,而且可能对克隆效率的提高有所补益。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号