首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Apoptotic cell death is important for the normal development of a variety of organisms. Apoptosis is also a response to DNA damage and an important barrier to oncogenesis. The apoptotic response to DNA damage is dampened in specific cell types during development. Developmental signaling pathways can repress apoptosis, and reduced cell proliferation also correlates with a lower apoptotic response. However, because developmental signaling regulates both cell proliferation and apoptosis, the relative contribution of cell division to the apoptotic response has been hard to discern in vivo. Here we use Drosophila oogenesis as an in vivo model system to determine the extent to which cell proliferation influences the apoptotic response to DNA damage. We find that different types of cell cycle modifications are sufficient to repress the apoptotic response to ionizing radiation independent of developmental signaling. The step(s) at which the apoptosis pathway was repressed depended on the type of cell cycle modification—either upstream or downstream of expression of the p53-regulated proapoptotic genes. Our findings have important implications for understanding the coordination of cell proliferation with the apoptotic response in development and disease, including cancer and the tissue-specific responses to radiation therapy.  相似文献   

2.
3.
Exosomes are membrane‐bound vesicles that traffic small molecular cargos. These cargos participate in cell–cell communication and contribute to the pathogenesis of many disease including cancer. How these mechanisms contribute to communication within the pancreatic adenocarcinoma (PDAC) microenvironment and how they contribute to PDAC biology are poorly understood. Performed in this study are comprehensive, quantitative comparisons of the proteomes of three PDAC cell lines to those of the exosomes they produce. Approximately 35% of whole cell proteins sort into exosomes. Analysis of composition of microbiomes (ANCOM) determined a cluster of 98 enriched pancreatic cancer exosome core proteins (ePC‐ECPs). Further, these proteins are predicted by ingenuity pathway analysis (IPA) as actively involved in signaling pathways regulating cell death and survival, cellular movement, and cell‐to‐cell signaling and interaction in particular (top three p‐value significant pathways). Significant enrichment of canonical pathways of acute phase response signaling (inflammatory response signaling pathways) and FXR and RXR activation in biosynthetic pathways are also predicted; 97 ePC‐ECPs are associated with cancer and among them, 34 are specifically associated with PDAC. In conclusion, exosomes from PDAC are enriched with cancer‐associated signaling proteins. Further assessment of these proteins as PDAC biomarkers or therapeutic targets is warranted.  相似文献   

4.
Apoptosis is a highly organized form of cell death that is important for tissue homeostasis, organ development and senescence. To date, the extrinsic (death receptor mediated) and intrinsic (mitochondria derived) apoptotic pathways have been characterized in mammalian cells. Reduced glutathione, is the most prevalent cellular thiol that plays an essential role in preserving a reduced intracellular environment. glutathione protection of cellular macromolecules like deoxyribose nucleic acid proteins and lipids against oxidizing, environmental and cytotoxic agents, underscores its central anti-apoptotic function. Reactive oxygen and nitrogen species can oxidize cellular glutathione or induce its extracellular export leading to the loss of intracellular redox homeostasis and activation of the apoptotic signaling cascade. Recent evidence uncovered a novel role for glutathione involvement in apoptotic signaling pathways wherein post-translational S-glutathiolation of protein redox active cysteines is implicated in the potentiation of apoptosis. In the present review we focus on the key aspects of glutathione redox mechanisms associated with apoptotic signaling that includes: (a) changes in cellular glutathione redox homeostasis through glutathione oxidation or GSH transport in relation to the initiation or propagation of the apoptotic cascade, and (b) evidence for S-glutathiolation in protein modulation and apoptotic initiation.  相似文献   

5.
6.
Programmed cell elimination is an important pathological mediator of disease. Multiple pathways to programmed cell death have been delineated, including apoptosis, autophagy, and programmed necrosis. Cross-talk between the signaling pathways mediating each process has made it difficult to define specific mechanisms of in vivo programmed cell death. For this reason, many “apoptotic” diseases may involve other death signaling pathways. Recent advances in genetic complementation using mouse knock-out models are helping to dissect apoptotic and necrotic cell death in different pathological states. The current state of research in this area is reviewed, focusing upon new findings describing the role of programmed necrosis induced by the mitochondrial permeability transition in mouse models of heart failure and diabetes.  相似文献   

7.
Despite extensive genetic analysis of the dynamic multi-phase process that transforms a small population of lateral plate mesoderm into the mature limb skeleton, the mechanisms by which signaling pathways regulate cellular behaviors to generate morphogenetic forces are not known. Recently, a series of papers have offered the intriguing possibility that regulated cell polarity fine-tunes the morphogenetic process via orienting cell axes, division planes and cell movements. Wnt5a-mediated non-canonical signaling, which may include planar cell polarity, has emerged as a common thread in the otherwise distinct signaling networks that regulate morphogenesis in each phase of limb development. These findings position the limb as a key model to elucidate how global tissue patterning pathways direct local differences in cell behavior that, in turn, generate growth and form.  相似文献   

8.
Cell polarity     
《Organogenesis》2013,9(3):217-228
Despite extensive genetic analysis of the dynamic multi-phase process that transforms a small population of lateral plate mesoderm into the mature limb skeleton, the mechanisms by which signaling pathways regulate cellular behaviors to generate morphogenetic forces are not known. Recently, a series of papers have offered the intriguing possibility that regulated cell polarity fine-tunes the morphogenetic process via orienting cell axes, division planes and cell movements. Wnt5a-mediated non-canonical signaling, which may include planar cell polarity, has emerged as a common thread in the otherwise distinct signaling networks that regulate morphogenesis in each phase of limb development. These findings position the limb as a key model to elucidate how global tissue patterning pathways direct local differences in cell behavior that, in turn, generate growth and form.  相似文献   

9.
10.
Defective or inefficient apoptosis is an acquired hallmark of cancer cells. Thus, a thorough understanding of apoptotic signaling pathways and insights into apoptosis resistance mechanisms are imperative to unravel novel drug targets for the design of more effective and target selective therapeutic strategies. This review aims at providing an overview of the recent understanding of apoptotic signaling pathways, the main mechanisms by which cancer cells resist apoptotic insults, and discusses some recent attempts to target the mitochondrion for restoring efficient cell death signaling in cancer cells.  相似文献   

11.
Apoptosis is a stochastic, physiological form of cell death that is characterized by unique morphological and biochemical properties. A defining feature of apoptosis in all cells is the apoptotic volume decrease or AVD, which has been considered a passive component of the cell death process. Most cells have inherent volume regulatory increase (RVI) mechanisms to contest an imposed loss in cell size, however T-cells are unique in that they do not have a RVI response. We utilized this property to explore potential regulatory roles of a RVI response in apoptosis. Exposure of immature T-cells to hyperosmotic stress resulted in a rapid, synchronous, and caspase-dependent apoptosis. Multiple rounds of osmotic stress followed by recovery of cells in normal media resulted in the development of a population of cells that were resistant to osmotic stress induced apoptosis. These cells were also resistant to other apoptotic stimuli that activate via the intrinsic cell death pathway, while remaining sensitive to extrinsic apoptotic stimuli. Interestingly, these osmotic stress resistant cells showed no increase in anti-apoptotic proteins, and released cytochrome c from their mitochondria following exposure to intrinsic apoptotic stimuli. The osmotic stress resistant cells developed a RVI response, and inhibition of the RVI restored sensitivity to apoptotic agents. Analysis of apoptotic signaling pathways showed a sustained increase in phospho-AKT, whose inhibition also prevented an RVI response resulting in apoptosis. These results define a critical role of volume regulation mechanisms in apoptotic resistance.  相似文献   

12.
Although neuronal cell death through apoptotic pathways represents a common feature of dysferopathies, the canonical apoptotic changes familiar from nonneuronal cells are late events. Loss of neuronal function occurs at a much early time, when synaptic-based neuronal connectivity fails. In this context, apoptotic pathways may normally serve a cleanup role, rather than a pathogenic one. Reframing the consideration of cell death in the nervous system to include the early stages of axonal degeneration provides a better understanding of the roles played by various apoptotic signaling pathways in neurodegenerative diseases. Focusing on disease-specific mechanisms that initiate the sequence that eventually leads to neuronal loss should facilitate development of therapies that preserve neuronal function and neuronal numbers.  相似文献   

13.
Adhesions between the cell and the extracellular matrix (ECM) are mechanosensitive multi-protein assemblies that transmit force across the cell membrane and regulate biochemical signals in response to the chemical and mechanical environment. These combined functions in force transduction, signaling and mechanosensing contribute to cellular phenotypes that span development, homeostasis and disease. These adhesions form, mature and disassemble in response to actin organization and physical forces that originate from endogenous myosin activity or external forces by the extracellular matrix. Despite advances in our understanding of the protein composition, interactions and regulation, our understanding of matrix adhesion structure and organization, how forces affect this organization, and how these changes dictate specific signaling events is limited. Insights across multiple structural levels are acutely needed to elucidate adhesion structure and ultimately the molecular basis of signaling and mechanotransduction. Here we describe the challenges and recent advances and prospects for unraveling the structure of cell-matrix adhesions and their response to force.  相似文献   

14.
15.
Apoptosis is a prominent feature of liver diseases. Causative factors such as alcohol, viruses, toxic bile acids, fatty acids, drugs, and immune response, can induce apoptotic cell death via membrane receptors and intracellular stress. Apoptotic signaling network, including membrane death receptor-mediated cascade, reactive oxygen species (ROS) generation, endoplasmic reticulum (ER) stress, lysosomal permeabilization, and mitochondrial dysfunction, is intermixed each other, but one mechanism may dominate at a particular stage. Mechanisms of hepatic apoptosis are complicated by multiple signaling pathways. The progression of liver disease is affected by the balance between apoptotic and antiapoptotic capabilities. Therapeutic options of liver injury are impacted by the clear understanding toward mechanisms of hepatic apoptosis.  相似文献   

16.
《Fly》2013,7(6):330-332
The nuclear factor-kappaB (NF-κB) and c-Jun NH2-terminal kinase (JNK) signaling pathways regulate diverse biological processes, including the immune and inflammatory response, cell growth, apoptosis, and tumor formation. Not surprisingly therefore defects to either pathway contribute to the progression of numerous human disorders. Enhancing our understanding of the mechanisms that control signaling through these pathways is therefore significant as it may enable development of specific treatments. In this regard, CYLD was recently identified as a negative regulator of NF-κB and JNK signaling. CYLD has a C-terminal catalytic domain characteristic of deubiquitinating enzymes, and this is essential for CYLD to remove ubiquitin from certain proteins that positively mediate signaling through the NF-κB and JNK pathways. Recent studies have revealed a requirement for CYLD in many different processes and have provided some insight into the underlying mechanisms.  相似文献   

17.
The cells and tissues of the human body are constantly exposed to exogenous and endogenous forces that are referred to as biomechanical cues. They guide and impact cellular processes and cell fate decisions on the nano-, micro- and macro-scale, and are therefore critical for normal tissue development and maintaining tissue homeostasis. Alterations in the extracellular matrix composition of a tissue combined with abnormal mechanosensing and mechanotransduction can aberrantly activate signaling pathways that promote disease development. Such processes are therefore highly relevant for disease modelling or when aiming for the development of novel therapies.In this mini review, we describe the main biomechanical cues that impact cellular fates. We highlight their role during development, homeostasis and in disease. We also discuss current techniques and tools that allow us to study the impact of biomechanical cues on cell and tissue development under physiological conditions, and we point out directions, in which in vitro biomechanics can be of use in the future.  相似文献   

18.
Apoptosis: a mitochondrial perspective on cell death   总被引:5,自引:0,他引:5  
Mitochondria play an important role in both the life and death of cells. The past 7-8 years have seen an intense surge in research devoted toward understanding the critical role of mitochondria in the regulation of cell death. Mitochondria have, next to their function in respiration, an important role in apoptotic signaling pathway. Apoptosis is a form of programmed cell death important in the development and tissue homeostasis of multicellular organisms. Apoptosis can be initiated by a wide array of stimuli, including multiple signaling pathways that, for the most part, converge at the mitochondria. Although classically considered the powerhouses of the cell, it is now understood that mitochondria are also "gatekeepers" that ultimately determine the fate of the cell. Malfunctioning at any level of the cell is eventually translated in the release of apoptogenic factors from the mitochondrial intermembrane space resulting in the organized demise of the cell. These mitochondrial factors may contribute to both caspase-dependent and caspase-independent processes in apoptotic cell death. In addition, several Bcl-2 family members and other upstream proteins also contribute to and regulate the apoptosis. In this review, we attempt to summarize our current view of the mechanism that leads to the influx and efflux of many proteins from/to mitochondria during apoptosis.  相似文献   

19.
In slightly over a period of twenty years, our comprehension of the cellular and molecular mechanisms that govern the Wnt signaling pathway continue to unfold. The Wnt proteins were initially implicated in viral carcinogenesis experiments associated with mammary tumors, but since this period investigations focusing on the Wnt pathways and their transmembrane receptors termed Frizzled have been advanced to demonstrate the critical nature of Wnt for the development of a variety of cell populations as well as the potential of the Wnt pathway to avert apoptotic injury. In particular, Wnt signaling plays a significant role in both the cardiovascular and nervous systems during embryonic cell patterning, proliferation, differentiation, and orientation. Furthermore, modulation of Wnt signaling under specific cellular influences can either promote or prevent the early and late stages of apoptotic cellular injury in neurons, endothelial cells, vascular smooth muscle cells, and cardiomyocytes. A number of downstream signal transduction pathways can mediate the biological response of the Wnt proteins that include Dishevelled, beta-catenin, intracellular calcium, protein kinase C, Akt, and glycogen synthase kinase-3beta. Interestingly, these cellular cascades of the Wnt-Frizzled pathways can participate in several neurodegenerative, vascular, and cardiac disorders and may be closely integrated with the function of trophic factors. Identification of the critical elements that modulate the Wnt-Frizzled signaling pathway should continue to unlock the potential of Wnt pathway for the development of new therapeutic options against neurodegenerative and vascular diseases.  相似文献   

20.
Apoptosis is an important morphogenetic event in embryogenesis as well as during postnatal life. In the last 2 decades, apoptosis in tooth development (odontogenesis) has been investigated with gradually increasing focus on the mechanisms and signaling pathways involved. The molecular machinery responsible for apoptosis exhibits a high degree of conservation but also organ and tissue specific patterns. This review aims to discuss recent knowledge about apoptotic signaling networks during odontogenesis, concentrating on the mouse, which is often used as a model organism for human dentistry. Apoptosis accompanies the entire development of the tooth and corresponding remodeling of the surrounding bony tissue. It is most evident in its role in the elimination of signaling centers within developing teeth, removal of vestigal tooth germs, and in odontoblast and ameloblast organization during tooth mineralization. Dental apoptosis is caspase dependent and proceeds via mitochondrial mediated cell death with possible amplification by Fas-FasL signaling modulated by Bcl-2 family members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号